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Abstract

The paper continues an earlier work on applications of a fine hi-
erarchy defined by the author to the classification of index sets. We
refine some results relating the fine hierarchy to Boolean terms, prove
a useful completeness condition for the levels of the fine hierarchy,
discuss a general scheme of the classification of definable index sets,
and completely classify index sets of the predicates definable in the
Lindenbaum algebra of sentences of any finite rich language.

1 Introduction

The paper continues an earlier work on the classification of index sets by
means of hierarchies. In the development of this topic one can identify three
stages. In the first stage people classified a lot of concrete index sets (which
via a natural coding represent decision problems); most of them turned out
to be m-complete in a level of the arithmetical hierarchy, see e.g. Ro67. The
second stage consists of several examples (Er68, Hay69, Sc82, Se84, Le87)
of the classification of some infinite sequences of index sets; this sometimes
needs a refinement of the arithmetical hierarchy, e.g. the difference hier-
archy. The third stage initiated by the author (Se83, Se89—Se92) tries to
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Alexander von Humboldt Foundation.



classify index sets of the predicates definable in some language; this needs
a further refinement of the arithmetical hierarchy, namely the fine hierarchy
(FH) {¥4}s<e, introduced in Se83.

The mentioned process of subsequent refinements of the arithmetical hi-
erarchy is in some respects similar to the extensions of rationals in order to
be able to measure natural geometric quantities. In this analogy the FH is
similar to reals (or, maybe, to the algebraic reals): in Se83 it was shown that
the sequence {¥,} has a natural closure property and contains finite levels
of many hierarchies. The FH has several natural descriptions, the one from
Se9? means that it is the finite version of the Wadge hierarchy of Borel sets.
So one can hope to use the FH as a scale for the classification of (m-degrees
of) naturally arising sets.

Recall that the degree structures were invented as instruments for the
estimation of the undecidability of sets. The long (and not yet finished) in-
vestigation of these structures showed that they are extremely complicated.
Using them one can not associate to a given set simple invariants (like ordi-
nals) reflecting the unsolvability of the problem. But it remains the possi-
bility to find simple substructures of the degree structures serving as scales
for the estimation of most "naturally arising” sets. We believe that the se-
quence of m-degrees of X,-complete sets (a < &) is such a scale of length
€0 = sup{w,w”,w*” ...} for the structure of m-degrees. The results of the
cited papers show that this sequence picks up from the huge structure of
m-degrees some really important elements.

The aim of this paper is two—fold. Firstly, we present a new clear de-
scription of the FH and of a general scheme of its application; we hope that
this presentation is close to an optimal one. Secondly, we completely classify
index sets of the predicates definable in the Lindenbaum algebra of sentences
of any finite rich language; this is of some interest for the predicate logic and
gives a good typical example of an application of the FH.

The paper is organized as follows: in Section 2 we formulate and discuss
our main results, in Sections 3 and 4 we summarize some ground facts on
the FH, and in Sections 5—7 we prove the main results. Many results of this
paper strengthen or simplify earlier facts from Se91 and Se97?, so it would
be good for the reader to have those papers at hand. Some facts from those
papers are cited without proofs.



2 Statements and Discussion

Let T be the set of Boolean terms (i.e. terms in the language {U,N,”,0,1}
of Boolean algebras (BA)) with variables v}(k,n < w). We call v}(k < w)
variables of type n. Relate to any term ¢ € T the set t[L] of all its values
when the variables of type n range over the level X2, of the arithmetical
hierarchy; L denotes here the sequence {£9 ;},co. In Se9?7 we stated the
following relation of the introduced classes to the FH (as usual, II, denote
the dual class for ¥,, and A, = £, N1I,):

2.1. Theorem. The collections {t[L] : t € T} and {4, : a < &}
coincide.

The result seems interesting for two reasons. Firstly, it gives a new nat-
ural description of the FH (for others see Se83, Se89 and the next section).
Secondly, some its refinement implies useful completeness conditions for the
levels of FH. To formulate the refinement we need some terminology.

Let F be a finite subset of V = {v}|n,k € w} and TF be the set of terms
with variables in F'. Relate to any R C F the term er = (Nverv) N (Nyer\RY)
from Tr. By a F-assignment we mean a map A from F into the class P(w)
of subsets of w such that A} = A(vg) € L2, for v} € F (the assignment
may be written as a sequence {A%|v} € F}). For t € Tr let t[A] denote the
value of t on A (when v} is interpreted as A}).

