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ABSTRACT: In this paper we study NNIL, the class of formulas of the Intuitionistic Propositional
Calculus IPC, with no nestings of implications to the left. We show that the formulas of this class are
precisely the formulas of the language of IPC that are preserved under taking submodels of Kripke
models for IPC (for various notions of submodel). This makes NNIL an analogue of the purely univer-
sal formulas in Predicate Logic. We prove a number of interpolation properties for NNIL, and explore

the extent to which these properties can be generalized to more complicated classes of formulas.

1 Introduction: In this paper we study a special class of formulas of the
Intuitionistic Propositional Calculus IPC. This is the class of [[;-formulas or NNIL-
formulas. These formulas are the formulas without nestings of implications to the left.

Examples of NNIL-fomulas are: p, T, (p—=(qv(r—s))A((QA)—=>(T—p)V(s—1))).

The usual Kripke semantics for IPC provides us with a translation of IPC-formulas to
one-variable formulas of the Classical Predicate Calculus (CPdC). The NNIL-formulas
are seen to translate to purely universal formulas or [;-formulas in the sense of CPdC.
In fact our results imply that every [];-formula in the sense of CPdC, under certain
further appropriate general conditions shared by all [PC-formulas, is provably equiva-
lent to a NNIL-formula.

We will prove in this paper that the NNIL-formulas are precisely the IPC-formulas pre-
served under taking submodels. Moreover the NNIL formulas satisfy the interrelated
properties of left and right approximation and (uniform) left and right interpolation. We
define these properties below. Let & be the language of IPC. (p) is the restriction of
to the finite set of propositional variables p. PV(A) is the set of propositional variables
in A. Define:

. NNIL satisfies left-interpolation (IPL) if for every Ae NNIL and Be &, there is an
I'in NNIL such that - A—I and +1-B and PVI)cPV(A)NPV(B). I is called the
NNIL left-interpolant.

. NNIL satisfies right-interpolation (IPR) if for every Ae & and Be NNIL, there is
an I in NNIL such that - A—I and -1—B and PV(I)cPV(A)NPV(B). 1 is called



the NNIL left-interpolant.

. NNIL satisfies uniform left-interpolation (UIPL) if for every B and every p, there
is a formula B*(p)e NNIL(p), such that for all Ae NNIL satisfying
PV(A)NPV(B)cp we have: FA—B < - A—B*(p). We call B*(p) the uniform
NNIL left-interpolant of B.

. NNIL satisfies uniform right-interpolation (UIPR) if for every A and every p,
there is a formula A°(p)e NNIL(p), such that for all Be NNIL satisfying
PV(A)NPV(B)cp we have: FA—B < FA°(p)—B. We call A°(p) the uniform
NNIL right-interpolant of A.

. NNIL satisfies left-approximation (APL) if for every B, there is a formula
B*eNNIL, such that for all Ae NNIL: -A—B < FA—B*,

. NNIL satisfies right-approximation (APR) if for every A, there is a formula
A°eNNIL, such that for all BENNIL: HA—B < FA°—B.

1.2 Sources of interest: The work reported in this paper is connected with

with several lines of interest of its authors.

Our first reason are derived from the analogy with modal logic. Under a suitable trans-
lation, both modal propositional logic and IPC can be viewed as especially tractable
fragments of full first-order logic. (In fact IPC can be viewed as a fragment of proposi-
tional modal logic.) The question is then to which extent these fragments inherit desir-
able meta-properties of first-order logic. Obvious cases of transfer are purely universal
properties (such as Lowenheim-Skolem), but the matter is less straightforward with
properties that involve existential quantification over first-order formulas, such as the
Lo¢' Theorem or Interpolation. (Both are in fact [, in their formula quantifiers.) Our
results show for IPC that transfer works for Lo$' Theorem, too, and moreover, our
proofs provide methods for investigating such issues more generally. Both proposi-
tional modal logic and IPC have miniature versions of the classical hierarchies of for-
mulas in predicate logic. In this paper we study (mainly) the lowest part of one such
hierarchy. For more information about the programme of transposing classical results,
see De Rijke[93].

A second concern is interpolation in fragments. A common definition of fragments is in
terms of the formulas with connectives from a certain set of (primitive or defined) con-
nectives. In classical propositional logic, interpolation holds in all such fragments
(proved by F. Ville: see Kreisel & Krivine[71], Kreisel & Krivine[72], Ch. 1,
Exercises). In intuitionistic logic, the situation is different. On the one hand, it is shown

in Renardel[89], that all fragments based on some subset of {A,v,—,—} satisfy interpo-



lation (the only non-trivial cases are the fragments [—], [—,V] and [—,Vv,=]; for [—],
interpolation was already proved by J. Zucker in Zucker[78]). On the other hand, there
are many fragments for which interpolation fails, e.g. the fragment [A,—,—,8] (where
O(A,B,C) = (Av-A) A (A—B) A (FA—C)) in Zucker[78]; see also Renardel[86] for
more counterexamples. Other information on fragments based on a subset of
{A,Vv,—,7,4>,7} such as the structure and size of finite fragments, can be found in
DHR[88].

For intermediate (also called superintuitionistic) logics, there is the remarkable result by
Maksimova (see: Maksimova[77]) that there are only five logics between classical and
intuitionistic propositional logic for which interpolation holds for the full fragment; they
are axiomatized by

. A v mA

. A v (A —>(Bv-B))

. A v (A - (Bv-B)), (A—>B) v (B—A) v ((A—>-B) A (B—>-A))

. Av (A - Bv-B)),-Av A

. (A-B) v (B—A)

respectively. The general situation is as for intuitionistic logic: see Porebska[85], where
it is shown that every intermediate logic has many fragments for which interpolation

fails.

