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Abstract

For every Kripke complete modal logic L we define its hybrid companion LH . For a
reasonable class of logics, we present a satisfiability-preserving translation from LH to L. We
prove that for this class of logics, complexity, (uniform) interpolation, finite axiomatization
transfer from L to LH .

1 Introduction

Hybrid logic is the result of enriching the modal language with nominals, i.e., symbols that are
used to refer to individual points in a Kripke frame. For every Kripke complete modal logic L we
define its hybrid companion LH as the hybrid logic of the class of frames defined by L. This paper
addresses the following question, raised by Gargov and Goranko [7]:

If a modal logic L has a property P, does its hybrid companion LH have P too?

Gargov and Goranko ask this question in the context of a hybrid language with the universal
modality. They show for example that canonicity transfers. In this paper, we will focus on a
simpler hybrid language, namely the enrichment of the basic modal language with nominals only.
In order to obtain transfer results for the language considered by Gargov and Goranko, one would
have to combine the results presented in this paper with transfer results for the addition of the
universal modality (cf. Goranko and Passy [11] for some partial results).

For every modal logic L which has a master modality we define a translation (·)∗ from the
language of LH to the language of L and prove that if L admits filtration, then L ` φ∗ iff LH ` φ.
To use the terminology of Kracht and Wolter [12] and Goguadze, Piazza and Venema [10], we
show that L simulates LH under the interpretation (·)∗. As a corollary, we obtain that complexity
and (uniform) interpolation transfer from L to LH and that LH can be axiomatized by adding one
simple axiom scheme to the axiomatization of L. We prove similar transfer results for a number
of logics without master modality, including the basic modal logic K.

Several authors have observed that if a modal logic L admits filtration, then LH also admits
filtration and moreover, if L is in addition finitely axiomatizable, then LH is decidable (see e.g. [7]
and Mikulas’ theorem [2, Theorem 7.8]). While our simulation argument relies to a large extent
on the use of filtration, the results it gives rise to are more fine grained: not only decidability
transfers from L to LH , but also complexity, (uniform) interpolation and finite axiomatizability.

Our results apply to a number of non-elementary hybrid logics. For example, we show that
GLH and GrzH enjoy a form of uniform interpolation. We also derive short proofs for several
results that were proved before by hand, e.g., the complexity of KH [1] and the complexity and
finite axiomatizability of PDLH [13]. Our results confirm the intuition that adding nominals to
a modal logic in many cases does not increase the complexity.

In this part of the paper, we only consider the simplest hybrid language, namely the extension
of the basic modal language with nominals. As we will show in Part II, many of the transfer
results generalize to hybrid languages with satisfaction operators.
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2 Preliminaries

2.1 Hybrid logic in a nutshell

The minimal hybrid language is an extension of the basic modal language with nominals (cf. [1]
and Chapter 7 of [2]). These are special proposition letters, denoted by i, j, k . . ., that designate
unique worlds. Formally, given a countable set of proposition letters prop, and a countable set of
nominals nom, and a set of modalities mod, the minimal hybrid language is defined as

φ ::= p | i | ¬φ | φ ∧ ψ | 〈a〉φ

where p ∈ prop, i ∈ nom and a ∈ mod. While the frames that we work with are the same as in
ordinary modal logic, we put one extra condition on the models: each nominal must be true at a
unique point in the model. In other words, a model is a pair (F, V ), where F is a frame and V is
a valuation for F with |V (i)| = 1 for all i ∈ nom. Apart from this extra requirement, no changes
are made to the semantics. In particular, the truth definition for nominals is like that of ordinary
proposition letters:

(F, V ), w ° i iff w ∈ V (i)

The singleton requirement on the valuation of nominals gives rise to new validities. For instance
(i∧3i∧2p)→ p is valid on all frames (if a point is reflexive and all its successors satisfy p, then
the point itself satisfies p). Also, using nominals many frame properties are definable that were
not definable in the basic modal language. For instance, irreflexivity is defined by i→ ¬3i (keep
in mind that frame validity for hybrid formulas is defined by universal quantification over hybrid
valuations, i.e., valuations that assign to each nominal a singleton set).

Given the presence of nominals, it is very natural to further extend the language with satis-
faction operators, allowing one to express that a formula holds at a particular point. However, in
this part of the paper we will not consider these satisfaction operators.

2.2 Hybrid companions of modal logics

Given a frame class F, we will use LHF to denote the set of formulas of the minimal hybrid language
that are valid on F (in other words, the hybrid logic of F). L(F) is the set of modal formulas valid
on F.

Now, suppose we are given a Kripke complete modal logic L, and let FrL be the class of frames
on which it is valid (note that L is complete for FrL). We will use LH as a shorthand for LHFrL,
i.e., the hybrid logic of the frame class defined by L. We call LH the hybrid companion of the
modal logic L.

Notice that this is not the only possible way to define hybrid companions for modal logics. In
particular, if a modal logic L is complete for several frame classes, the hybrid logics of these classes
(as we will see in the next section) need not be the same, and one could consider the hybrid logic
of other frame classes than the one defined by L. Nevertheless, our choice seems a very natural
one.

The main question we address in this paper is the following:

Which properties of logics are preserved under passage from L to LH?

Here, we provide a result for a class of logics that includes several well-known non-canonical
logics, including PDL, GL and Grz. We show that for this class of logics, complexity, finite
axiomatizability, interpolation and uniform interpolation transfer.

The following two sections are not essential for the rest of the paper. They merely provide an
intuition on the notion of hybrid companion logics. They also show that modal logic and hybrid
logic behave rather differently when it comes to lattices of extensions or finite model property.
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2.3 The lattice of hybrid logics

The lattice of hybrid logics is quite different from that of modal logics. This can be illustrated
very nicely by considering the hybrid logics extending S5. It is well known (see, e.g., [14]) that
the lattice of extensions of S5 is countable, moreover it forms an ω + 1-chain and S5 is the only
non-tabular extension of S5. As we will now show, the lattice of extensions of S5H looks quite
different.