Now let F = (F; F) be a pair with F' as above and F a nonempty finite
subset of P(F). By a F-assignment we mean a F-assignment A such that
er[A] = 0 for all R € P(F)\ F (intuitively, F specifies the F-assignments
satisfying all Boolean identities from P(F')\ F). Let t[L,F] be the set of
values of ¢t on all F-assignments. These sets are also closely related to the
levels of the FH.

2.2. Theorem. The collections {t[L,F]:t € Tr} and {Xa,110, Ar4a :
a < g} coincide.

Relate to any F-assignment A the pair F4 = (F; F4), where F4 = {R C
F : eg[A] # 0}; A is clearly a F4-assignment. A F-assignment B is m-
reducible to A (in symbols B <,, A), if there is a recursive function f such
that B = f~1(A}) for all v} € F. Note that if B <,, A then B is an
F 4-assignment. We call A a complete F-assignment if any F 4-assignment is
m-reducible to A. This notion generalizes several similar notions in recursion
theory, i.e. the notion of m-complete (or effectively inseparable) pair of
disjoint r.e. sets.



Theorem 2.2 implies the following sufficient condition for a set to be m-
complete in a level of the FH.

2.3. Theorem. Any Boolean combination of members of a complete
F-assignment is m-complete in one of levels Xo, s, Apt1 (@ < €0), and all
the possibilities are realized.

This result means that the FH is essential for the classification of Boolean
combinations of sets m-complete in levels of the arithmetical hierarchy. An
easy example of this is the following result from Se91la.

2.4. Corollary. Let P, (for any n < w) be a X3, -complete predicate
on w. Then for any a < € there is a Boolean combination of the predicates
P, which is ¥,-complete.

Theorem 2.3 is the main ingredient in the classification of definable index
sets. In Section 7 we prove a deep and technically difficult result of this type
formulated as follows. Let (2 be a finite language containing a symbol of arity
> 1 or at least two unary functional symbols (we call such a language rich).
Let B be the Lindenbaum algebra of sentences of (2 and 8 be the numeration
of B induced by the Goédel numeration of (-sentences (recall that B is the
quotient of the structure (S; A, V, ) of 2-sentences by the equivalence in the
predicate calculus).

2.5. Theorem. For any formula ©(vg,...,vk) in the language of BA’s,
the set {{zo,...,zx)|B | ¢(Bxo,...,Prk)} is m-complete in one of the levels
Yo, oy Axy1 (@, A < €9, A is limit), and all the possibilities are realized.

2.6. Remark. Theorem 2.5 was first announced in Se92 (that paper
contains much additional information on the Lindenbaum algebra) but in an
inaccurate formulation: the levels Ay4; were omitted. Another drawback in
Se92 is in the formulation of the Hanf-Peretiatkin theorem: it is true only
for finite languages. We apologize for these inaccuracies.

Earlier we proved some other results similar to 2.5. The proofs are long
and have some common parts, so it makes sense to try to formulate a general
framework for such results. We conclude this section by a discussion of this
topic for a typical particular case.

Let A = (A;a,L) be an arithmetic structure, i.e. (A;L) is a structure
of a finite language L, and « is a map from w onto A in which L-functions
are representable by recursive functions and the L-predicates as well as the
equality relation are arithmetic. By a-index set of a predicate P(vo,...,vx)
on A we mean the set a™'(P) of all codes (zq,...,zx) of tuples of numbers
for which P(azy,...,azy) is true. By definable indez sets (in A) we mean
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index sets of the predicates P, defined by L-formulas ¢. So Theorem 2.5
classifies m-degrees of definable index sets in the Lindenbaum algebra. In
general, we study the structure (DI ; <,,) of m-degrees of A-definable index
sets.

Call a structure A easy if any A-definable index set is m-complete in a
level of the FH, and call A hard if the structure N = (w; +, -) is elementarily
definable in A without parameters (the definition see e.g. in Er80). These
notions are in a sense opposite to one another: for A easy the structure
(DIa; <) is very simple (almost well-ordered, i.e. well-founded and for
all a,b € DIy either a <,, b or {B|B € b} <, a), and for A hard it
is extremely complicated, as it follows from the next evident fact in which
<h denote the m-reducibility by the functions recursive in k, and =" is the
equivalence relation generated by <! .

2.7. Proposition. For any hard structure A there exists an arithmetical
oracle h such that the quotient of (DIa; <) modulo =} coincides with the
structure of all arithmetical <" -degrees.