About the situation in predicate logic not much is known. Renardel[81] gives many
fragments of intuitionistic predicate logic for which interpolation fails, but the definition
of fragment used there is rather awkward. However, it is easy to see that interpolation
fails in [—,V] and in any other fragment containing —,V where 3 is not definable. To
see this, observe that: A(c) - Vy(A(y) — B) — B, but any interpolant I can only con-
tain the parameter A and is hence equivalent to 3xA(x), which is not in the fragment (in
classical logic, Vy(A(y) = VxA(x)) — VXA(x) is equivalent to 3xA(x) and can serve

as an interpolant).

NNIL can be viewed as a fragment in an extended sense, since it is generated like the

language of IPC, restricting the formation rule for implications.

We turn to the third concern. Consider Heyting's Arithmetic (HA). Let X be set of
sentences of Lya, the language of Arithmetic. A formula A of ¥(p), the language of
IPC restricted to the finite set of propositional variables p, is HA,X-exactly provable if
there is a substitution f of elements of X for the variables in p, such that for any
Be (p):

HAFBf < IPC-A—B.
The question What are the HA,X-exactly provable formulas? is connected to the ques-



tion What are the propositional derived rules of HA? In his paper De Jongh[82], Dick
de Jongh shows that the HA,Xpa-exactly provable formulas in one propositional vari-
able p are precisely p, =p, =p, = p—p, T. For two propositional variables the
precise set of HA,{ga-exactly provable formulas is unknown. In Visser[85], it is
shown that the HA,X.;-exactly provable formulas (in any number of variables) are pre-
cisely the consistent NNIL-formulas with the Disjunction Property. Moreover for any
finite Y;-substitution f we can find an A in NNIL such that: HA-Bf < IPC-A—B.
Using this result the propositional derived rules of HA for Y.;-substitutions can be fully
characterized. It also follows that the propositional derived rules of HA for B(X)-
substitutions are the same as the propositional derived rules of IPC itself (see DV[93]).
Thus from the point of the study of the logical properties of constructive theories like
HA, NNIL turns out to be a significant class.

1.3 Genesis of the paper: In 1983-1984, A. Visser was studying the provabil-
ity logic of Heyting's Arithmetic HA. As a subproblem he considered X.;-substitutions
of propositional formulas. NNIL emerged from this work on HA. Two questions came
up of a purely propositional character. The first was whether the NNIL formulas are
precisely the ones that are preserved under taking submodels of Kripke models. This
question was answered positively by Johan van Benthem (in correpondence with
Visser) using a model-theoretical argument close to the argument presented in this paper
and, independently, by Visser using different methods (see Visser[85]). Van
Benthem's proof appeared (for the case of temporal logic) in his Van Benthem[91]. For
the further development on the modal side the reader is referred to De Rijke[93] and the
forthcoming paper ANV[?].

The other question was to prove NNIL-interpolation. This question was posed in
Visser[85]. In that paper, an indirect proof for NNIL left-interpolation (see 1.1.4 in
Visser[85]) was given. A direct proof both for left and for right interpolation is given in

Renardel[86]. Renardel's proofs are in presented in section 4 of this paper.

In 1993 De Jongh and Visser decided to take up the project concerning IPC and HA

again. The present paper brings together the results on NNIL for propositional logic.

1.4 Organization of the paper: Section 2 contains the syntactical preliminar-
ies. In section 3 we consider properties like uniform interpolation from a mildly abstract
point of view. Section 4 provides a proof of NNIL interpolation using cut-elimination.
Section 5 gives the basics of Kripke models and section 6 adds the basics of subsimu-

lations between models. In this section we prove the promised result that the NNIL



formulas are precisely the ones preserved under submodels. Section 7 contains the
proof of uniform NNIL interpolation by model-theoretical means. In section 8 we
prove that (uniform) right interpolation also holds for []5, but that uniform left interpo-
lation fails for [], and that right interpolation fails for [13. Appendix A contains a char-
acterization of IPC as a fragment of Predicate Logic. In appendix B we develop the no-

tions of simulation appropriate for the model-theoretic characterization of arbitrary [ 1.

Each of the selections:
(1,2,3,4),(1,2,3,5,6,7), (1,2,3,5,6,7.8), (1,2,5,6,A), (1,2,5,B),
can be read as a reasonably selfcontained paper, and, of course, any of their unions

can.

2 Matters of syntax: Let & be the language of Intuitonistic Propositional
Logic IPC. We take as connectives: A,v,—, T and L. =A is defined by A—> L. PV is
the set of propositional variables, denoted by p.q,...; together with T, L we call them
atoms. A,B,C,... are formulas; I',A,I"",... are finite (possibly empty) sets of formu-
las. We write I',A for the union of I and A; I',A stands for I',{A}. Let %8 be a set of
propositional variables. We write () for & restricted to 3. Similar notation will be
used for other classes of formulas. p,q,r,.. will range over finite sets of propositional

variables.

The substitution operator A[p:=B] (“substitute B for all occurrences of p in A”) is de-

fined as usual. PV(A) is the set of of propositional variables occurring in A.

We define a measure of complexity p, which counts the left-nesting of —, as follows:

*  p)=p(L):=p(T)=0

*  p(AAB) = p(AvB) := max(p(A),p(B))

. p(A—B) := max(p(A)+1,p(B)).

We define [1,:={Ae & | p(A)<n}. We will also use [, is the context of Predicate Logic

in its usual sense. This overloading of notations is explained in section 2.1.

