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Abstract

In this paper, we introduce connectification operators for intuition-
istic and classical linear algebras corresponding to linear logic and to
some of its extensions with n-contraction. In particular, n-contraction
(n > 2) is a version of the contraction rule, where n + 1 occurrences
of a formula may be contracted to n occurrences. Since cut cannot be
eliminated from the systems with n-contraction considered most of the
standard proof-theoretic techniques to investigate meta-properties of
those systems are useless. However, by means of connectification we
establish the disjunction property for both intuitionistic and classical
affine linear logics with n-contraction.

1 Introduction

The idea of connectification has often been used in the literature to give
a model-theoretic proof of the disjunction property (DP) and of the exis-
tence property (EP) for various intuitionistic theories. Besides the well-
known connectification operators for {} models (see Troelstra, van Dalen
[10]), Smorynski in [8] used connectification for Kripke models to prove
(DP) and (EP) and many other closure properties for Heyting arithmetic.
Further, there are well-known generalizations of Smerynski’s method, corre-
sponding to intuitionistic higher order theories, the Freyd-cover of a topos
(see Moerdijk [5], Scedrov, Scott [7]) and an alternative to the Freyd-cover
introduced by Moerdijk [4]. These so-called glueing techniques, i.e. connec-
tification methods, also have corresponding syntactic counter-parts known
as ”slashing-relations”, such as the Aczel slash (see Troelstra, van Dalen
[10], Smorynski [8]) and the Friedman slash (see Scedrov, Scott [7]).



In this paper, we shall introduce a suitable connectification operator for in-
tuitionistic and classical algebras corresponding to linear logic and some of
its extensions with n-contraction (n > 2), i.e. affine case: IPL2, CPLZ,
and non-affine case: IPL,, CPL,. To be specific, n-contraction (n > 2) is
a version of the contraction rule, where (n+1) occurrences of a formula may
be contracted to n occurrences. A variant of CPL? was first considered in
Prijatelj [6], while IPL,, appeared, soon after that, in a slightly more gen-
eral guise in Hari, Ono and Schellinx [2]. Moreover, we shall introduce a
connectification operator for a non-commutative version of IPLS-algebras,
corresponding to extended directional Lambek calculi, L% (for a comparison,
see Kanazawa [3]).

However, it will become clear later on that only the connectification oper-
ators for affine linear algebras are useful to prove the disjunction property
for the underlying intuitionistic and classical systems. The crucial reason is
that the presence of weakening in the systems enforces the top element of a
lattice to coincide with the unit of a monoid in the corresponding algebras.
The shortcoming of the connectification operators for the non-affine algebras
to handle (DP) will be discussed in the last section.

Since none of the extensions of linear logic considered here, enjoys cut-
elimination (witness counter-examples in Hari, Ono and Schellinx [2] and in
Prijatelj [6]), it is difficult to establish almost any of their meta-properties
syntactically. Thus, we shall in what follows focus on a model-theoretic
proof of (DP) for the systems IPL% and CPL{ by means of connectifica-
tion.

In the last section we shall introduce connectification operators for the rest
of linear algebras discussed above. We shall show that for a particular sub-
class of IPL,-models the valuation of any 1 -free IPL,-formula is preserved
under the connectification considered. Moreover, this distinguished class of
IPL,-models is complete for the | -free IPL,, system, as pointed out in the
sequel.

Let us finally mention that Troelstra’s notation for the operators of linear
logic will be used in this paper (see Troelstra [9]).



2 Intuitionistic Systems with n-Contraction and
Weakening

For any n > 2, an intuitionistic system of affine propositional logic with n-
contraction, IPL, is given by the following axioms and rules. Throughout
the below, A denotes the empty multiset, & denotes either an occurrence
of an IPL;-formula or the empty multiset, and I',I'y, I'; stand for finite
multisets of IPLZ-formulas.

Axioms

A=A 0=A A=1

Logical rules

Iy I''A,B=¢& I'h=4 T's=B Rx
[LAxB= % I,Ts=A*B
L I'i=4 I'y,B=> & I'NA=B R
I1,[5,A-B= 3% IT'=A4-B
T'VA; = @ . I'=4 I'= B
N vZ a9 (=12 T=ang &
A=92 I''B=¢©& I'= A; .
Ly T, AUB= 3 rs 4,04, ¢=bL2 RU

Structural rules

I'=® I'=A

W t1=3% Toa W
LAY = &
LCx [LAMW = &

where AK) = 4 A, ... A, ie. k copies of formula A.

=4 I'v, A= &

cur I',ITa=¢@




Remark: A non-involutive negation can be defined by ~A4 = A — 0. Note
that the respective left and right rules

= A T,A= A

I~ v+ 74=a T= ~A

R~

are derivable in IPLg.