Sketch of proof. It suffices to find an arithmetical oracle kA such that
any arithmetical set B, B ¢ {,w}, is <" -equivalent to a definable index set.
Let ®o,...,¢n be L-formulas defining N in A, and h be any arithmetical
set such that (index sets of) all the L-predicates, the equality relation and
the predicates P,,,..., P,, are recursive in h. Let P be the predicate on A
corresponding to the predicate "z € B” in the chosen definition of N in A.
Then o~!(P) =" B completing the proof.

In proving that a given structure A is easy one usually should completely
understand the definable predicates. A full classification of definable index
sets includes the following stages:

(i) find a sequence gk (k < w) of ”easy” formulas such that any L-formula
is equivalent in A to a Boolean combination of these formulas;

(ii) prove that for any m < w there is a complete F-assignment A such
that any set a='(P,,), k < m, is a member of this assignment;

(iii) by an additional analysis of the assignments in (ii) exclude the levels
of FH not containing m-complete A-definable index sets;

(iv) prove that any level excepting those from (iii) contains a m-complete
A-definable index set.

Note that (i), (ii) and Theorem 2.3 imply that A is easy, and (iii) and
(iv) describe the levels containing m-complete definable index sets. Note also
that (i) is purely logical, (ii) is recursion—theoretic and (iii), (iv) are made
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(using the results of this paper) by some routine computations. So the whole
problem is divided into independent parts.

The analysis (1)—(iv) usually proceeds in an effective way implying the
existence of an algorithm computing from a given L-formula ¢ the level in
which the set a~!(P,) is m-complete (e.g. this is the case in the proof of
2.5 below). It is easy to see that this effectiveness implies the decidability
of the elementary theory of A. The notion of an easy structure generalize
the well-known notion of a decidable (or, in terminology of Er80, strongly
constructive) structure: any decidable structure is easy, even in the effective
sense described above. But there are easy structures which are even not
recursively presentable; an example is the structure from 2.5.

From the last paragraph it is clear that easy structures are rare. It turns
out that some naturally arising structures are indeed hard. E.g. such are the
structures of r.e. m- and Turing degrees (for the first one it is shown in Ni97?,
and for the second one—in a recent work by A.Nies, R.Shore and T.Slaman).
For such structures it makes no sense to try to classify all definable index
sets in the FH. But it does make sense to classify some particular index sets
(say, index sets of the predicates definable by the existential formulas). This
is closely related to the decidability of restricted theories of such structures.

3 Fine Hierarchy

Here we summarize some facts on an abstract version of the FH. Most of
them are contained in Se89, Se91 and (in a complete systematized form) in
Se9?, so many proofs are omitted.

Let (B;U,N,7,0,1) be a BA with 0 # 1. By a base (in B) we mean any
sequence L = {Ln}n<. of sublattices of (B;U,N,0,1) satisfying L, U L, C
Lnt1 (we use the following notation: for any A C B, let A = {@|a € A} and
A = AN A; anb is sometimes abbreviated to ab). Define the operation Bisep
on subsets of B by

BiSCp(X, Yb, Yi, Ya) = {JtoyoUIL'llefou’Elyﬂ:Bi S X, Y; € }/]’, ToZ1Yo — IL'().’L'lyl}.

3.1. Definition. By the fine hierarchy over L we mean the sequence
{Sa}a<eo, where S, = S2 and the classes S?(n < w) are defined by induction
on a: Sg = {0}; So, = Syt for v > 0; S5, = Bisep(Ln,Sg,S'g,Sg) and
S2. v = Bisep(Ly, S¢, 52,5 ) for § = w” -6, > 0,7 > 0.
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Definition uses some ordinal arithmetic as described e.g. in KM67. To
see that this definition is correct note that every nonzero ordinal a < &g
is uniquely representable in the form a = W™ 4+ --- + W for a finite se-
quence vy > -+ > v of ordinals < a. Applying 3.1 we subsequently get

o103 Segvo 4w s -+ -y On- Lhe classes ST for n > 0 play a technical role, they
are among the classes Ss. Note that by Stone Representation Theorem we
may (and sometimes will) think of them as of classes of sets.

Most important for this paper is the FH over L = {¥,}; we call it
simply FH and denote S, as ¥,. Other examples are considered later on.

Note that Us S, = Uy Ly, and any L, is among the classes S,. Some other
properties are given in the next assertion. 3

3.2. Properties. (i) If a < f < &g then S, C S;.

(ii) For any limit ordinal A < €, the classes S} and S} are closed under
intersection with any element of in+1.