We will at some points confuse propositional formulas with their equivalence classes
modulo IPC-provable equivalence. Under this confusion IPC becomes Dipc, the free

Heyting Algebra on Xy generators.

2.1 Remark: connection with Predicate Logic: Consider the language {&
of Predicate Logic with constant b, relation symbols =, < and with infinitely many
unary predicate symbols P,Q,R,... . We define the [I,- and X,-formulas of our lan-



guage as follows:
. I1o := X0 := all Boolean combinations of atomic formulas,
. ITn+1 and Y41 are the smallest classes such that:

° 2n C Iln+1,

° Il € Yn+1s

. IT;+1 is closed under A, v and V,

. Y+ is closed under A, v and 3,

. If Ae Y41 and Be[lh41, then A=Belln41,

. If Ae]]h41 and Be€ Y41, then ASBe Y 4.

Let T be the theory in & consisting of:

. Classical Predicate Logic,

. The theory of identity for =,

. The theory of partial orders for < with bottom element b,

. The persistence property: (Px A x<y ) — Py, for all unary predicate symbols P.

We translate formulas of IPC into &R. I(A,x), the Kripke translation of A at x, is de-
fined by:

. I(p,x) :=Px, I(L,x) := L, (T x):=T,

. I(A A B,x) :=I(Ax) A I(B,Xx)

. I(A v B,x) :=1(A,x) v I(B,x)

. I(A — B,x) := Vy=x(I(A,y) = I(B,y))

We have by a simple induction on A: I(A,x) € 1I,a).

Clearly every Kripke model (see section 5) can be considered as a model of T and vice
versa. We have: k= A & K=I(A,k), where the last satisfaction relation is the one of
Predicate Logic. One can show in analogy to a result of Johan van Benthem for modal
logic, that every one-variable formula A(x) of ¥®, that is (i) persistent and (ii) pre-
served under (partial) bisimulations, is CPdC-provably equivalent to a formula I(B,x)

for some Be X. For a precise formulation of the result and a proof, see appendix A.

As sketched above our measure of complexity corresponds via the Kripke translation
with depth of quantifier alternations. In modal logic there is a similar correspondence:
the relevant measure of complexity is there depth of box alternations. (The alternations
are w.r.t. polarity.) A striking difference between the modal and the intuitionistic case
is that the [1,(p) of modal logic are generally infinite modulo provable equivalence,

where, as we will see, the [,(p) of IPC are finite modulo provable equivalence.

Note, finally, that there are alternative hierarchies both for modal logic and for IPC cor-



responding simply to depth of quantifiers. In the IPC one counts depth of implications;
in modal logic one counts depth of boxes. For this notion the complexity classes re-

stricted to p are finite modulo provable equivalence both in modal logic and in IPC. O
The subject in this paper is the class NNIL := [];.

As is easily seen every formula in [In4 is provably equivalent to a formula resulting

from substituting [ [,-formulas in a NNIL-formula.

Consider a NNIL-fomula. Conjunctions and disjunctions in front of implications can
clearly be removed using:

. F ((AvB)—C) & (A—>C)AB—0)),

. F ((AAB)—C) & (A—(B—0)).

So NNIL coincides modulo provable equivalence with NNIL, the smallest class con-
taining the propositional atoms, closed under conjunction and disjunction and:

. if Ae NNIL, then (p—A)e NNIL.

2.2 Fact: NNIL(p) is finite (modulo provable equivalence).

Proof: Each element of NNIL(p) can be rewritten as a conjunction of disjunctions of
atoms and elements of the form: p—A, where A is in NNIL(p/{p}). So the result fol-

lows immediately with induction of the cardinality of p. Q

By our earlier observation that every [[,+1(p)-formula can be obtained by substituting

II.(p)-formulas in a NNIL-formula, it follows by induction on n, that:
2.3 Fact: [],(p) is finite (modulo provable equivalence). O

Since 1, (p) is finite, it is a finite distributive lattice under A and v. Hence it is also a
Heyting Algebra, with implication, say: —p p. Note that — need not be —p p. We do
have (for A,BeIIn(p)): - (A= pB) = (A—B).

3 Closure and Coclosure Operations on the Heyting Algebra of IPC
Many important classes of formulas can be represented (modulo provable equivalence)
as sets of fixed points of (co)closure operations on IPC considered as the free Heyting

Algebra Hypc on Xy generators.

Note that if A in Ypc is generated by p and generated by q, then it is also generated by



pNq. Thus the notation PV(A) makes sense: it denotes the minimum set of generators
of A. In this section we will confuse formulas and their equivalence classes (or their
standard interpretations in 91pc). We should, however, remember that PV(A) for A

qua formula is not necessarily identical to PV(A) for A qua equivalence class.

O:O1pc—D1PC is a closure operation if:

. A <PA) (P is inductive)

. A<B = ®(A)<XD(B) (P is monotonic)

. D(A) = D(P(A)) (® is idempotent)

W is a coclosure operation if ¥ is monotonic, idempotent and has the following prop-
erty:

. P(A) LA (W is coinductive)

Note that if a set X is the image of a closure operation ® at all, then ® is completely
determined by X, since: ®(A) = Min({Be X | A<B}). Thus ®(A) is the smallest upper
X-approximation of A. Similarly for coclosure operations ¥ we have: W (A) =
Max({Be X | BSA}), the greatest lower X-approximation of A. We will sometimes
write ®x and X¢ to express the dependence of X and a closure operation ®. We will

use Wx for a corresponding coclosure operation.

3.1 Fact: Suppose X is finite (modulo provable equivalence) and closed under

conjunction (disjunction), then ®x (¥x) exists.