3 Algebraic Models for IPL;

Definition 3.1 X = (X, %,—,M,U,0,1) s an IPL? algebra, if:
(1) (X,*,1) is a commutative monoid with unit 1;
(2) (X,N,U,0,1) is a lattice with bottom 0 aﬁd top 1;

(8) * is monotone with respect to the lattice order <, i.e. for all z,y,z €
X, ife<y,thenzxz<yxz;

(4) forallz,y,z€ X, zxy < z if and only if x < y —o 2;

(5) forallz € X, 2" < 2™, where % = z x - - - x & with k copies of .

Remark: Note that, an IPL}-algebra is in fact an intuitionistic linear
algebra with zero (see Troelstra [9]), satisfying in addition:

e | =0and z <1 for all z € X (corresponding to weakening);
¢ clause (5) (corresponding to n-contraction).

However, for the notational perspicuity in the next two sections we shall
here adopt the above given formulation of an IPLZ-algebra.

Lemma 3.2 In any IPLZ-algebra X = (X,%,—,M,U,0,1), the following
are satisfied for all z,z',y,y',z € X :

(a) zx(yUz) = (zxy)U (z*z), and moreover,
T x| s yi = Lier(z *3:) , provided |licryi exists;

(b)) ifz <z andy <y, thenz' -wy<z —oy;

(c) y—z=max{z € X|z*xy < z};



(d) exy < x;
(e) zx0=0;
(f) ™ = z™+1,

Proof: The proof of (a)-(c) is standard (see Troelstra [9]), (d) and (f) are
straightforward consequences of the affine character of an IPL}-algebra. &

The following corresponds to a fact well-known from the theory of Heyting
algebras.

Fact 3.3 Let the clauses (1)-(3) of the definition of an IPLZ-algebra be
satisfied for some (X, %,M,U,0,1). If — s well-defined on X x X by

y —oz=max{z € X|zxy < z},
then also (4) of definition 3.1 is fulfilled for (X,*,—o,M,L,0,1).
Definition 3.4 M = (X, [.]) is an IPLZ-model, if
(1) X is an IPL -algebra;
(2) [ -] is a valuation satisfying:
(i) [P] € X, for every propositional variable P;
(@) [01=0, 1] =1;
[.] is extended to arbitrary IPLS-formula inductively, as follows:
[AeB] =[A] ¢ [B], with e € {x,—,M,U}.
Moreover, [ . ] is extended to multisets by:
[A]=1 and [T, A] = [T] * [A]

A sequent T' = A s valid in M, denoted by =p I' = A, if and only if
[T] < [A]. Moreover, we stipulate that a sequent of the form I' = A 1is
valid in M if and only if a sequent T' = 0 is valid in M, i.e. if and only if
[T]<o.

Remark: A sequent of the form A = A is valid in M if and only if [A] =1,
since 1 is the top element in X.



Proposition 3.5 (Soundness) Given an IPLS-sequent I' = @,
if IPLE FT = &, then p T = &,
for every IPLZ-model M.

Proof: By induction on the length of a derivation of I' = &. <

Proposition 3.6 (Completeness) There ezists an IPLZ - model My, such
that
if Em, T = A, then IPL;FT = A

Proof: Observe that the Lindenbaum algebra of IPL{ is an IPL; -algebra.
The rest of the proof is standard. o

4 Connectification with a new top element

Definition 4.1 Let X = (X, %, —,M,U,0,1) be an IPL%-algebra. The con-
nectification of X with a new top element 1. ¢ X is the IPL} -algebra
X = (X U{1.},*c, —o¢, Me, L, 0), given by:

(1) *. is the extension of x on X U {1.} , defined by:
cthele=1.*.z==z forall z € X U{l.}.
(2) <. is the extension of the lattice order < on X U {1.}, given by:
forall z € XU{l.}: =<1,
(8) —oc is defined on (X U {1.}) x (X U{1.}) by:
y —oc z=max{z € X U{l}|zx y <. 2}
Remark: Note that, explicitly:
1. ify<.z

Y—oc2Z2=1 2 ify=1,
y — z otherwise



Hence, —o is in fact well-defined on (X U {1.}) x (X U {1.}).