Theorem 2.1 There are continuum many extensions of S5 and continuum many of them are
non-tabular.

Proof: Recall from Scroggs [14] that the formula:

β(n) =
n∧

k=1

3pk →
∨

1≤k<k′≤n

3(pk ∧ pk′)

is valid on an S5-frame iff the size of each equivalence class is less than n. Similarly, for any n ∈ ω
consider the formula.

α(n) = 3¬(i1 ∨ · · · ∨ in)

The formula α(n) is valid on an S5-frame iff the size of each equivalence class is greater than n.
For any n ∈ ω, let Fn be the frame ({0, . . . , n−1}, {0, . . . , n−1}×{0, . . . , n−1}). Furthermore,

for any set of natural numbers D ⊆ ω, let LD = L({Fn | n ∈ D}) and L
D
H = LH({Fn | n ∈ D}). It

is well known that for every infinite D ⊆ ω we have LD = S5. Now we show that the same does
not hold for hybrid logics. Take any two distinct sets of natural numbers D1, D2 ⊆ ω. Without
loss of generality, we can assume that there is an n ∈ D1 such that n 6∈ D2. Now consider the
formula γ(n) = α(n) ∨ β(n). From the above, it follows that γ(n) is valid on a frame iff no
equivalence class has exactly n elements. Therefore, γ(n) belongs to the hybrid logic LD2H but it

does not belong to LD1H . Thus, D1 and D2 characterize different hybrid logics, which implies that
there are continuum many complete hybrid logics extending S5H . Moreover, continuum many of
them are non-tabular (i.e. are not characterized by a single finite frame). 2

Incidentally, S5 is about the simplest example of a modal logic with countably many extensions.
This raises the question if there exist hybrid logics with countably many extensions (rather than
finitely many or continuum many). While this is an interesting question, we will not pursue it
here.

2.4 Finite model property and filtrations

Recall from Blackburn et al. [2, Definitions 3.23 and 2.27] that a logic L has the finite frame
property if for every formula φ in the language of L, L 6` φ implies there is a finite L-frame F (i.e.
F ∈ FrL) such that F 6|= φ; and a logic L has the finite model property if L 6` φ implies that there
is a finite model M and a world w such that M globally satisfies all formulas in L and M, w 6|= φ.
It is well-known that these two properties coincide for normal modal logics (cf. Blackburn et al.
[2, Theorem 3.28] or Chagrov and Zakharyaschev [5, Theorem 8.47]). In this subsection we show
that for hybrid logics these two notions do not coincide in general. However, they do coincide for
companion logics.

Theorem 2.2 Finite model property and finite frame property do not coincide for hybrid logics.

Proof: Consider the Kripke frame Fω = (ω, ω × ω). It is well known that L(Fω) = S5. Now we
show that LH(Fω) has the finite model property even though it lacks the finite frame property.
First we prove that LH(Fω) does not have any finite frames. This would imply that it lacks the
finite frame property. Let F = (W,W ×W ) be any single-component S5-frame. Then F |= α(n) iff
|W | > n. Since Fω |= α(n) for any n ∈ ω, it follows that LH(Fω) lacks the finite frame property.
However, we will show that it has the finite model property.
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Suppose φ is satisfiable on Fω. Then there is a valuation V and a point w0 ∈ ω such that
(Fω, V ), w0 |= φ. For any subformula 3ψ ∈ Sub(φ) or a nominal i ∈ Sub(φ), choose a represen-
tative w ∈ ω with (Fω, V ), w |= ψ (if such point exists) or (Fω, V ), w |= i respectively. Let S be
the set of all selected points plus w0 and w1, for some distinct w1 ∈ ω. Let FS = (S, S × S).
Now we define the valuation V ′ on FS by putting V ′(p) = V (p)∩ S for any propositional variable
p. We do the same for the nominals occurring in φ. For any nominal j not occurring in φ, we
let V ′(j) = {w0}. By induction, one can show that (FS , V

′), w0 |= φ. It is left to be shown that
(FS , V

′), w0 |= LH(Fω).
Let V ′′ be a valuation on Fω such that for all proposition letters p and worlds w ∈ ω,

w ∈ V ′′(p) iff

{

w ∈ V ′(p) in case w ∈ S

w1 ∈ V
′(p) otherwise

and V ′′(i) = V (i) for all nominals i. Then it is easy to see that (FS , V
′) is bisimilar to (Fω, V

′′)
(the bisimulation is the relation {(w,w) | w ∈ S} ∪ {(w1, w) | w ∈ ω\S}). Hence (FS , V

′) satisfies
the same formulas as (Fω, V

′′) and therefore is a model for LH(Fω). This finishes the proof of the
theorem. 2

Throughout this paper, we will mainly be concerned with logics that admit filtration. Now we
will briefly recall the idea of filtration.

Let M be a model based on a frame F = (W,R) and let Σ be a set of formulas closed under
subformulas. Define an equivalence relation ∼Σ on W by putting for every w, v ∈W and ψ ∈ Σ:

w ∼Σ v if w |= ψ ⇔ v |= ψ

Denote by [w] the ∼Σ-equivalence class containing w and letW/∼Σ be the set of all ∼Σ-equivalence
classes of W . Define a valuation VΣ on W/∼Σ by putting VΣ(p) = {[w] : w |= p}. The model
M/∼Σ = (W/∼Σ , RΣ, VΣ) is called a filtration of M through Σ if RΣ is such a binary relation on
W/∼Σ that for any ψ ∈ Σ and w ∈W , we have:

M, w |= ψ iff M/∼Σ , [w] |= ψ

It is easy to see that |W/∼Σ | ≤ 2|Σ|. Hence W/∼Σ is finite whenever Σ is finite. The frame
F/∼Σ = (W/∼Σ , RΣ) is called a filtration of F through Σ.