Proof: Trivial. 4

We call ©® Propositional Variable Preserving or PVP if:
. PV(B(A)) c PV(A).

We state a simple sufficient condition for (co)closure operations to be PVP.

3.2 Fact: Suppose that © is a (co)closure operation and that Xg is closed under

permutations of propositional variables. Then ® is PVP.

Proof: As is easily seen it follows that for any permutation o of PV: O(cA)=c@(A).
Now suppose + O (A)«<>B(q) for some q not in A. Choose r outside of
PV(A)UPV(O(A)). Suppose o interchanges precisely q and r. Then:

F B(q) © O(A) & O(cA) & 0BO(A) & B(r).
Hence: - B(q) <> B(T). So q does not occur essentially in @(A). 1



X is called PV-finite if for each p X(p) is finite (modulo provable equivalence). A

(co)closure operation is called PV-finite if its image is.

A well known example of a PV-finite, PVP closure operation is double negation —.

X~ is the class of stable formulas.

A major discovery on IPC is the result by A. Pitts (Pitts' Uniform Interpolation
Theorem, see Pitts[92]), that &(p) is the image both of a PVP closure operation, say,
&p and a PVP coclosure operation, say, 2Up. Equivalently Pitts' result can be viewed
as providing a PVP closure operation dp and a PVP coclosure operation Vp with

L(PV/p) as image. (We leave the simple proof of the equivalence to the reader.)

It is well known that if @ is a closure operation, then X¢ is closed under A. Similarly if

WV is a coclosure operation, then X is closed under v.

3.3 Fact: If ® is a PVP closure operation, then X¢ is closed under p. Similarly

if ® is a PVP coclosure operation, then X¢ is closed under Ep.

Proof: Let ® be a PVP closure operation and X:=X@. Suppose Ae X. We have:
ApA<A and hence ®(ApA)SP(A)=A. Since ® is PVP: ®(ApA)e &(p). Ergo:
®(ApA) = UpP(UpA) < ApA. On the other hand: ApA<D(ApA). Hence ApA =
D (ApA). Q

It follows for example that 2p——A is stable.

3.4 Fact: Consider any set subset X of 91pc. Then X is the image of a PVP clo-
sure operator iff each X(p) is the image of a PVP closure operator. Similarly for coclo-

sure.

Proof: Suppose X is the image of the PVP closure operation ®. It is easily seen that
®oCp is a PVP-closure operation with image X(p). E.g. by the fact that ® is PVP:
DoCpodoCp = PoDoEp = PoCp.

Conversely suppose that for each p ®@p, is a PVP closure operation with image X(p).
Note that @g4(A)e X(qNPV(A)). Consider any A and any q2PV(A). We claim: ®g(A)
= ®py(a)(A). First Pg(A)e X(PV(A)) and A<Dg(A), hence:

Dpy(a)(A) < Ppy(a)(Dg(A)) = Pg(A).



Conversely PV(®py(a)(A))cPV(A)cq and A<®py(a)(A), hence: Dg(A)<DPpy(a)(A).

Set: D(A):=Dpy(a)(A). Clearly Ac X < Ae X(PV(A)) & Ppy(a)(A)=A. We claim that
® is a PVP closure operator. We have:
)  A<Ppyn)A)
ii)  Let poPV(A)UPV(B), then: ASB = Pp(A)SPp(B) = Ppy(a)(A)<Ppy(B)(B)
iii)  Clearly PV(®py(a)(A))SPV(A). We have:

Dpy(a)(A) = Dpy(a)(Prv(a)(A)) = P(DPpy(a)(A)). Q

It follows that if X is PV-finite and closed under conjunction, then X is the image of a

PVP-closure operation if each ®xp) is PVP.

3.5 Fact: Suppose X is the image of a PVP closure operation ® and X is closed
under €p, then ®oCp = Cpod.

Proof: Left to the reader. a
We introduce some concepts and give their connections with (co)closure operations.

Define:

. X satisfies left-interpolation (IPL) if for every Ae X and Be &, there is an I in X
such that - A—I and HFI—B and PV(I)cPV(A)NPV(B). 1 is called the X left-in-
terpolant.

. X satisfies right-interpolation (IPR) if for every Ae & and Be X, there is an [ in X
such that - A—I and FI—B and PV(I)cPV(A)NPV(B). I is called the X left-in-
terpolant.

. X satisfies uniform left-interpolation (UIPL) if for every B and every p, there is a
formula B*(p)e X(p), such that for all Ae X satisfying PV(A)NPV(B)cp we
have: FA—B & - A—B*(p). We call B*(p) the uniform X left-interpolant of B.

. X satisfies uniform right-interpolation (UIPR) if for every A and every p, there is
a formula A°(p)e X(p), such that for all Be X satisfying PV(A)NPV(B)cp we
have: FA—B < A’(p)—B. We call A°(p) the uniform X right-interpolant of A.

. X satisfies left-approximation (APL) if for every B, there is a formula B*e X,
such that for all Ae X: -FA—B & HFA—-B*.

. X satisfies right-approximation (APR) if for every A, there is a formula A°e X,
such that for all Be X: FA—B < +A°—>B.

10



3.6 Theorem: Suppose X satisfies IPR, X is PV-finite and X is closed under
conjunction, then X is the image of a PVP-closure operation. Similarly for IPL, dis-

junction and coclosure.