Next we verify that X, = (X U{1.},*c, —o¢,Me, L, 0) is an IPLZ-algebra.
By (1) and (2) above, clauses (1) and (2) of the definition of an IPLS-algebra
are satisfied. To justify monotonicity of x. with respect to <., clause (d) of
lemma 3.2 is to be used. So far, clauses (1)-(3) of the definition of an IPLS-
algebra are satisfied for (X U {1.},*.,M,U,0). Moreover, —o. is well-defined
on (XU{1.}) x X U{1.}), and therefore, by fact 3.3, clause (4) of definition
of an IPLZ-algebra is fulfilled for X, as well. Since 1. is the unit for %, in
X U{1.}, clause (5) of definition 3.1 is satisfied for X, too.

Next, we shall introduce the connectification of an IPL%-model with a
new top element.

Definition 4.2 Let M = (X[ . ]) be an IPL{-model. The connectification
of M with a new top element 1. is the IPL,.-model M. = (X, [ . ].), given

by:
(1) X, is the connectification of X with a new top element 1.;
(2) [ .]. is the valuation, defined by: [P], = [P], for any propositional

variable P.

o . a
5 Disjunction Property for IPL;
We are now ready to prove a useful

Lemma 5.1 Let M = (X,[ . ]) be an IPL,-model and M. = (X.,[.],)
the connectification of M with a new top element 1.. Then the following
holds true for any IPLZ -formula A:

(i) if [A], = 1, then [A] =1;
(11) if [A], <c 1, then [A], = [A].
Proof: By induction on the complexity of A.

To illustrate the proof, we will here work out the only tricky case.
Assume A = B — D.

(i) If [B — D], = 1., then the following two possibilities are to be distin-
guished:



(1) [D]. = 1., then by induction hypothesis we get: [D] = 1. Thus,
due to lemma 3.2(c) and the fact, that 1 is the top element in X,
we get: [B — D] = [B] — [D] = [B] — 1 = 1, what was to be
shown.

(2) [D]. <c 1. Then, due to assumption (i) and definition of —o,,
we know: [B]., <. [D],, yielding [B], <. l.. Using now the
induction hypothesis, we get: [D]. = [D] and [B], = [B]. And
therefore, [B] < [D]. Hence, [B — D] = [B] — [D] = 1, due
to lemma 3.2(c) and the fact, that 1 is the top element and the
unit for x in X.

(if) If [B — D], < 1., then the following two possibilities are to be dis-
tinguished:

(1) [B], = 1., then by definition of —o., assumption (ii) and the fact
that 1. is the top element in X U{1.}, we know: [D], <. 1.. Now
we can use induction hypotheses yielding: [B] = 1 and [D], =
[D]. And hence, [B — D] = [B] — [D] =1 — [D] = [D], due
to lemma 3.2(c) and the fact, that 1 is the unit for x in X. But,
[D] = [D], = 1. — [D]. = [B], —. [DP], = [B — D],, what
was to be shown.

(2) [B]. <c 1, then by induction hypothesis we have: [B], = [B].
Moreover, due to assumption (ii), and definition of —o., we know
that [B], £. [D],, yielding [D], <. 1.. Using induction hypoth-
esis once again gives: [D], = [D]. From that and definition of
—ee, we gets [B — D], = [B], = [D], = [B], — [D], = [B] -
[D] = [B — D]. And we are done. <o

Remark: The above lemma shows that the class of all M.-valid formulas
is a subclass of M-valid formulas.

Lemma 5.2 Let M = (X,[ . ]) be an IPLZ-model and M. = (X, [.].)
the connectification of M with a new top element 1.

If[A] <1 and [B] <1, then [AUB], <. 1,

where A and B are IPLy, -formulas.



Proof: Suppose M = (X, [ . ]) is an IPLZ-model, such that for some IPLZ-
formulas A and B, [A] < 1 and [B] < 1. Then, by contraposition of the
statement (i) of lemma 5.1, we get [A], <. 1 and [B], <. 1, since 1 and
1. are the top elements in X and in X. respectively. Hence, [AU B], =
[A4]. Uc [B]. <c 1, and we are done. <o

Remark: The above lemma can be rewritten as follows. Given an IPL-
model M such that Epg A = A and ey A = B, then e, A = AU B,
where M. is the connectification of M with a new top element.

Lemma 5.3 The product of IPL}-models, M; = (X1,[.];) and My =
(Xa,[.]2), is the IPLS-model M1 x Ma = (X3 x Xo,([.]1,[ - 1,)), with
the operations in X1 X Xo defined component-wise.

Proposition 5.4 The system IPL; enjoys the following disjunction prop-
erty:

if TPL+A= AUB, then TPL2+ A=A or IPL:+ A= B.

Proof: Suppose that IPL; # A = A and IPL; I/ A = B. Then, due to
completeness, see proposition 3.6, there are IPL}-models M; = (X4,[. |;)
and My = (X3, [ . ]5), such that:

Fm, A= A and [~y A= B.