(iii) For any o < €9, Sh, is the class of intersections of elements of 5’3_,_1
with the elements of L.

(iv) For any a < €, the class ST (resp. 5’{‘+a) is closed under intersection
with any element of L, (resp. of Ln)

(v) For any a < o, if uo,u1 € L. and auo,au, € S™ (resp. ST), then
a(ugUuy) € S (resp. S™).

For brev1ty we call the classes S, \ S, Sa \ Sa and S \ Ug<a(Ss U Sp)
respectively the S,-, So- and S,-constituents of the FH over L. The term is
justified by the following

3.3. Corollary. The constituents of the FH over L are pairwise disjoint
and exhaust the class U, L,.

Proof. The disjointness follows immediately from 3.2.(i), so it suffices
to show that any element @ from U, L, belongs to a constituent. For some
a < eg we have a € S, U S,. Take the least such a, then a is in one of the
a-constituents above. This completes the proof.

We are interested in the cases when some of the S,-constituents are empty.

3.4. Definition. (i) A base L is discrete if 1 is join-irreducible in Lg
(i.e. l =uUw in Lo imply that either u =1 or v = 1).

(ii) L is interpolable if for all n < w any two disjoint elements a, b € Lt
are separable by an element ¢ of the BA generated by L, (i.e. a C ¢ C b).

(iii) L perfect if it is both discrete and interpolable.

(iv) L is reducible if any L, has the reduction property (i.e. for all a,b €



L, there are disjoint a*,b* € L, with a* C a, b* C band a*Ub* =aUb).
3.5. Proposition. If L is discrete (interpolable, perfect) then the S,-
constituents are empty for all successor (resp. limit, nonzero) ordinals a.
Now we formulate a simpler description of the FH over a reducible base.
Define a simplified version bisep of the operation Bisep as follows:

bisep(X, Yo,Y1,Y2) = {zoyo U z1y1 U ToZ1y2|zi € X, y; € Y], mozy = 0}.

3.6. Proposition. Classes of the fine hierarchy over a reducible base
coincide with the corresponding classes obtained by using the operation bisep
in place of Bisep.

Next we want to give an alternative, technically important description of
the fine hierarchy. First some notation and terminology. Let w<¢¥ (2<“) be
the set of all finite strings of numbers (resp. of numbers < 2). By o C 7
we denote that the string o is an initial segment of the string 7. By |o| we
denote the length of a string o, by o1 (0k)—the concatenation of strings o, 7
(respectively of a string o and a number k). For k < 2 let k = 1 — k, and let
& be defined by § = @ and ok = k. By 0™ we denote the string of m zeros.

Fix a string 4 € w<“. By a p-tree (in B) we mean a sequence {a, },e2<w
of elements of B such that a, = 0 for |o| > ||, ask € L) for |o| < |u| and
Gy 2 aok. A tree is called reduced, if a,0a,1 = 0, and special, if ap U a; = 1.
The elements a} = a,@,oG,1 are called components of a tree {a,}.

We say that an element a € B is defined by a tree {a,}, if a C ag U a,,
aa,0 C ay00 U ay01 and @a,1 C ay10 U ay11. This notion does not depend on
ap; applying it we usually think that ap = 1 (if not, just replace ay by 1).
Let us cite from Se9? and Se9la some properties of the introduced notions.

3.7. Properties. (i) {a,} defines a iff a = Ua}, and @ = ajU (U,a’,).

(ii) {ac} defines some element iff the components aj, a%, are disjoint with
the components a,.

(iii) Any reduced tree has pairwise disjoint components, satisfies Usa =1
and defines some element.

(iv) If {a,} defines a, then {a,z} defines az.

(v) If {a,} defines az, {b,} defines ay, and a, C z, b, C y, then {a,Ub,}
defines a(z Uy).

(vi) Let {a,} defines a and let by = 1, by = a; Uz and b, = a,T for
o #0,1. Then {b,} defines aU=z.



Let M, (M, R,, R;) be the set of all elements defined by u-trees (resp.
by special, reduced and by special reduced p-trees). The next result states
some closure properties of these classes under the operation Bisep.

3.8. Lemma. Let strings p,v and a number n be such that n < pu(z) for
1 < |p| and n < v(j) for j < |v|, and let £ = pnv.

(i) Over any base, Bisep(Lyn, M,,M,,M,) = M; and in the case p # 0
Bisep(Ln, M,, M, M#) = Mg.