Definition 2.3 We say that a modal logic L admits filtration if for every formula φ there exists a
finite set of formulas Σφ containing all subformulas of φ such that for every L-frame F = (W,R) a
point w ∈W and a model M = (F, V ) with M, w |= φ, some filtration of F over Σφ is an L-frame.

We say that a logic L admits polynomial filtration if it admits filtration and the size of Σφ
is polynomial in the length of φ. We say that a modal logic admits simple filtration if it admits
filtration and for every formula φ we have Σφ = Sub(φ).

Note that since the size of Sub(φ) is linear in the length of φ, every logic that admits simple
filtration admits polynomial filtration.

Theorem 2.4 If L admits (polynomial / simple) filtration, then LH admits (polynomial / simple)
filtration.1

Proof: We simply apply the usual filtration, treating nominals as proposition letters. All that
needs to be checked is that the filtrated model is a hybrid model, in other words, that every
nominal occurring in a given formula is true at exactly one point. Since each nominal is true at
some point in the original model, it must also be true at some point in the filtrated model. Now,
suppose that a nominal i is true at two points of the filtrated model, say [w] and [v]. Then w |= i
and v |= i in the original model, and so w = v, which implies that [w] = [v]. 2

1Gargov and Goranko [7, §6.3] prove a similar result for hybrid logics with the universal modality.
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Now we are ready to prove that for the companion logics the notions of the finite frame property
and the finite model property do coincide.

Theorem 2.5 A hybrid logic LH of a modally definable class of frames (equivalently, a hybrid
companion logic), has the finite model property iff it has the finite frame property.

Proof: The proof is similar to the proof of Theorem 3.28 from Blackburn et al. [2]. The right-to-
left implication is straightforward. For the converse, suppose a hybrid companion logic LH has a
finite model property. Let L be the corresponding modal logic and φ a hybrid formula which does
not belong to LH . Then there is a model M, such that M globally satisfies all formulas of LH ,
and such that M, w 6|= φ. Let Σ be the closure of the set {φ} ∪ L under subformulas. We filtrate
M through Σ. Let M′ = (F′, V ) be the filtrated model. The same arguments as in the proof of [2,
Theorem 3.28] show that F′ is an L-frame, hence it is an LH -frame. Theorem 2.4 shows that M′

is a hybrid model (i.e. every nominal is true at exactly one point) and M′, [w] 6|= φ. Therefore,
LH has a finite frame property. 2

3 The translation

In this section, we present our main result. We define two translations from the minimal hybrid
language to the basic modal language, and prove that they preserve satisfiability. The first trans-
lation applies to logics with a master modality, and the second one applies to a number of logics
without a master modality.

3.1 Logics with a master modality

Definition 3.1 A modal logic L has a master modality [2, p. 371] if there is a formula φ(p)
containing only the proposition letter p such that for all models M based on an L-frame and
worlds w, M, w |= φ(p) iff p is true somewhere in the submodel of M generated by w (equivalently,
if p is true in a point reachable from w in a finite number of steps). If a logic has a master
modality, we will refer to it by 3

+ (more precisely, we will use 3
+ψ as a shorthand for φ(ψ)).

Fact 3.2 1. Every logic of bounded depth has a master modality.

2. Every extension of K4 has a master modality.

3. Every extension of K5 has a master modality.

4. PDL has a master modality.2

5. Every extension of K4×K4 has a master modality.

6. Every logic with universal modality has a master modality.

7. Every extension of the tense logic K4t with trichotomy has a master modality
(where trichotomy is the axiom Pp ∧ Pq → P (p ∧ Pq) ∨ P (q ∧ Pp) ∨ P (p ∧ q)).

Proof: 1. Take φ =
∨

0≤k≤n 3
kp, where n is the bound on the depth.

2. Take φ = p ∨3p.

3. Take φ = p ∨3p ∨33p

4. Take φ = 〈(∪iai)
∗〉p.

5. Take φ = p ∨31p ∨32p ∨3132p.

2For convenience, we assume that the language contains only finitely many atomic programs. The results of this
paper can easily be generalized to PDL with infinitely many atomic programs.
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6. Take φ = Ep.

7. Take φ = p ∨ Pp ∨ PFp
2

Note that K does not have a master modality (this can easily be shown by the fact that
every modal formula has a finite modal depth, and hence can only talk about a small part of the
generated submodel). Similarly, the basic tense logic Kt and the tense logic of transitive frames
K4t do not have a master modality.

The class of logics we will be working with is the class of logics having the master modality
that admit filtration. Let L be a Kripke complete modal logic with master modality that admits
filtration. Now we define a translation from the language of LH to the language of L. That is
we translate every hybrid formula into a modal formula. For a hybrid formula φ(i1, . . . , in) let
φ[~i/~pi] denote the formula obtained from φ by uniformly replacing each nominal ik by distinct
new proposition letter pik . For a hybrid formula φ(i1, . . . , in), let

φ∗ = φ[~i/~pi] ∧
∧

1≤k≤n

ψ∈Σφ[~i/ ~pi]

3
+(pik ∧ ψ)→ 2

+(pik → ψ)

where Σφ[~i/~pi] is the filtration set of φ[~i/~pi].

Theorem 3.3 Let L be a logic with a master modality that admits filtration. Let φ be any hybrid
formula. Then φ is LH-satisfiable iff φ∗ is L-satisfiable.

Proof:

[⇒] Suppose (F, V ), w |= φ with F ∈ FrL. Let V ′ be any valuation that agrees with V on
all proposition letters occurring in φ, and such that V ′(pik) = V (ik) for each nominal ik.
Clearly, (F, V ′), w |= φ[~i/~pi]. The truth of the second conjunct of φ∗ at w under V ′ follows
directly from the fact that V ′(pik) is a singleton set for each k = 1, . . . , n.