This means, that
|[A]]1 <11y and |IB]]2 <z 1q,

where 1; and 12 are the top elements in the corresponding IPLZ-models
respectively. But, by lemma 5.3, M; x My = (X; x Xo,([.1;,[- o)) is
again an IPL}-model. Moreover, we know that

(14ly, [Alp) < (11,12) and ([B];, [Bly) < (11,12),

with (11,15) being the top element of the model M x M. And hence, using
lemma 5.2, we may conclude that

[[A u B]]c Sc (11712) <e 1C7

where M, = (X, [ . ],) is the connectification of the IPL;-model M; x M
with a new top element 1.. Thus, ~p;, A = AU B. Hence, due to sound-
ness, see proposition 3.5, IPL; / A = AU B and we are done. o

9



A natural question arising at this point is whether the disjunction prop-
erty can be generalized to some suitable class of IPL;-formulas that may
occur in the antecedent of the sequents considered. For that purpose, con-
sider the following modification of the connectification of an IPL;-model.
Let clause (2) of definition 4.2 be replaced by:

(2’) for any propositional variable P,

)1 if[P]=1
[Pl = { [P] otherwise

It is easy to see that also for this version of connectification lemma 5.1 holds
and so does the rest of the proof establishing (DP) of IPLS. Moreover, the
following preservation result can be obtained.

Proposition 5.5 Let A be any U-free IPL:-formula. Given an IPL-
model M and its connectification M., in the sense above,

_ ] if[Al=1
[, = { [A] otherwise

Proof: By induction on the complexity of A. o

Remark: Clearly given an IPLS-model M the validity of any U-free formula
A is preserved under the connectification just introduced, ie. Epp A = A
if and only if =1, A = A.

Definition 5.6 Let I be the class of those U-free IPLS -formulas D with
the property:

for every IPLS -formula F, such that IPL] tf D = F there is an IPLj -
model M satisfying Epg A = D and ey A = F

Remark: First, observe that Z is not empty, since every U-free IPLS-
formula provably equivalent to 1 is an element of Z. Further, note that T is
not a subclass of IPLS-formulas provably equivalent to 1, since any L-free
IPL{-formula provably equivalent to 0 also belongs to Z. Further, we are
going to show that Z is just a proper subclass of all L-free IPLy-formulas.
For that purpose, we proceed, as follows. Given a propositional variable
P, we know that IPL? f P = P % P, for n > 2 (see Prijatelj [6] for a
counter-model). However, for any IPLZ2-model M the following holds: if
Ewm A = P (ie. [P]=1), then =p A = P*P (i.e. [P]x[P] =1). Hence,

10



P does not belong to Z.

Proposition 5.7 Given D € T the following holds for any IPLZ -formulas
A and B:

if TPLE-D = AUB, then IPLE+D=> A or IPL:+ D= B.

Proof: Suppose that IPL] ¥ D = A and IPL] I/ D = B. Since by
assumption D € T, we know that there are IPL{-models M; and Mj sat-
isfying:

Ev, A = D, vy, A = A, and =y, A = D, M, A = B. Using
the same arguments as in the proof of proposition 5.4 one can show that
[Au B], <. 1., where M. = (X, [ .].) is the connectification of the IPLy-
model M; x My with a new top element 1.. Moreover, by the preservation
proposition 5.5 we get [D], = 1.. Thus clearly, [D], £. [AUB],, ie.
“m, D = AU B. Hence, IPL], I/ D = AU B. And we are done. <o

Summing up the results of this section, i.e. proposition 5.4 and a straight-
forward generalization of proposition 5.7, we obtain

Proposition 5.8 The system IPL; enjoys the following disjunction prop-
erty:

if IPLFT'= AUB, then IPLFT' = A or IPL;FI'= B,

provided that either T' is the empty multiset or the x-product of all the for-
mulas in T’ is provably equivalent to some element of I, in particular to 0
or 1.

11



6 Classical Systems with n-Contraction and Weak-
ening

For any n > 2, a classical system of affine propositional logic with n-
contraction, CPLY, is given by the following axioms and rules. Throughout
the below, A denotes the empty multiset and I', 'y, T3, A, A3, Ag stand for
finite multisets of CPLZ-formulas.