Proof: Consider A in X. Cbnsider A and let p:=PV((A) and pcq. We have:

Ag = Pxp)(A) =/\{BeX(p) | FA—-B},
Clearly Age X(p). Now consider any Ce X with - A—C. By right-interpolation there is
a Be X(p), such that - A—B and - B—C. Hence - Ap—B and so - A¢g—C. So we can
put: ®x(A) := Ox(p)(A) for p:=PV(A). J

3.7 Theorem: X satisfies APR(L) iff X is the image of a (co)closure operation.
Proof: Trivial. (|

3.8 Theorem: The following are equivalent:

(1) X s the image of a PVP (co)closure operation,
(i) X satisfies UIPR(L).

(iii)) X satisfies IPR(L) and APR(L)

Proof

(i)=(i1). This is theorem 3.3.

(ii)=(iii). Clearly UIPR(L) implies IPR(L). To get e.g. APR from UIPR, take:
A’:=A"(PV(A)).

(iii))=(i). Suppose e.g. IPR and APR. Define ®(A):=A". Clearly P is a closure opera-
tion. We have IPC-A—A° and A°e X. So by IPR there is a Be X(PV(A)) with
IPC-A—B and IPC-B—A". It follows that IPC-B<«>A°. Hence ® is PVP. 1

4 Interpolation, the proof theoretic approach: In this section we prove
that NNIL satisfies both left- and right-interpolation by a proof-theoretic argument. The
proof consists in constructing the interpolant I from a (cut-free) proof of A-B in a se-
quent calculus system. By the results of section 3 it follows that NNIL also satisfies
uniform left- and right interpolation, since NNIL is PV-finite and closed under disjunc-

tion and conjunction.

11



4.1 Positive and negative occurrences: We define PV+(A) [PV-(A)], the set
of all positively [negatively] occurring propositional variables in A, by:

. PVH(T)=PV~(T)=PVHL)=PV(L)=0

* PV*p)={p},PV-(p)=0

. PV+(AAB) = PV+*(AVB) = PV*+(A) U PV+(B)

. PV-(AAB) =PV-(AvB) =PV-(A) U PV-(B)

. PV+(A—B) =PV-(B—>A) =PV-(A) U PV*+(B)

Clearly PV(A) = PV+(A) U PV-(A).

4.2 The derivation system: We use the following sequent calculus:

(P) I'pkp
(T I'e=T
(L) I''L-C
I'-A I'-B I''ABFC
(AR) (AL —
I'- AAB I'’"AAB - C
TH A AFC TBrC
(VR) — (=1,2) (vh)
'+ AIVA2 F,AVB FC
I''AFB I'-A I'B+C
(=R) —_— (=L)
I'- A->B I'A—-B+C

Related systems can be found in Schiitte[62], Takeuti[75]. All these systems are
equivalent in the sense that they yield the same class of derivable formulas and that they
satisfy the following properties, to be used later:

CE cut elimination: if ' Aand I A+ BthenI'+ B

\ weakening: if ' = Athen LA - A

S substitution: if I' = A then I'[p:=B] + A[p:=B]

PS positive substitution: if p ¢ PV-(A) then A,(p—B)-A[p:=B]

The proofs are standard.

4.3 Schiitte's interpolation method: Schiitte gives in Schiitte[62] a method
to build an interpolant from a derivation of A-B. This method yields for every deriva-
ble sequent I',A-C an interpolant I satisfying:

I'~1, A,I-C and PVID)cPVI')NPV(A,C).

12



Using the shorthand I'[I]JA + C for (I'1 and A,I C), Schiitte's method can be ren-
dered as follows:

(ipl) I'[TIApEDp (ip2) FplplA+-p
GQT) [[TIA- T

il1) I'[TIA,L-C 1L12) IL[L]JARC

I'MlA-A I'JA+B

(iAR)
I'liALIJA - AAB

'mlAAr-C I'L]BAFC

GvL1)
I' 1nLb] AVB,A- C
IA[;]A-C I'B[Lb]A+-C
(vL2)
I''AvB [I1vI] A+ C
I'ijJA- A I'h]BAFC
(i—L1)
I' 1Al A—»B,A+ C
AT+ A I'B[Lb]JA+-C
(i—L2)

IA—-B [[1-DL]ARC

We explain this notation with an example. (iAR) means:

if'IjandI;,A+- Aand I' - I and Ip,A - B,

then I' - I1Alp and I1ALp,A = AAB.
So (iAR) indicates how an interpolant for I', A~ AAB can be obtained from interpolants
for I',A- A and I',A-B. For rules not mentioned here ((AL), (VR), (=R), (-R)), the

interpolant for the conclusion is the same as for the premise.

Now the Interpolation theorem is proved as follows. Assume Ar B, then there is a
derivation of A-B in the sequent calculus defined in 4.2. With induction over the
length of the derivation it is shown (using Schiitte's method) that any partition I',A-C
of a sequent in the derivation has an interpolant I, i.e.:

'L LAF Cand PV(I) c PV(I') n PV(AA).
Hence AFB has an interpolant.

Applying Schiitte's method to derivations of A - B with A € NNIL does not always
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yield an Te NNIL:

plpl = p qlalpF q

(=D
p—qlp—>qlpkq pr[RIp—>qtr
(-=L)
p, q—=r1 [(p—>9)—1] p—>q 1
(AL)
pA(@—1) [(p—g)—1] po>g -t
(=R)

pA(g—r) [(p—q)—1] + (p—q)—r

It turns out that (i—L2), the only place where an — is added to I, has to be modified.

This will be done in the next section.

