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Abstract

There is a sentence in the language of IST, Nelson’s internal set
theory, which is not equivalent in IST to a sentence in the €-language.
Thus the Reduction algorithm, that converts bounded IST formulas
with standard parameters to provably (in IST) equivalent €-formulas,
cannot be extended to all formulas of the IST language.
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Introduction.

Internal set theory IST was invented by Nelson [1977] as an attempt to de-
velop nonstandard mathematics from a unified axiomatical standpoint. This
theory has demonstrated its ability to ground various branches of nonstan-
dard analysis, see e.g. van den Berg [1987], F. and M.Diener [1988], F.Diener
and Reeb [1989], Reeken [1992].

It is regarded as one of the advantages of IST that there exists a simple
algorithm, introduced also by Nelson, to transform sentences in the language
of IST to provably equivalent (in the sense of provability in IST) sentences
formulated in the ZFC language. This algorithm, together with Nelson’s
theorem that IST is a conservative extension of ZFC, is used sometimes
(see e.g. Nelson [1988]) to give back to the statement that IST is nothing
more than a new way to investigate the standard ZFC universe.

This is true, indeed, so far as bounded IST formulas are considered. (The
mentioned algorithm works for these formulas only.)

It is the aim of this paper to demonstrate that there is a certain, explicitly
given sentence in the IST language which is not provably equivalent in IST
to a sentence in the €-language. Thus the IST truth cannot be completely
reduced to the ZFC truth.

A sentence of this kind has to be undecidable in IST; actually the sen-
tence we consider belongs to a type of undecidable sentences discovered and
studied in Kanovei [1991]. It is as follows:

(¥*) YF [V*n(F(n) is standard) — 3G V*'n (F(n) = G(n))].

(n is assumed to range over integers, F' and G over functions defined on
integers and taking arbitrary values.)

Theorem 1. Let ® be an arbitrary €-sentence. Then the equivalence
® «—— (x) is not a theorem of IST wunless IST is inconsistent .

(Take notice that ZFC and IST are equiconsistent.) The idea of the
proof is to use a pair of (transitive) models, V and V', of a sufficiently
large fragment of ZFC, elementary equivalent with respect to ®, and then
define their extensions, *¥ and *V’ respectively, models of the corresponding
finite fragment of IST, such that (x) is false in *V but true in *V’. Then,
since *V and *V' are elementary extensions of V and V' respectively with



respect to €-sentences, ® is either simultaneously true or simultaneously
false in both *I/ and *V’. This proves the theorem.

Acknowledgement. The author is in debt to M.Reeken and S.Albeverio for
their interest to this research direction and practical help, and to R.Solovay
for a suggestion which made it possible to fix a wrong part in the first version
of the proof.

Preliminaries

Theory IST was introduced by Nelson [1977]. The IST language contains,
together with equality, the membership predicate € and the standardness
predicate st. Formulas of this language are called st-€-formulas while formu-
las of the ZFC language are called €-formulas, and also internal formulas.
Two abbreviations are very useful: Iz .. and V*'z... (there exists stan-
dard z ..., for all standard z...).

IST contains all axioms of ZFC (Separation and Replacement are for-
mulated in the €-language) together with the following three additional prin-
ciples or (schemes of) axioms.

|dealization I: V*i"A 3z Va € A ®(z,a) «— 3Tz V*a &(z,a)

for any internal formula ®(z,a).

Standardization S: V¥*X Y V¥'z [z €Y «— z€ X & ®(z)]
for any st-€-formula ®.

Transfer T: 3z $(z) — Tz &(z)

for any internal formula ®(z) with standard parameters.

The formula & can, of course, contain arbitrary parameters in | and S.

Thus IST=ZFC+1+S+T.

Definition. Let V be a transitive set. *V = (*V; %€, *=, %t) isan IST-like
extension of V' if and only if, first, axioms |, S, T hold in *V, and second,
there exists an 1-1 embedding *: V onto a subset of *V' satisfying

e r €y «— ey and z=y «— x=%y forall z,yeV,

and



o 5tX «—— JzeV(z=X) forall XeV.

It is not assumed, in general, that *= coincides with the true equality on

¥, but *= has to be an equivalence relation and satisfy the logic axioms
for equality with respect to "€ and *t.

Proof of Theorem 1.

Assume on the contrary that & is an €-sentence such that the equivalence
® «—— (x) is a theorem of IST, therefore of a theory

IST"=ZFC' +14+S+T,

where ZFC' is a finite fragment of ZFC. Having this fixed, we start to argue
in ZFC. The final aim is to obtain a contradiction.