Axioms

A=A 0= A A=1

Logical rules

I I'=4,A A=A
[,~A= A = ~A4,A
L« T'"A,B= A I'=A4,A I'y = B, Ay Rx
[LAxB= A [1,T2= A% B,A1, A
L+ I', A=A, I'y, B = Ag I'= A,B,A R+
I',T2,A+ B = A1,A2 I's A+ B,A
T A=A . I'=>A,A TI'=BA
I v+ 2na4sa (=12 T AMNB.A R
A=A I'B= A I'=s A;,A .
Lu T.AUB= A To A, 04, A ‘=12 Rl
Structural rules
I'=A I'= A
W s a5 & Toaa W
r,LAM+D = A = A+TD A
9 ) Cn
LCn rLAM = A =AM A R

12



where A®) = A, A,... A, ie. k copies of formula A.

F]_ﬁA,Al FZ,A=>A2

T
o T0,T5 = Ay, Ay

Remark: A linear implication can be defined by A — B =~ A + B. Note
that, the respective left and right rules

I'i=A,A; [2,B= Ay I''A= B,A

T1,02,4 — B = Ap, A, T'=A-B,A R—

L —

are derivable in CPL{.

7 Algebraic Models for CPL;
Definition 7.1 X = (X,~,%,+,M,U,0,1) is a CPLS-algebra, if:

(1) {(X,%,1) and (X,+,0) are commutative monoids with units 1 and 0
respectively;

(2) (X,N,U,0,1) is a lattice with bottom 0 and top 1;
(8) ~ is involution, i.e. ~~z =z forallz € X;

(4) * and + are monotone with respect to the lattice order <, i.e. for all
z,y,z€ X, ife<y,thenezxz<yxzandz+2<y-+z;

(5) for allz,y,z € X, x xy < z if and only if x <~y + z;

(6) forallz € X, 2" < 2™ and (n+ 1)z < nz, where z* =z x -+ x
and kx =z + -+ + = with k copies of x respectively.

Remark: Note that, a CPL-algebra is just a classical linear algebra
(provided— is taken as primitive while T, ~ and + are defined in a usual
way, see Troelstra [9]), satisfying in addition:

e | =0and T =1 (corresponding to weakening);
e clause (5) (corresponding to n-contraction).

However, we will here choose the fully symmetric formulation of CPLZ-
algebra establishing a proper intuition for defining, later on, the connectifi-
cation operator for the classical algebras considered.

13



Lemma 7.2 In any CPLS-algebra X = (X, ~,%,+,M,U,0,1), the follow-
ing are satisfied for all x,y,z € X :

(a) ax ~2z =0 and c+ ~z =1;
(b) ~0=1 and ~1=0;
(c) forallz,y,z€ X, zx(y+2) < (z*xy)+ z;

(d) De Morgan laws ezpressing that the following pairs of operators are
dual to each other: (~,~), (x,+), (M,U), (0,1);

(e) ~ is anti-monotone with respect to <, i.e. ¢ <y iff vy <~z;

(f) distributivity of x and of + over U and over N respectively; and more-
over,

@ x| licr i = Uicr(®xys) , provided | ey ezists;
z + Micryi = Mier(z + yi) , provided Micry; ezists;

(9) y+ 2z =max{z € X|zx ~y < z};
(h) zxy<zandz<z+y;

(i) zx0=0andz+1=1;

() =™ ="t and (n+ 1)z = nz.

Proof: Straightforward. <&

Fact 7.3 Let the clauses (1)-(4) of definition 7.1 be satisfied for some
(X, ~,%,M,,0,1). If + is well-defined on X x X by

y+z=maz{z € X|zx~y < z},
then, also, (5) of definition 7.1 is fulfilled for (X,~,%,+,M,1,0,1).
Definition 7.4 M = (X,[. ]) ¢s a CPL; -model, if:
(1) X is a CPLS -algebra;

(2) [ -] is a valuation satisfying the same conditions as an IPL7-model;

14



[.] is extended to CPLS-formulas inductively, by: | ~ A] =~ [A] and
[A e B] = [A] e [B], with e € {x,+,M,U};

Moreover, a CPLS-sequent A;,...,Ar = Bi,...,B,, (where k,m may not
both be zero) is valid in M if and only if [A1]*- - -x[Ar] < [Bi]+- - -+[Bm]-

Finally, the soundness and the completeness theorem for the classical case
considered can be established in an analogous way to the previously dis-
cussed intuitionistic case.

8 Connectification with new top and bottom el-
ements

Definition 8.1 Let X = (X,~,x,+,M,U,0,1) be a CPLS-algebra. The

connectification of X with a new top element 1. ¢ X and with a new bottom

element 0. € X s the CPL2-algebra X, = (X U {0¢,1c}, ~e, *ey ey Mey Ue) s
given by:

(1) ~c is the extension of ~ on X U {0.,1.}, defined by:

~c0.=1, and ~.1.=0,.

(2) <. is the extension of the lattice order < on X U {0.,1.}, given by:

0. <cz <.l forall z € X U{0,1.}.