4.4 The proof: We first prove NNIL left-interpolation and then NNIL right-in-
terpolation.

4.4.1 Lemma:. Assume I'’A - C and I'cNNIL,. Then there is an I with:
i) I'T and LAFC,

i) PV cPVI)NPV(AQ),

iii) IeNNIL;

iv)  {C}nPV~(I) cPV(A) (ie. if Ce PV-(I), then Ce PV(A)).

Proof: Induction over the length of a derivation of I',A - C.

I',A-C is an axiom or the conclusion of a rule different from (—L): apply Schiitte's
method (4.3). (i)-(iv) follow directly by induction.

I',A + C is the conclusion of (—L). Let A—B be the ‘new’ formula in the conclusion.
We distinguish two cases: A—B € I'or A—B € A.

Case 1: A—>B € I'. Then A—B e NNIL, so A is a propositional variable, p say. By the
induction hypothesis, we have a I'" with I U {p—B} =I" and I, I, with

a) I'WIp; I1,ARp; T'BH1p; I,A-C

b)  PV(I;) € PV(I'MNPV(4,p); PV(Ip) < PV(I',B)YNPV(A,C)

¢) I1,Jpb e NNIL

d) pePV-(I;) = pePV(A); {C}NPV-(Ip) c PV(A).

Now we must find an I and show that (i)-(iv) hold. We consider three subcases.
Subcase IA: C =p. PutI:=1;.
i) I' - I follows from I'' - Ij (by (a)), I" < T' and (W). We get.(ii), (iii) and (iv): di-

rectly from (b), (c) and (d).
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Subcase 1B: C #p, p € PV(A). Put I := [1A(p—Dy).

i)
I'p-p I'pBFI (a,W)

I'p—»>Bpt+ I

I'p—>BF I (a,W) I",p—B + p—>Iy

I"'p>BrFI| A (p—Dh) ie'HT;

I1,AFp (a) I1.I,AF C (a,W)

I1,p—»h,A-C

LA(p—I),A-C ie. LA-C

ii) PV(I1,I2) € PV(IN)NPV(A,C) is easy; as I'=I"U{p—B} and pe PV(A) we also
have pe PV(I"))nPV(A,C), so PV(I) = PV(I1))UPV(Ih)u{p} < PVI)NPV(A,Q).

iii) I1,Io € NNIL (by (c)), so I = [jaA(p—I) € NNIL by definition of NNIL.

iv) Assume C € PV~(]), then Ce PV-(I1)UPV~(Ip), for C#p. Now if C € PV~(I) then C
€ PV(A) U {p} by (b), so C € PV(A) (for Cp); and if C € PV-(Ip) then C € PV(A) by
(d). Conclusion: C € PV(A) and (iv) is proved.

Subcase 1C: C#p, p¢ PV(A). Put I := I1[p:=I>].

i) As in Subcase 1B, we have I'',p—B + 11 A (p—12); by (d) and pg PV(A) we have
pe PV-(Iy), so I1,(p—I2) - I by (PS); now apply (CE) and we get I",p—B I 1, i.e.

I'+1. Furthermore:

II,LAFp

(S)
Lip:=h]AFL (pg PV(A) IAFC

(CE)
Ii[p:=I2], A+ Cie. LA+ C.

ii) PV(D) =@®EVA/{phHuPV(D)
c (PVANPV(A,p)/{p}) v (PVI",B)YNPV(A,C))
=PV(I",B) n PV(A,C) c PVI) N PV(A,Q),
using (b) and pg PV(A).

iii) Ie NNIL follows from (c) and pg PV-(I1), a consequence of (d) and p PV(A).
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iv) Assume C € PV and C € PV~(]), then C € PV~(I}) U PV-(Ip) (for p ¢ PV-(13), see

(1)). Now continue as for (iv) under 1B.

Case 2: A—B e A. Apply (i—L1) of Schiitte's method: it yields an interpolant I =1; A
I, and (i) - (iv) follow directly. EI

As a corollary, we immediately have NNIL left-interpolation (using that NNIL and
NNILj coincide modulo IPC-provable equivalence). Right-interpolation is somewhat

easier. We prove it now.

4.4.2 Lemma: IfI' A+ C, then there is an I with

i) I'-LLAFC;

iiy PV(I) c PVIDNPV(A,C);

iii) if C € NNIL and AcPV then Ie NNIL;

iv) if 'cPV thenI=pj A...A p, for some py,...,py € PV.

Proof: Induction over the length of a derivation of I',A + C.

If I''’A + C is an axiom or the conclusion of a rule different from (—L), then apply
Schiitte's method. If I',A + C is the conclusion of (—L), then we distinguish three

cases.

Case 1: A—>B € I', CeNNIL, AcPV. Here (i—L2) of Schiitte's method prescribes the
interpolant I1—I5. This interpolant satisfies (i) and (ii), but in general not (iii) (only if I
€ PV). However, I is the interpolant of A,I"~A (with I"" such that I' = I"U{A—B})
and AcPV, so (by (iv) of the induction hypothesis) I= pjA...Apy. Now put I :=
p1—=(...(pn—12)...), then I = I1 I so I satisfies (i) and (ii); also Ie NNIL for I,e NNIL
(by induction hypothesis). (iv) is trivially satisfied.

Case 2: A—B e I', (C¢ NNIL or A/PVz@). Now follow (I—L2) of Schiitte's method,

then (i), (ii) are satisfied, (ii1) and (iv) are trivially true.
Case 3: A—>BgI'. Then A—»BeA. Now follow (i—L1) of Schiitte's method: this yields
an interpolant I = I1 Al for which (i), (ii) hold. (iii) is trivially true (for A—>Be A) and

(iv) follows by the induction hypothesis. 4

As a corollary we have NNIL right-interpolation.
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4.4.3 Positive and negative occurrence: Schiitte's method yields an interpo-
lant I for A + B with:

() PVHI) < PVH(A)NPVH(B), PV-(I) c PV-(A)NPV-(B).