Ground ZFC' models.

It is a consequence of the ZFC Reflection principle that there exist cardinals
¥ of both countable and uncountable cofinality such that Vy is an elemen-

tary submodel of the universe of all sets with respect to ® and all formulas
of ZFC'.

Let 9 be the least among the countably cofinal while ¢ among the
uncountably cofinal cardinals of this kind. We use the sets V = V, and
V' =Vy as the ground ZFC' models. Take notice that ® is either true in
both V and V' or false in both V' and V'.

The next step is to define 1ST-extensions (therefore models of IST'), *V
and V', of V and V' respectively, such that () is true in *V/’ but false
in *¥V. The extensions are constructed as ultrapowers via a kind of adequate
ultrafilters of Nelson [1977]. (Original Nelson’s construction includes infinite
number of successive ultrapowers; we show here that this can be managed
an one-step construction.)

The “falsity” extension

Thus we define *V' as an ultrapower of V using the index set

I =P™V)={i€V :iis finite},



and an arbitrary wultrafilter U over I containing all sets of the form
I,={i€l:a€i}, aeV.

We introduce a convenient tool, the quantifier “there exist U -many” by
Uip(i) ifandonlyif {i€l:¢()}eU.

The following is the list of properties of U implied by the definition of
an ultrafilter and (this regards (U5)) the choice of the ultrafilter U.

(Ul) ¢ «— Uip whenever i is not freein ¢
(U2) if Vi[p(d) — ()] then Uip®i) — Uip();
(U3) Uiep(i) & Uiy(i) «— Uilp() & ¥(i)];

(U4)

(Us)

Ui=p(i) «— ~Uip();
if a€V then Ui (a €1).

To introduce the extension, we put
V,={f:fisafunction, f:I" — V}, forall reuw.

In particular, *, = {*2: z € V}, where *z = {(0,2)}, since I° = {0}.
The set *V =

To continue notation, we let, for F € *V, r(F) denote the unique r
satisfying F € 'V,. If F €V, g>r =7r(F), 1= (t1,.0p,..r1) € I,
then we put F[i] = F(iy,...,%,). Note that F[i] = F(i) whenever r = gq.
We define finally *z[i] = z for all 2 € "V and i€ I", » > 0.

Let F,G €*V and r = max{r(F),r(G)}. We set

YV, is what we call the falsity extension.

TEW

F* G ifandonlyif Ui Ui._,.. U (Fli] € G[i]);
F=G ifandonlyif Ui, U;i,_;.. Ui (F[i] = G[i]);
of course i denotes the sequence 1y, ...,1, .

The definition of standardness in *V is given by:

st F' if and only if there exists z € V' such that F *= "z.

So up to the relation *= the level *V; is just the standard part of *V.
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Let, finally, ¥ be a formula with parameters in *V. We define »(¥) =
max{r(F) : F occurs in ¥}. If in addition » > »(¥) and i € I", then
let U[i] denote the result of replacing each F that occurs in ¥ by Fi|.
Clearly ¥[i] is a formula with parameters in V.

Proposition 2. (*V; =, *€, *st) is a model of IST' and an IST-like ez-
tension of V. Finally, (x) failsin *V .

Proof. The following principal statement plays the key role.

Lemma 3. [Lo$ Theorem| Let ¥ be an internal formula with parameters
in *V and suppose that r > r(¥). Then

Uistrue in 'V —— U, ... Uiy (¥[iy,...,3,] istruein V).

Proof of the lemma. The proof goes by induction on the logical complexity
of ¥. We abandon easy parts of the proof, based on properties (U2), (U3),
(U4) of the quantifier U, and consider the induction step 3. Thus the
lemma is to be proved for a formula Iz ¥(z) in the assumption that the
result holds for U(F) whenever F €*V. We denote r = r(¥).

The direction — . Suppose that Fz ¥(z) holds in *V. Then VU(F)
holds in *V for some F € *V. Let p = max{r,r(F)}. To convert the
reasoning into a more convenient form, we let 1 and j denote sequences

(i1, ip) (€17)  and  (i1,.., 8y, .0y 8p) (€ IP)
respectively. Further let Ui and Uj denote sequences of quantifiers
Ui,..U4  and Ug,...Us, ... Udy.

Thus Uj U(F)[j] holds by the induction hypothesis. We note that, for all
3 Y(F)[j)] — 3Jz¥(z)[j]. Hence Uj Iz ¥(z)[j] is true by (U2).
Moreover the formula 3z ¥(z)[j] coincides (graphically) with Iz ¥(z) [i]
because r(Iz¥(z)) = r < p. Hence, deleting the superfluous quantifiers
by (U1), we obtain Ui3Jz ¥(z) [i].