(8) *. 1s defined on (X U {0, 1.}) x (X U {0, 1.}) by:

0. ify <c~vez
y ifz=1,

z ify=1.
Y%z otherwise

(4) +c is defined on (X U{0,1.}) x (X U{0c,1.}) by:

1. if ~ey Zc 2
Yy ifz =0

z ify =0
y+z otherwise

Y+ecz=

15



ey

Figure 1: The connectification of affine linear algebras: (I) intuitionistic
case, (C) classical case.

Remark: To verify that X, is indeed a CPL;;-algebra, observe the following
facts. Note that x. and +. are duals of each other and moreover, that they
are commutative operations in X U {0.,1.}. Observe also that (4) is just
spelling out the effects of

y+cz =max{z € X U{0.,1.}| z*x. ~cy <. z}.

By fact 7.3 this yields clause (5) of the definition of an CPLZ-algebra. Now,
the verification is a trivial matter.

The connectification of a CPLZ-model with new top and bottom ele-
ments is introduced, as follows.

Definition 8.2 Let M = (X, [.]) be a CPLZ-model. The connectification
of M with a new top element 1. and with a new bottom element 0. is the
CPL.-model M, = (X.,[ . ].), given by:

(1) X, s the connectification of X with 1. and 0.;

(2) [ .]. is the valuation, defined by: for every propositional variable P,

1. f[P]=1
[Pl.=% 0. if[P]=0
[P] otherwise
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9 Disjunction Property for CPL?

In this section, we are going to show that also classical systems of affine
linear logic with n-contraction (n > 2) enjoy the disjunction property. For
that purpose, we shall first elaborate the necessary prerequisites.

To start with the central

Lemma 9.1 Let M = (X,[ . ]) be a CPLZ-model and M. = (X,,[.].)
the connectification of M with a new top element 1, and with a new bottom
element 0.. Then, the following holds true for any CPLy, -formula A:

(i) if [A]. = 1c, then [A] =1;
(1) if 0. < [A]. <c 1c, then [A], = [A];
(i) if [A]. = O, then [A] = 0.

Proof: By induction on the complexity of A.

To illustrate the proof, we will here consider only the case for the connective
~. Assume A =~ B. Suppose that 0. <. [ ~B]. <c lc. Then, by definition
0. <c~c [B]. <c 1, yielding 0. <. [B],. <c 1lc, due to the fact that ~ is
involution, anti-monotone with respect to <. (see lemma 7.2(e)), and that
~¢ 0. =1, and ~, 1. = 0.,. We can now use induction hypothesis and get
[B], = [B]. Hence, [ ~. B], =~ [B], =~ [B]. But ~ restricted to X
is just ~. Therefore ~, [B] =~ [B] = [ ~ B]. This verifies clause (ii) of
the lemma while (i) and (iii) are left to the reader as well as the rest of the
proof. <o

Next, the following preservation result can be established.

Proposition 9.2 Let A be any N-U-free CPLS -formula. Given a CPLj -
model M and its connectification M,

1. if[4] =1
[Al. =14 0. #[A]=0
[A] otherwise

Proof: By induction on the complexity of A. &

Remark: Clearly given a CPL%-model M the validity of any M-U-free
formula A is preserved under the connectification, i.e. |Ep A = A if and
only if =g, A = A.

To continue with
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Definition 9.3 Let C be the class of those MN-U-free CPLS -formulas D with
the property:

for every CPLS-formula F, such that CPL] I/ D = F' there is an CPL-
model M satisfying =M A = D and ey A = F

Along the lines analogous to those for the intuitionistic case the following
result can now be established:

Proposition 9.4 The system CPLZ enjoys the following disjunction prop-
erty:

if CPLFT'= AUB, then CPL:FI'= A or CPL,; T = B,

provided that either I' is the empty multiset or the x-product of all the for-
mulas in ' is provably equivalent to some element in C, in particular to 0
orl.

10 Some Variations of the Connectification Op-
erator

In this section, we shall briefly introduce the connectification operators for:

(1) intuitionistic algebras corresponding to linear logic, ILZ-algebra, and
to its extension with n-contraction, IPL,-algebra;

(2) classical algebras corresponding to linear logic, CL-algebra, and to its
extension with n-contraction, CPL,-algebra.

(3) non-commutative versions of IPL%-algebras, corresponding to the di-
rectional Lambek calculi extended by additional operators, weaken-
ning and n-contraction, LZ-algebra.

Ad (1): The underlying systems IPL,, (IPL) are obtained from IPL_ by
restricting weakenig only to 0 and 1 in the succedent and in the antecedent
respectively,(omitting also n-contraction), and by adding the axiom for L.
Moreover, an IPL,-algebra is an ILZ-algebra with the additional clause
corresponding to n-contraction.