However, our adaptation of Schiitte's method used in 4.3.1 does not respect (£): e.g.,
in subcase 1B we have pe PV~(I), but pe PV+(A)UPV-(C) is not excluded. We therefore
state the following open problem: does NNIL interpolation hold if (%) is added? O

By the results of section 3 we may conclude that NNIL satisfies also uniform right- and

left-interpolation and right- and left-approximation.

In the next two sections we will introduce the notions and prove the lemmas necessary
for the following results. We give a Kripke model proof of the fact that NNIL satisfies
uniform interpolation and we show that a formula is in NNIL if and only if it is robust

in some appropriate sense.

5 Kripke models: We suppose that the reader is familiar with Kripke models
for IPC (see TV[88a], or Smoryniski[73]). To fix notations: a Kripke model is a
structure K=<K,b,s,§B,l=>, where K is a non-empty set of nodes; < is a partial ordering;
be K is the bottom element w.r.t. <; % is a set of propositional variables; = is the
atomic forcing relation on %3: it is a relation between nodes and propositional variables
in %3, satisfying:
k<k' and kFp = k'=p (persistence).

E is extended to {(*R) in the standard way. The resulting relation is again persistent.
We will say that IS is a $5-model if its set of propositional variables is J3. A model is

finite if all its components are finite.

Our Kripke models are what is usually called rooted Kripke models. In many contexts
it is more natural to omit the root. However, for the purposes of the present paper it is

more convenient to have all our models rooted.

We write [K= A for: b= A (or equivalently: Vke K ki=A).

Let p be a finite set of propositional variables. We will write iK(p) for the result of re-

stricting the atomic forcing of K to p.
For any ke K K[k] is the model (K'k, <" ,="), where I{":={k'lk<k'} and where <'

and ' are the restrictions of < respectively E to K'. (We will often simply write < and
E for <"and ='.)
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We write Th(K) := {Ae Q1 K=A}, Thx(K) := {Ae X | K= A}, where X is a set of for-
mulas. We will often write Thx(k) for Thx(IK[k]).

The central result connecting structures and language is:

5.1 Kripke Model Completeness Theorem: We have:
IPCH A & For all (finite) PV(A)-models K KF A.

6  Subsimulations: We start by repeating some usual notions about relations.
Define:

. X(RoS)y :< 1z xRzSy,

. xRy :& yRx,

. IDxcXxX and xIDxy < x=y, i.e. IDx={(x,x) | x X}.

Let [< an M be 3-models. A relation R on KxM has the zig-property (w.r.t I and M)
if:

. kRm = VpeB3 (k=p < mk=p),

. k'>kRm = dm' k'Rm'>m, i.e. 2ocR < Ro2.

We will say that R is zig. We do not require that R preserves roots, i.e. bRbpg. We
will also call R a subsimulation of K in M.. The ‘sub’ witnesses that roots are not
necessarily preserved. Note that the empty relation is a subsimulation between any two

models.

R is total if Vke K 3me M kRm. If R is zig and root-preserving we say that R is +-zig.
We will say that a +-zig R is a simulation. Note that simulations are in our context au-

tomatically total.

R is zag if R" is zig, etcetera.

Define:

. R:IK<M :< R is a total subsimulation of K in M,
. K=<M :& 3R R:K<M,

. R:K<*tM :& R is a simulation of KK in M),

. K<*tM :< IR R:K<tM.

The existence of simulations and the existence of total subsimulations is related in es-

sentially simple ways. It is good to have total subsimulations since they are ‘definable’
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in a way that simulations are not (see section 7). It is good to have simulations, since
they are better for constructions on models. We give two connections between the two
notions. First note that :
K<M = for all ke K there is an me M: K[k]<t*M[m].
Moreover:
K<M & for some me M: K<*M[m).
Secondly take IK* to be the result of adding a new root b to K with:
. bEp ;= K=p and M=p.
We have:
K<M & Kt<tM.

We leave the simple verifications to the reader.
We list the basic facts about (sub)simulations.

6.1 Fact: Let P be a set of subsimulations. Then UP is a subsimulation. It fol-
lows that the set of subsimulations has a maximum. Moreover if one of the elements of

P is total (root-preserving), then UP is total (root-preserving).
Proof: trivial. O
Note that R defined by: kRm :< K[k]<+*M[m], is the maximum subsimulation.
6.2 Fact
R:K<("M and S:M<(HN = RoS:K<(HN,
IDk:K=<+K.
Proof: Trivial. d

6.2 tells us that <(+) is a preorder. We write =+) for the induced equivalence relation.

Note that if K=M and R:lK<M], then RU{(bi,byp)} is a simulation. It follows that

=*tM. So = and =t coincide.

A relation R between K and M is a bisimulation if R and R” are both subsimulations.
If a bisimulation is total and surjective, we can always extend it to preserve roots. We
write:

. R:lK=M for: R is a total, surjective bisimulation between [ and M,

. K=M :< JdR R:K=M.
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It is easy to see that = is an equivalence relation and that: K=M = K=M.
Bisimulations are closed under unions, so the set of bisimulations between K and M
has a maximum. Note that R with:

. kRm : < K[k]=M[m],

is the maximal bisimulation between K and M.

6.3 Example: The following is an example of two models U and V with U=V

but not U=V.
o 5 ‘\ /0 p

U \%

(If an atom is not displayed at a node, then it is not forced.)