[⇐] Suppose (F, V ), w |= φ∗ with F = (W,R) ∈ FrL. Without loss of generality, we can assume
that F is generated by w (note that φ∗ is a purely modal formula). Our task is to construct
a hybrid model satisfying φ.

First, we will filtrate (F, V ). Let Σ = Σφ[~i/~pi]. Since L admits filtration, there exists a model

M = (W/∼Σ , RΣ, VΣ) such that (W/∼Σ , RΣ) ∈ FrL and such that for all v ∈ W and ψ ∈ Σ,
M, [v] |= ψ iff (F, V ), v |= ψ. In particular, M, [w] |= φ[~i/~pi].

Claim 1 VΣ(pik) contains at most one point (for k = 1, . . . , n).

Proof of claim: Suppose [v], [v′] ∈ VΣ(pik). Then v, v′ ∈ V (pik), by the definition of VΣ.
Since (F, V ), w |= 3

+(pik ∧ ψ) → 2
+(pik → ψ) for all ψ ∈ Σ, it follows that v, v′ agree on

formulas in Σ. Indeed, if v |= ψ then w |= 3
+(pik ∧ ψ), so w |= 2

+(pik → ψ) and therefore
v′ |= ψ. Thus, v ∼Σ v

′ and so [v] = [v′]. a

If every pik is true at exactly one point, then the proof is finished, since we can consider
(W/∼Σ , RΣ) to be a hybrid model for φ. In general, however, this need not be the case:
pik could be true nowhere. So, we need to ensure that for every pik there is indeed a point
where pik is true. Let G be the disjoint union of two isomorphic copies of (W/∼Σ , RΣ). For
convenience, we will use [v]1 and [v]2 to refer the two distinct copies of a world [v] ∈W/∼Σ .
Since FrL is modally definable, it is closed under disjoint unions and hence, G ∈ FrL. Define
the valuation V ′ for (W/∼Σ , RΣ) by putting V ′(p) = {v1 | v ∈ VΣ(p)} for each proposition
letter p occurring in φ, and for each nominal k = 1, . . . , n,

V ′(pik) =

{

{[v]1} if VΣ(pik) = {[v]}

{[w]2} if VΣ(pik) = ∅
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Intuitively speaking, the only role of the second disjoint copy of (W/∼Σ , RΣ) is to provide
enough points so that we can make each pik true somewhere, without affecting the truth of
φ at [w]. Indeed, a simple bisimulation argument shows that (G, V ′), [w] |= φ[~i/~pi].

By construction, V ′ assigns to each pik a singleton set. Replacing each pik by the corre-
sponding ik, we therefore obtain a hybrid model again, which furthermore satisfies φ at [w]1.
We conclude that φ is satisfiable on FrL.

2

Corollary 3.4 Let L be a complete modal logic with a master modality that admits filtration. Let
φ be any hybrid formula with nominals i1, . . . in. Then φ is LH-valid iff the formula

( ∧

1≤k≤n

ψ∈Σ¬φ

3
+(pik ∧ ψ)→ 2

+(pik → ψ)
)

→ φ[~i/~pi]

is L-valid.

Proof: Suppose LH ` φ, for some formula φ with nominals i1, . . . , in. Then ¬φ is not LH -
satisfiable. Hence, by Theorem 3.3,

( ∧

1≤k≤n

ψ∈Σ¬φ

3
+(pik ∧ ψ)→ 2

+(pik → ψ)
)

∧ ¬φ[~i/~pi]

is not L-satisfiable, which means that

L `
( ∧

1≤k≤n

ψ∈Σ¬φ

3
+(pik ∧ ψ)→ 2

+(pik → ψ)
)

→ φ[~i/~pi]

2

Remark 3.5 We remark here that many well-known logics are known to have a master modality
and admit polynomial filtration. We list some of them with references for the proofs: K4, K45,
KD45, S4, S5, K4.2, K4.3, S4.2, S4.3, K5, K4.1, S4.1 [5, §5.3]; GL and PDL [2, §4.8];
S5× S5 [6]; Grz [3]. Moreover, all of these logics except K5, K4.1, S4.1, PDL and Grz admit
simple filtration.

3.2 Logics without a master modality

Now we show that even though the basic modal logic K does not have a master modality, our
transfer results still can be proved for this logic, as well as some slight extensions of it such as T
and D.

For a hybrid formula φ(i1, . . . , ik) let

φ∗ = φ[~i/~pi] ∧
∧

1≤k≤n

ψ∈Sub(φ[~i/~pi])

0≤l,m≤md(φ)

3
l(pik ∧ ψ)→ 2

m(pik → ψ)

where md(φ) is the modal depth of φ [2, Definition 2.28].

Theorem 3.6 A hybrid formula φ is KH-satisfiable iff its modal translation φ∗ is K-satisfiable.

Proof: The left to right implication is easy to prove. Now suppose that φ∗ is satisfiable. Let
M, w |= φ∗, with M = (F, V ) and F = (W,R). Without loss of generality, we can assume
that F is generated by w. For every point v ∈ W , let dF(v) be the minimal number of R-steps
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in which v is reachable from the root w. Consider the equivalence relation ∼Sub(φ[~i/~pi]). Two

worlds stand in this equivalence relation if they satisfy the same subformulas of φ[~i/~pi]. For any
∼Sub(φ[~i/~pi])-equivalence class [v], choose a representative f [v] ∈ [v] such that for any v′ ∈ [v] we

have dF(f [v]) ≤ dF(v
′). Note that while f [w] = w, these representatives are in general not unique.