Definition 10.1 Let X = (X, %, —,M,1,0,1, L) be an ILZ (IPL,)-algebra.
The connectification of X with a new top T. € X is the ILZ (IPLy)-algebra
X = (X U{T:}, *c, ¢, Me, Ue, 0,1, L), given by:
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(1) *c 1s the extension of x on X U{T .}, defined by:
forallz € XU {T.}:

T. otherwise

Tc*cazza:*cTcz{ L ifr=1

(2) <. is the extension of < on X U{T.}, given by:

forall e e X U{T.}: = <. T

(8) —oc is defined on (X U {T.}) x (X U{T.}) by:

T. ify=Llor z=T.
Y—ocz=<( L ify=T. and z€ X
y—oz ifye X\{Ll} and z€ X

Ad (2): The underlying systems CPL, (CPL) are obtained from CPL,
by restricting weakening as in (1) above, (by omitting n-contraction), and
adding the corresponding axioms for L and T.

Moreover, a CPL,-algebra (CPL-algebra) is obtained from a CPLZ-algebra
by replacing 0 and 1 with | and T in the lattice respectively (ommiting also
the clause corresponding to n-contraction.)

Definition 10.2 Let X = (X, ~,*,+,M,1,0,1,1,T) be a CL (CPL,)-
algebra. The connectification of X with a new top T, & X and with a new
bottom L. & X is the CL (CPL,)-algebra X, = (X U {L, T},

~eykey ey Mey Ue, 0, 1)7 given by"

(1) ~. is the extension of ~ on X U{L., T.}, defined by:
~edle=Te and ~.T.= L..
(2) <. is the extension of the lattice order < on X U{L., T}, given by:
1e<cx<,Te forall ze X U{L,T.}.
(8) *c is defined on (X U {L., T.}) x (X U{Lc, Tc}) by:
de fy=1, or z=1,

yxcz=4{ Tc fly=Tcand z# L) or (z=T. and y# L.)
yxz ify,ze€X
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Figure 2: The connectification of non-affine linear algebras: (I) intuitionistic
case, (C) classical case.

(4) +c is defined on (X U{ L., T.}) x (XU{L, Tc}) by:

Te fy=Tc or z=T,
y+ez =< L. if(ly=Llc and 2#T.) or (z=L1, and y# T,)
y+z ify,z€X

Ad (3): For any n > 2 an extended directional Lambek calculus, L2, is a
version of IPL;, based on sequences, with the linear implication being split
into the left slash and into the right slash. The corresponding left and right
introduction rules are, as follows:

L\ I'=s A A1,B,Ay = & AT =B R\
ALT,A\B,A;, = & T= A\B

L/ I'=4A4 A1,B, Ay = & I'NA=B R/
Al,B/A,F,A2=>(§ F=>B/A

We also emphasize that weakening is now built into the axiom schemes in
order to prevent derivability of empty antecedent and of empty succedent
sequents in the underlying systems.

Definition 10.3 X = (X, %,\,/,M,U,0,1) is an L%-algebra, if:

(1) (X,%,1) s a monoid with unit 1;
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(2) (X,N,,0,1) is a lattice with bottom 0 and top 1;

(8) x 1s left and right monotone with respect to the lattice order <, i.e. for
adlz,y,ze€ X, iffe <y, thenzxz <zxyandrxxz < yxz;

(4) for allz,y,z€ X, zxy <z iff y <z\z iff ¢ < z/y;

(5) forallz € X, & = 2", where &* = z - -- x z with k copies of x.

Definition 10.4 Let X = (X, x,\,/,M,U,0,1) be an L%-algebra. The con-
nectification of X with a new top element 1. ¢ X is the LS -algebra X, =
(X U{lc} *¢, \e» /e Mey Ue, 0), with clauses (1) and (2) identical to those in
the commutative counter-part, but with the clause (8) being split into:

- (8°) \c is defined on (X U {1.}) x (X U {1.}) by:
Y\cz = max{z € X U{l:}| yxc = <. z}.
(3”) /¢ is defined on (X U {1.}) x (X U{1.}) by:

z/cy =max{z € X U {1l }| z*.y <. z}.