The direction «— . Let ¥(z) be ¥(z,G, H,...,), where G, H,... €*V.
Suppose that Ui Iz ¥(z)[i] holds, that is,

Ui[3z ¥(z,G[i], H[i],...) istruein V.
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For each i € I", if there exists some z € V' such that ¥(z, G[i], H[i],...)
is true in V, then we let F(i) be one of z of such kind; otherwise let
F(i) = 0. By definition, F € *V, and

VieI"[32 ¥(z)[i] — U(F)[i]],

therefore Ui 3z ¥(z)[i] — Ui ¥(F)[i] by (U2). Recall that the left-
hand side of the last implication has been supposed to be true. So the right-
hand side is also true. Then W(F) holds in *V by the induction hypothesis,
and we are done.

The just proved lemma easily implies logical equality axioms for *=,
and Transfer, therefore all ZFC', in *V. Standardization is evident because
every set V of the form V =V, has the property that if Y C X € V' then

Y € V. We prove Idealization.

Thus let ¢(z,a) be an internal formula with parameters in *V. We
denote r = r(¢) and prove the following:

ViR A JzVa € A p(z,a) — Tz V'ap(z,a)

in *V. (The implication «— does not need a special consideration because
it follows from Standardization that elements of finite standard sets are s-
tandard, see Nelson [1977].) Lemma 3 converts the left-hand side to the
form:
Vi"A C VU4,...Ui; 3z Va € A (p(z,a) [i, ..., ip)).

Recall that I consists of all finite subsets of V, so we may replace the
variable A by 7, having in mind that ¢ € I. Further define A: I""! — V
by A(iy,...,3,,4) =4. Then A €*V. The left-hand side takes the form

ViUsi,.. Ui (3zVa € A p(z,a))[i1, ..., iy, 1].
Changing Vi by Ui, we obtain 3z Va € A ¢(z,a) in *V again by the
lemma. So, to verify the right-hand side of Idealization, it suffices to prove
a€ A in *V for all a € V. This is equal to
UiUi,.. Ui (a € Alig, ..., 1,,1)),

by the lemma, and then to U7 U4,...U1i; (a € 1) by the definition of A.
So apply (U5) and complete the proof of Idealization in *V.



Thus *V is an IST' model. One can easily verify the required properties
of the embedding *. To complete the proof of Proposition 2 it remains to
show that (*) does not hold in *V.

Let (k,:7n € w) be a sequence of ordinals cofinal in ¥. (We recall that
¥ has countable cofinality.) Let F' € *V; be defined by

F(i) ={(n,Kn) : (n,K,) €i} foralliel.

It is true in *V by Lemma 3 that F is a function defined on a subset of
integers, and, for every n € w, it is also true in *V' that F(*n) is defined
and equal to *k,, hence standard. Thus the left-hand side of (*) is satisfied
by F.

The right-hand side cannot be satisfied since it would imply that there
exists g € V' such that g(n) = k,, for all n, which is impossible.

Corollary 4. ® s false in *V, therefore in V.

The “truth” extension

Let *V' be defined the same way as *V above, but starting from V”.

Proposition 5. (*V'; *=, *€, %st) is a model of IST' and an IST-like
extension of V. Finally, (%) holds in *V'.

Proof. We check the last statement. Thus let F € *¥V' be such that the
following is true in *V"':

F is a function, every standard n € *w belongs to the domain
of F, and F(n) is standard for every standard n € *w.

By the definition of standardness, there exists a function f :w — V'
such that F'(*n) *=*(f(n)) for all n € w. By the choice of ¥ (uncountable
cofinality) there exists x < ¢ such that f(n) € V, for all n € w. This
easily implies that actually f € V', and therefore F(*n)*= (*f)(*n) for all
n € w, the right-hand side of (x).

Corollary 6. & is true in *V', therefore in V'.

Thus finally ® is true in V' and false in V, a contradiction with the
choice of V, V' as models elementary equivalent with respect to ®.
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Question

Does there exist, in ZFC, a transitive set V, a model of a previously fixed
finite fragment of ZFC, which has IST-like extensions of both types, those
in which (%) holds and those where (x) fails ? The answer is affirmative
provided there is a cardinal ¥ such that V, is a model of the full ZFC
(then we may take V = V,, where ¢ is the least among such cardinals),
but we are unable to get it without extra assumptions. If this is actually
impossible, then, perhaps, () still corresponds to something in ZFC, not
in the direct form mentioned in Theorem 1, of course.
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