Also note that for every v ∈W and ψ ∈ Sub(φ[~i/~pi]), M, v |= ψ iff M, f [v] |= ψ.
Let W ′ = {f [v] | v ∈ W}. Define the relation R′ on W ′ by putting f [u]R′f [v] iff there is a

v′ ∈ [v] with f [u]Rv′. Define a valuation V ′ on W ′ by letting f [w] ∈ V ′(p) iff w ∈ V (p) for all
p ∈ Sub(φ[~i/~pi]). Let F′ = (W ′, R′) and M′ = (F′, V ′).

Claim 1 For any ψ ∈ Sub(φ[~i/~pi]) and a point v ∈W , M, f [v] |= ψ iff M′, f [v] |= ψ

Proof of claim: By the induction on the complexity of ψ. If ψ is a propositional letter, then the
claim holds by the definition of V ′. The Boolean cases are obvious. Finally, let ψ = 3χ.

[⇒] Suppose that M, f [v] |= 3χ. Then there is a point u ∈ W such that f [v]Ru and M, u |= χ.
Since χ ∈ Sub(φ[~i/~pi]) and u ∼Sub(φ[~i/~pi]) f [u], we have that M, f [u] |= χ. By the induction

hypothesis, it follows that M′, f [u] |= χ. Finally, we have that f [v]R′f [u], by the definition
of R′. Hence, M′, f [v] |=′ 3χ.

[⇐] Suppose that M′, f [v] |= 3χ. Then there is an f [u] ∈W ′ such that f [v]R′f [u] and M′, f [u] |=
χ. By the induction hypothesis, M, f [u] |= χ. Also, by the definition of R′, there must be
a u′ ∈ [u] such that f [v]Ru′. Since χ ∈ Sub(φ[~i/~pi]) and u

′ ∼Sub(φ[~i/~pi]) f [u], it follows that

M, u′ |= χ. We conclude that M, f [v] |= 3χ.

a

Let us define dF′ similar to dF. Note that F′ need not be point-generated anymore. For worlds
f [v] ∈W ′ that are not reachable from the root f [w] = w, let dF′(f [v]) =∞.

Claim 2 dF(f [v]) ≤ dF′(f [v]), for all v ∈W

Proof of claim: If dF′(f [v]) = ∞, the claim obviously holds. Otherwise, the proof proceeds by
induction on dF′(f [v]). The base case, with dF′(f [v]) = 0, only applies if f [v] = w, in which case
the claim clearly holds. Next, suppose dF′(f [v]) = n + 1. By definition, there must be a path of
the form

f [w] = w
R′
−→ · · ·

R′
−→

︸ ︷︷ ︸

n steps

f [u]
R′
−→ f [v]

It follows that dF′(f [u]) ≤ n, and hence by the induction hypothesis, dF(f [u]) ≤ dF′(f [u]) ≤ n.
Since f [u]R′f [v], by the definition of R′ we have that there is a v′ ∈ [v] such that f [u]Rv′. This
implies that dF(v

′) ≤ n + 1. By the definition of f , we know that dF(f [v]) ≤ dF(v
′), because

v′ ∈ [v]. Therefore, dF(f [v]) ≤ n+ 1. a

Claim 3 For all k = 1 . . . n, there is at most one world f [v] ∈ W ′ such that dF′(f [v]) ≤ md(φ)
and M′, f [v] |= pik .

Proof of claim: Suppose M′, f [v] |= pik and M′, f [u] |= pik , with dF′(f [v]), dF′(f [u]) ≤ md(φ).
By Claim 2, dF(f [v]), dF(f [u]) ≤ md(φ). Furthermore, M, f [v] |= pik and M, f [u] |= pik . By our
initial assumption, M, w |= φ∗, hence f [v] ∼Sub(φ) f [u], which implies that f [v] = f [u]. a

From Claim 1, we immediately deduce that M′, w |= φ[~i/~pi]. The valuation of pi1 . . . pin can be
restricted to the worlds with depth ≤ md(φ) without affecting the truth of φ[~i/~pi] at w. In this
way, we make sure that every pik is true at at most one world. Finally, applying the same argument
as in the proof of Theorem 3.3, we conclude that the original hybrid formula φ is satisfiable. 2

Theorem 3.7 Let L be any complete uni-modal logic axiomatizable using only formulas of modal
depth ≤ 1 and/or closed formulas. A hybrid formula φ is LH-satisfiable iff φ∗ is L-satisfiable.
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Proof: Let us first consider only logics that can be axiomatized using formulas of modal depth
≤ 1. We use the same construction as in the proof of Theorem 3.6. It suffices to show that the
constructed frame F′ is an L-frame. We claim that every formula φ of modal depth 1 that is
satisfiable on F′ is also satisfiable on F. Let V be a valuation for F′, and let x ∈ W ′ such that
(F′, V ), x |= φ. Let V ′ be defined such that v ∈ V ′(p) iff f [v] ∈ V (p). We claim that for all
formulas χ with md(χ) ≤ 1 and for all v ∈ W , (F, V ′), f [v] |= χ iff (F′, V ), f [v] |= χ. This, we
prove by induction on χ. The only interesting case is for formulas of the form 3χ with md(χ) = 0.

[⇒] Suppose (F, V ′), f [v] |= 3χ. Then there is a u ∈ W such that f [v]Ru and (F, V ′), u |=
χ. By induction hypothesis, (F′, V ), f [u] |= χ. By definition of R′, f [v]R′f [u]. Hence,
(F′, V ), f [v] |= 3χ.

[⇐] Suppose (F′, V ), f [v] |= 3χ. Then there is an f [u] ∈ W ′ such that (F′, V ), f [u] |= χ and
f [v]R′f [u]. By definition of R′, there is a u′ ∈ [u] such that f [v]Ru′. By induction hypothesis,
(F, V ′), u′ |= χ. Hence, (F, V ′), f [v] |= 3χ.