Remark: Note that, explicitly:

1. ify<.z
Y\ez =1 2z ify=1,

y\z otherwise

1. fy<L.z
zfey=< 2 ify=1,

y/z otherwise

At this point, the reader himself should be able to verify that each of
the connectification operators introduced above is indeed well-defined.
Moreover, by analogy with the previous cases of affine logics with n-contraction
(DP) can also be established for the system LZ. Let, in this case, £ be the
class of LI-free L2-formulas, defined in an analogous way to the class T (see
definition 5.6). We shall here write down only the main
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Proposition 10.5 The system L2 enjoys the following disjunction prop-
erty:

if I8+T = AUB, then L2+T=A or I°+T = B,

provided the x-product (respecting the order) of all the formulas in I is prov-
ably equivalent to some element of L, in particular to 0 or 1.

We could prolong the story by specifying suitable connectification operators
for the non-commutative algebras corresponding to the non-affine systems L
and L,,. However, we believe that the reader has got the sufficient routine to
accomplish this task on his own. Instead, we are going to state a preservation
result for | -free IPL,-formulas with respect to a certain subclass of IPL,,
models and their connectification with a new top. For that purpose we
proceed, as follows.

First, an IPL,-model M = (X, [ . ]), as well as the connectification of M
with T, M, = (X,,[. ].), are defined in a usual way, with [P]_ = [P], for
every propositional variable P.

Next, let M- be the class of IPL,-models M = (X,[ . ]) satisfying
1 < [A] for any L-free formula A. :

Proposition 10.6 Let A be any L -free IPL,, -formula. Given M € M- |
and its connectification M., [A], = [A].

Proof: By induction on the complexity of A. <

Remark: Clearly, by the theorem above, 1 < [A] yields 1 <. [A],, and vise
versa, resulting in the following

Corollary 10.7 For any L-free formula A, |Epp A = A iff Em, A = A,

We are now going to show that, in fact, M~ | is complete with respect to
1 -free IPL,, system (based on the language without the constant 1). We
shall work out the completeness proof by means of a suitable connectifica-
tion of the Lindenbaum model of 1-free IPL,,.

First note that the Lindenbaum algebra, X of L-free IPL, is an IPL,-
algebra without bottom (top). Moreover, by standard arguments, one can
prove that the Lindenbaum model, My, is complete for 1-free IPL,.

Next we introduce the connectification of Xy, Xr_, with a bottom, L, and
top, T, as follows.
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(1) forall z,y e X U{L,T}:

4 fe=1or y=.1
zx.y=< T f(x=T and y# 1) or (y=T and z# 1)

zxy otherwise

(2) <. is the extension of < on X U {L, T}, given by:

forall ze XU{L,T}: L <, z<.T;

(3) forall y,z € X U{L, T},

T fy=1 or z2=T
y—ocz=14{ L if(y=T and 2#T) or (z=L1L and y# 1)
y — z otherwise

Remark: Observe that X is an IPL,-algebra.

Further the connectification of My, with 1 and T, Mp_, is defined in a usual
way, by putting [P]; = [P];.

We continue with a useful preservation result concerning Mz and Mp_.

Proposition 10.8 Given a L-free IPLy-formula A, [A]; = [A];.
Proof: By induction on the complexity of A. o

Due to the theorem above the completeness of M~ ; with respect to L-free
IPL, system is now established by

Corollary 10.9 My, is complete for 1 -freeIPL, system and M _ € M- ;.

We conclude the paper with some general remarks. First, we shall point
out why in the affine case the connectification operator is useful to prove
the disjunction property as opposed to the non-affine case. For the affine
case, a formula F, i.e. a sequent of the form A = F'is valid in a model if
and only if [F] = 1, since 1 = T. Thus, the connectification of any such a
model with a new top (i.e. unit) 1. (witness Figure 1) yields the following
conclusion, essential to establish (DP):
for any formulas A and B, if [A U B], = 1., then [A], =1, or [B], = L.
For the non-affine case, however, the validity condition in the corresponding
models amounts to 1 < [F]. And therefore, the connectification of such a
model with a new top (see Figure 2) does not generally permit the conclusion
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below:

for any formulas A and B, if 1 <. [AU B],, then 1 <. [A], or 1 <. [B].
(note that 1 is preserved by the connectification operator).

Let us finally emphasize that for any of the systems considered in this paper
omitting the cut rule (DP) can easily be established by a purely syntactic
reasoning.

Proposition 10.10 Let T denote the cut-free system of ILZ, IPL,, IPL?,
CL, CPL,, CPL;, L, L,, LS.

IfTFT = AUB, then THT = A or THT = B, where no formula in T’
contains a strictly positive part of L.

Proof: By induction on the length of a derivation of I' = A U B. <o

Remark: Note that in the presence of cut such a syntactic reasoning must
be given up. Namely, whatever restriction is imposed on I', following a
derivation of a sequent I' = A U B bottom up, the cut rule may introduce
a formula which violates the restriction in question.
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