In section 7 we will see that if we restrict ourselves to p-models, then the number of =-

equivalence classes is finite (in contrast to the number of =-equivalence classes).

In the next two facts we relate total subsimulations and simulations with the behaviour
of models on the formulas of IPC. A converse of 6.4 (for p-models) will be proved in
section 7. (6.5 has a number of somewhat weakened converses, but we won't prove
them in this paper.)

6.4 Fact: Let R be zig. Then: kRm = Thynyr.(m) € Thani (k).

It follows immediately that: K<M = ThyNL.(M) < Than(E).

Proof: By induction on NNILj. E.g. suppose kRmk(p—A) for AeNNIL; and
k<k'Ep. Then for some m": k'Rm'>m and hence m'=p. Since m'2mk (p—A), it fol-
lows that m'=A and hence by the Induction Hypothesis: k'=A. We may conclude that
ki=(p—A). a

6.5 Fact: K=M = Th(IKK)=Th(M).

Proof: By induction on . a

Define:
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. K=<;M :< JF (F:IK<M and F is a function)

. KcM = KM, <<y and E = EgmlK,

. KM e KM, <k = <y N(KXK),

. KciniM :© KM and for all m<yym'e K: me K or m=by,

For all these notions we have the obvious +-versions, e.g. for KM we demand that
by=bng. Note:

. KctinM & KoM and for all m<yym'e K: meK.

Note that: KciniM = KM = KM = K<iM = K<M.

We will now prove the central result of the present section. It will give us (in section 7)

both the desired results on robustness and on uniform interpolation.

6.7 Lifting Theorem: Let g, p and r be disjoint sets of variables. Let K be a
q,p-model and let M be a p,r-model. Suppose K(p)<(*M(p). Then there are q,p,r-
models [K',M' such that: K=K'(q,p), K'c®gnM' and M=M'(p,r).

Proof: We give the proof for the +-case. (To drop the +, first extend K to K* taking
the forcing at the new bottom for the elements of q arbitrary within the bounds dictated

by persistence. After the construction drop the extra bottom of KK*+'(q,p) to obtain
K'(q.p).)

Assume R:K(p)<*M(p). We construct the promised new models. We first specify
[K'. (We index the various relations to keep track where we are. Later we will omit
these indices.) Define:
. K':= {(k,m) | kRm}. (So K' is just R viewed as a set of pairs.),
. (k,m) < (k',m") :&= k<k' and m<ym’,
* bk :=(bK,bM)
Py :i=qpr,
. (k,m) Eg s :< k=[S or mEps.
Note that:
seq,p = ((k,m) F s & kFKs),
sep,r = (k.m) F [ s & mEKs).

Define B by: kB(k',m) :¢< k=k'. It is immediate that B:IK=[K'(q,p).
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We specify M".

* M :={km)lIm'e M kRm'Syym},

. (k,m) S (k',)m'") :¢ k<kk' and m<ym’,
* by :=bK.bm),

*  Bm=qpr,
. k,m) Epp s 1= k= s or mk pys.
Note that:
qeq = (k.m) Fp q © kFQ),
pep = (k=kp = k,m) Fpmp),
sep,r = (k,m) Epp s & mEpgs),
(k,m)e K' and msyym' = (k,m"e K' and (k,m)<pq(k,m").

Define C by: mCk,m") :<< m=m'". It is easily seen that C:M~=M'(p.r).

Finally it is completely trivial that: i{'cHM'. a

Note that 6.7 goes through even in case some of q, p and r are infinite.

An immediate consequence of the proof is that for any q-model K and for any r-model
M with q and r disjoint, there is a q,r-model N such that K=N(q) and M=N(r).

(Take R in the proof the universal relation between K and M.)

6.8 Corollary: Suppose K and M are p-models. Then:
K<tWM o IK M' K=K'cHgM'=M.

Proof: “=" Is immediate from 6.7, taking q=r=0. “<” Suppose:
K=K'c®guM'=M.

It follows that: K<(HK'sS(HOM'K(HM. Hence: K<(HM. Q

6.9 Corollary: Suppose K and M are p-models. Then:
K<ttM & IK' K=K's< (HM.

Proof: Note, by inspecting the proof of 6.7, that in 6.8 the total, surjective bisimula-
tion C between M' and M is in fact a function (and thus a p-morphism). O

We can improve our result to obtain models embedded via =(")jp;.
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6.10 Strengthened Lifting Theorem: Let q, p and r be disjoint sets of vari-
ables. Let KK be a q,p-model and let M be a p,r-model. Suppose K(p)<(*M(p). Then
there are q,p,r-models K',M' such that: K=K'(q,p), K'c®);,iM' and M=M'(p,r).

Proof: We just specify the new models for the the +-case and leave the routine verifi-
cation to the reader. [K' is given as follows:

e K':= {(k,m,m) kRm},

. (k,m,m) <K' (k',m',m’) :& k<kk' and m<pm’,

. b = (bi,bmi,bm),

* Pk :=qpr,

. (k,m,m) k' s :& k=[S or mk=pgs.

M is the following model:

. M' := {(k,m,m") | kRm<yym'},

. (ko,mo,mgp") <\ (ky,mp,m;p") 1< (me=myg' and ko<kk; and my<pqm;) or
(ko=k; and mp=m; and my'<pqm1'),

*  bw = (bi,bM,bM),

* Bwm=gpr

. (k,m,m") Epr s 1 k= ks or m'E s, a

6.11 Corollary: Suppose K and M are p-models. Then:
K<tM & IK' M' K=K'cHjiM'=M.

Proof: Like the proof of 6.8. J

Let <! be any relati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>