The same construction goes through if, in addition, closed formulas are added as axioms to the
logic. In that case, we simply extend the filtration set with these closed formulas and their
subformulas. As a result, the filtrated model globally satisfies the closed formulas, which implies
that they are valid on the underlying frame. 2

This covers logics axiomatized using reflexivity (2p → p), totality (3>) and bounded width
(bwn ≡

∧

1≤k≤n 3pk →
∨

1≤k<l≤n 3(pk ∧ pl)).

Corollary 3.8 Let L be a complete uni-modal logic axiomatizable using formulas with modal depth
≤ 1 and/or closed formulas. Let φ be any hybrid formula with nominals i1, . . . in. Then φ is LH-
valid iff the formula

( ∧

1≤k≤n

ψ∈Σ¬φ

0≤n,m≤md(φ)

3
n(pik ∧ ψ)→ 2

m(pik → ψ)
)

→ φ[~i/~pi]

is L-valid.

Proof: As for Corollary 3.4. 2

4 Applications of the translation

From Theorem 3.3 and 3.6, together with the observation that for logics admitting polynomial
filtration, the length of φ∗ is polynomial in the length of φ, we obtain the following transfer result
for complexity.

Corollary 4.1 Let L be a complete modal logic satisfying one of the following conditions:

(a) L has a master modality and admits polynomial filtration.

(b) L is axiomatizable using only formulas of modal depth ≤ 1 and/or closed formulas.

Then LH-satisfiability is polynomially reducible to L-satisfiability.

Hence, if a modal logic L satisfies the condition (a) or (b), and if C is any complexity class
closed under polynomial reductions, such as NP, PSpace, ExpTime, NExpTime, 2ExpTime,
etc. , then L-satisfiability is in (complete for) C iff LH is in (complete for) C. Note that complexity
does not transfer in general. Areces et al. [1] show that adding nominals to the basic tense logic
Kt increases the complexity from PSpace to ExpTime.

Next, we will discuss the issue of transfer of interpolation and uniform interpolation.
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Definition 4.2 (Interpolation for hybrid logics) A hybrid logic L has interpolation over
proposition letters, if for all formulas φ and ψ with L ` φ → ψ, there is a formula θ such
that L ` φ→ θ, L ` θ → ψ and all proposition letters occurring in θ occur both in φ and in ψ.

Note that according to this definition, θ might contain nominals occurring in φ but not in ψ or
vice versa. It seems more natural to require that also the nominals occurring in the interpolant
θ should occur both in φ and in ψ. However, it turns out that almost all hybrid logics lack this
strong form of interpolation [4].

Recall that a modal logic admits simple filtration if it admits filtration and for every formula
φ we have Σφ = Sub(φ). For logics admitting simple filtration, interpolation transfers.

Theorem 4.3 Let L be a complete modal logic satisfying one of the following conditions:

(a) L has a master modality and admits simple filtration.

(b) L is axiomatizable using only formulas of modal depth ≤ 1 and/or closed formulas.

If L has interpolation, then LH has interpolation over proposition letters.

Proof: We only prove (a), since (b) is similar.
Suppose LH ` φ→ ψ. Let i1, . . . , in be the nominals occurring in the formula φ→ ψ, and let

Σ = Sub(¬(φ→ ψ)[~i/~pi]) By Corollary 3.4, the following formula is L-valid.

( ∧

1≤k≤n
χ∈Σ

3
+(pik ∧ χ)→ 2

+(pik → χ)
)

→ (φ[~i/~pi]→ ψ[~i/~pi]) (1)

The antecedent of this formula says that for all 1 ≤ k ≤ n, if two worlds w and w′ in the model
both satisfy pik , then w and w′ satisfy exactly the same formulas in Σ. Note that every formula
in Σ is a Boolean combination of subformulas of φ[~i/~pi] and ψ[~i/~pi]. Hence, to say that w and w′

satisfy the same formulas in Σ is equivalent to saying that they satisfy the same subformulas of
φ[~i/~pi] and ψ[~i/~pi]. Therefore, the formula

( ∧

1≤k≤n

χ∈Sub(φ[~i/~pi])∪Sub(ψ[~i/~pi])

3
+(pik ∧ χ)→ 2

+(pik → χ)
)

→ (φ[~i/~pi]→ ψ[~i/~pi]) (2)

is semantically equivalent to (1), and hence L-valid. It is easy to see that (2) is equivalent to
( ∧

1≤k≤n

χ∈Sub(φ[~i/~pi])

3
+(pik ∧ χ)→ 2

+(pik → χ)
)

∧ φ[~i/~pi]→

( ∧

1≤k≤n

χ∈Sub(ψ[~i/~pi])

3
+(pik ∧ χ)→ 2

+(pik → χ)
)

→ ψ[~i/~pi]
(3)

Let θ be the modal interpolant for (3) in L. Note that apart from the proposition letters pi1 , . . . pin ,
θ only contains proposition letters that occur both in φ and in ψ. Now, since LH extends L and
is closed under uniform substitution of formulas for proposition letters, we have:

LH `
( ∧

1≤k≤n

χ∈Sub(φ)

3
+(ik ∧ χ)→ 2

+(ik → χ)
)

∧ φ→ θ[~pi/~i]

LH ` θ[~pi/~i]→
( ∧

1≤k≤n

χ∈Sub(ψ)

3
+(ik ∧ χ)→ 2

+(ik → χ)
)

→ ψ

Since 3
+(i ∧ χ) → 2

+(i → χ) is valid in hybrid logic for any i and χ, it follows that LH ` φ →
θ[~pi/~i] and LH ` θ[~pi/~i]→ ψ. Finally, as we mentioned above, all proposition letters occurring in
θ[~pi/~i] occur both in φ and in ψ. We conclude that θ[~pi/~i] is an interpolant for φ→ ψ. 2
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For any hybrid formula φ, let P(φ) and N(φ) denote the set of proposition letters respectively
nominals occurring in φ.

Definition 4.4 (Uniform interpolation for hybrid logics) A hybrid logic L has uniform in-
terpolation over proposition letters, if for each formula φ and each finite set of proposition letters
P ⊆ P(φ), there is a formula φP such that

• P(φP ) ⊆ P , and

• For all formulas ψ, if P(ψ) ∩ P(φ) ⊆ P and N(ψ) ⊆ N(φ), then L ` φ→ ψ iff L ` φP → ψ.

In contrast to what one might expect, according to this definition the uniform interpolant φP
does not apply to formulas ψ that contain nominals not occurring in φ.

Theorem 4.5 Let L be a complete modal logic satisfying one of the following conditions:

(a) L has a master modality and admits simple filtration.

(b) L is axiomatizable using only formulas of modal depth ≤ 1 and/or closed formulas.

If L has uniform interpolation then LH has uniform interpolation over proposition letters.

Proof: We only prove (a), since (b) is similar.
Let φ be a hybrid formula, P ⊆ P(φ), and let N(φ) = {i1, . . . , ik}. Let P

′ = P ∪ {pi1 , . . . , pik}.
Let θ be a uniform interpolant in L over P ′ of the formula

φ∗ = φ[~i/~pi] ∧
∧

1≤k≤n

χ∈Sub(φ[~i/~pi])

3
+(pik ∧ χ)→ 2

+(pik → χ))

We claim that θ[~pi/~i] is a uniform interpolant in LH of φ over P . Consider any hybrid formula ψ
with P(ψ) ∩ P(φ) ⊆ P and N(ψ) ⊆ N(φ). We will show that LH ` φ→ ψ iff LH ` θ[~pi/~i]→ ψ.

[⇒] Suppose LH ` φ → ψ. Let Σ = Sub(¬(φ → ψ)[~i/~pi]), By Corollary 3.4, we have that the
formula ( ∧

1≤k≤n

χ∈Σ

3
+(pik ∧ χ)→ 2

+(pik → χ)
)

→
(

φ[~i/~pi]→ ψ[~i/~pi]
)

is L-valid. The same argument as in the proof of Theorem 4.3 shows that

L `
(

φ[~i/~pi] ∧
∧

1≤k≤n

χ∈Sub(φ[~pi/~i])

3
+(pik ∧ χ)→ 2

+(pik → χ)
)

→

( ∧

1≤k≤n

χ∈Sub(ψ[~pi/~i])

3
+(pik ∧ χ)→ 2

+(pik → χ)
)

→ ψ[~i/~pi]

or, equivalently,

L ` φ∗ →
(( ∧

1≤k≤n

χ∈Sub(ψ[~pi/~i])

3
+(pik ∧ χ)→ 2

+(pik → χ)
)
→ ψ[~i/~pi]

)

Since θ is a uniform interpolant for φ∗, it follows that

L ` θ →
(( ∧

1≤k≤n

χ∈Sub(ψ[~pi/~i])

3
+(pik ∧ χ)→ 2

+(pik → χ)
)
→ ψ[~i/~pi]

)

11



Since LH extends L and is closed under uniform substitution of formulas for proposition
letters, we have:

LH ` θ[~pi/~i]→
(( ∧

1≤k≤n

χ∈Sub(ψ)

3
+(ik ∧ χ)→ 2

+(ik → χ)
)
→ ψ

)

Since 3
+(i ∧ χ) → 2

+(i → χ) is valid in hybrid logic for any nominal i and formula χ, it
follows that LH ` θ[~pi/~i]→ ψ.

[⇐] Suppose LH ` θ[~pi/~i]→ ψ. Since θ is a uniform interpolant for φ∗, L ` φ∗ → θ. LH extends
L and is closed under uniform substitution, hence

LH `
(

φ ∧
∧

1≤k≤n

χ∈Sub(φ)

3
+(ik ∧ χ)→ 2

+(ik → χ)
)

→ θ[~pi/~i]

Since LH ` 3
+(i ∧ χ) → 2

+(i → χ) for any nominal i and formula χ, it follows that
LH ` φ→ θ[~pi/~i], and therefore, LH ` φ→ ψ.

2

It is known that K, GL, S5 and Grz have uniform interpolation (see [16] and [9]). From
Theorem 4.5 and the fact that GL and S5 admit simple filtration, it follows immediately that
KH , S5H and GLH have uniform interpolation over proposition letters. Grz does not admit
simple filtration. Nevertheless, we will now show that the construction used in the proof of
Theorem 4.5 can be applied to GrzH as well.

Theorem 4.6 GrzH has uniform interpolation over proposition letters.

Proof: Grz admits filtration in the following manner [3]:

For any formula φ, let Σφ = Sub({φ} ∪ {3(¬ψ ∧ 3ψ) : 3ψ ∈ Sub(φ)}). For any
model M = (W,R, V ) based on a Grz-frame F, let MΣφ = (W/∼Σφ , RΣφ , VΣφ), where

[w]RΣφ [v] if [w] = [v] or the following two conditions hold:

1. for every 3ψ ∈ Σφ, v |= ψ ∨3ψ implies w |= 3ψ, and

2. there exists 3ψ ∈ Σφ with w |= 3ψ and v 6|= 3ψ.

Then MΣφ is again based on a (finite) Grz-frame, and for all w ∈ W and ψ ∈ Σφ,
MΣφ , [w] |= ψ iff M, w |= ψ.

Now consider again the proof of Theorem 4.5. The crux of the proof lies in the fact that the
filtration set Sub(¬(φ → ψ)) can be split up in two disjoint sets, such that every formula in the
first set contains only symbols that occur in φ, and every formula in the second set contains only
symbols that occur in ψ. As we will now show, the same holds for the filtration set of Grz. To
see this, note that

Σ¬(φ→ψ) = Sub({¬(φ→ ψ)} ∪ {3(¬χ ∧3χ) | 3χ ∈ Sub(¬(φ→ ψ))})
= Sub({¬(φ→ ψ)} ∪ {3(¬χ ∧3χ) | 3χ ∈ Sub(φ)} ∪ {3(¬χ ∧3χ) | 3χ ∈ Sub(ψ)})
= {¬(φ→ ψ), φ→ ψ} ∪ Sub(φ) ∪ Sub({3(¬χ ∧3χ) | 3χ ∈ Sub(φ)})

∪ Sub(ψ) ∪ Sub({3(¬χ ∧3χ) | 3χ ∈ Sub(ψ)})
= {¬(φ→ ψ), φ→ ψ} ∪ Σφ ∪ Σψ

Hence, every formula in Σ¬(φ→ψ) is a Boolean combination of formulas in Σφ and Σψ. The same
argument as in the proof of Theorem 4.5 shows that GrzH has the uniform interpolation over
proposition letters. 2
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Definition 4.7 For any modal logic L, let LH be the closure of

L ∪ {3n(i ∧ φ)→ 2
m(i→ φ) | i is a nominal, φ is a formula and n,m ∈ ω}

under Modus Ponens, Necessitation and Uniform Substitution for proposition letters.3

For logics that have a master modality, the set of axioms from Definition 4.7 collapses to the single
axiom scheme 3

+(i ∧ φ)→ 2
+(i→ φ).

Theorem 4.8 Let L be a complete modal logic satisfying one of the following conditions:

(a) L has a master modality and admits filtration.

(b) L is axiomatizable using only formulas of modal depth ≤ 1 and/or closed formulas.

Then LH = LH .

Proof: We only prove (a), since (b) is similar.
That LH ⊆ LH is clear (it suffices to observe that 3

+(i ∧ φ) → 2
+(i → φ) is valid, and that

the inference rules preserves validity). In the remainder of the proof, we show that LH ⊆ LH .
Suppose LH ` φ, for some formula φ with nominals i1, . . . , in. Let Σ = Σ¬φ[~i/~pi]. Then by

Corollary 3.4, the formula
( ∧

1≤k≤n

ψ∈Σ

3
+(pik ∧ ψ)→ 2

+(pik → ψ)
)

→ φ[~i/~pi]

is L-valid, and hence

L `
( ∧

1≤k≤n

ψ∈Σ

3
+(pik ∧ ψ)→ 2

+(pik → ψ)
)

→ φ[~i/~pi]

Since L ⊆ LH , we have that

LH `
( ∧

1≤k≤n

ψ∈Σ

3
+(pik ∧ ψ)→ 2

+(pik → ψ)
)

→ φ[~i/~pi]

LH is closed under uniform substitutions, therefore

LH `
( ∧

1≤k≤n

ψ∈Σ

3
+(ik ∧ ψ)→ 2

+(ik → ψ)
)

→ φ

By definition, we have that LH ` 3
+(i ∧ χ) → 2

+(i → χ) for all i and χ. Since LH is closed
under Modus Ponens, we conclude that LH ` φ. 2

Remark 4.9 Several instances of Theorem 4.8 have been proved before. For example, cf. Gargov
[8] for PDLH and Gargov and Goranko [7] for KH with the universal modality.

Remark 4.10 Suppose L is a logic that satisfies our conditions (has a master modality, admits
filtrations). Furthermore, suppose L is complete for a frame class F . In general we cannot conclude
from our results that LH is complete for F . All we know is that LH is complete for Fr(L). The
results of Section 2.3 confirm this. Alternatively, consider the case of GL. As is well known, GL
is not only complete for the class of transitive conversely well-founded frames (which it defines),
but also for the class of finite transitive irreflexive trees (finite trees for short). By Theorem 4.8our
results, we know that GLH is complete for the class of transitive conversely well-founded frames.
As it turns out GLH is not complete for the class of finite trees: the formula

3(p ∧3i) ∧ 3(q ∧3i) → 3(p ∧3q) ∨ 3(q ∧3p) ∨ 3(p ∧ q)
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Figure 1: GLH lacks the tree model property

is valid on finite trees but is not valid on the class of transitive conversely well-founded frames
(cf. Figure 1 for a counterexample). Hence, it is not derivable in GLH . We conjecture that if this
formula is added as an axiom to GLH , the resulting logic is complete for finite trees.

5 Conclusions

In the paper we provided a translation from hybrid logic to modal logic. We showed that this
translation preserves validity for logics with a master modality that admit filtration. Using this
translation, we derived transfer results for complexity, interpolation and axiomatic completeness.

As far as we are aware, Corollary 4.1 is the first general complexity result for hybrid logics.
Uniform interpolation has also not been studied before in the context of hybrid logic. Finally,
while several non-elementary hybrid logics have been investigated before (in particular PDLH
[13], all general completeness results we are aware of [7, 2, 15] only apply to elementary logics.

There are still many questions remaining. The study of this topic could be developed in three
directions: (1) to find other classes (or extend the class of logics we are working with) for which the
translation works. (2) to see which other properties transfer from L to LH . Gargov and Goranko
[7] and Viana, Marx and ten Cate [15] proved that canonicity transfers. Interesting questions are
if the finite model property, decidability, compactness and the Beth property transfer in general
(cf. also [7, Problems 4 and 5]). (3) to generalize these results to richer hybrid languages, in
particular with satisfaction operators. In fact, some results in this direction will be reported in
Part II of this paper.

Finally, note that we could have defined the hybrid companion of a modal logic L to be LH

rather than LH . In that case, we clearly get axiomatizations for free, and this definition would
apply also to incomplete modal logics. On the other hand, transfer of completeness is in this case
not straightforward anymore, and indeed an interesting question.
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