(ii) Over any reducible base, the analog of (i) is true with bisep in place
of Bisep and R in place of M. _

Proof. (i) The first equation was stated in the proof of Theorem 4.3 in
Se97?, and it implies the inclusion from left to right in the second equation.
So it remains to show that any a € M; is in Bisep(Lyn, M,, M,, M,). Let
Ui, v; € Ly, ao,bo,dy,b; € M, and ay,b; € M, be some elements satisfying

a = ugao U uray U Ugli1a2, UgU180 = UoU1d7,

a= ’Uobo U ’U]bl U ’l_)o'l_Jlbg, ’Uo’vlbo = ’Uo’U]bl. (1)

For the elements o = uoU vy, 1 = u3 Uvg, g = aouo UI_)lvl, €1 = aju; Ubgug
and e; = a3T9T; we have a = zoeg U z1€1 U ToT1e2 and zoT1€0 = ToT1€1
(becagse azo = e and @z, = &), so it remains to show that eg,é; € M, and
es €EM,.

First note that 3.7.(iv),(v) and (vi) imply that for all d € M,,c € M,
and y,z € L, we have: dy € M,; if dy,dz € M, then d(y U z) € M,; if
¢ C § then cUy € M, (the last fact only for u # 0). Now, eq = auo U av;
and aug = aoup € M,,avy = byv; € M, so eg € M, and similarly &; € M,.
Finally, we have e; = a270%Z1 € M, (because ZoZ1 € Ln41 and n+1 < u(2) for
i < |p|) and €Ty = aToT1 = byToT1 € M), 50 € = E2ToT1 UzoU 1 € M,
and e; € M,.

(ii) is also proved by the argument above, because we can take the el-
ements u;,v; above pairwise disjoint (replacing them on pairwise disjoint
elements u}, v} so that u} C u;, v C v; and ugUuijUviUvy = uoUuy UvgU vy
existing by the reduction property). This completes the proof of the lemma.

3.9. Lemma. QOver any base, Mg = M¢. Over any reducible base,
R = R

Proof. If a (reduced) special é-tree {a,} defines a then {a;} is a (re-
duced) special {-tree defining a. This proves the inclusions from right to left.
The reverse inclusion is checked by induction on |¢|. The case £ = 0 is trivial,
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so let £ be nonempty and a € Mf- Represent £ as above, £ = unv, and con-
sider first the case when u is nonempty. Represent a as in the preceding proof:
a = zoep U z1€7 U ToZ1€ez, so in particular e; € M,,. By induction hypoth-
esis, e; € M. Choose v-trees {a,},{b,} and a special p-tree {c,} defining
respectively eg, € and e;. By 3.7.(iv), the v-trees {a,zo}, {bsz1} and the
p-tree {c,;ZoZ1} define respectively the elements azo = zoeo, Gx1 = z1€; and
aZoI; = ToZiez. Define a é-tree {d,} as follows:

dy = 1; dy = cqZoZi Uzo Uy for 0 < I < |pu|; d, = ¢,T0Z1 for |p| <
lo| < |v; dp = 0 for |p| > |ul,p 2 0.

By cases it is not difficult to check that {d,} defines a. But {d,} is special,
because do U di = (coZoT1 U 2o U 1) U c1Z0Z1 = 1. So a € Mg, as desired.

For the case of empty string p represent a € Mg as in (1) with az, by
being empty. Let e;, z;(: < 2) be the elements from the proof of 3.8, then in
particular a = egzo U e1z1 and zo U z; = 1. Define {d,} as above (for the
trivial p-tree {c,}). Then d; = =z;, so {d,} is a special ¢-tree defining a and
a fortiori a € M.

For the reducible case the proof is the same with all trees above being
reduced and x¢, z; disjoint. This completes the proof of the lemma.

Now we can describe the FH in terms of trees. Define strings p?%(n < w)
by induction on « as follows: ug =0, p2,, = nul, pup, = 2t for v > 0,
Py = poynpg for § =w? -6, >0, v > 0. Let pq = pl.

3.10. Proposition.Qver any base, Sy = M,,, and S, = M; . Over any
reducible base, So = R,, and S’a =R, .

Proof. By induction on o we check that S5 = My» (and S} = Ry» in
the reducible case) for all n. For @ = 0,w? this is evident. For o = 8+ 1 we
have by induction hypothesis and by 3.9

Su = Bisep(La, S5, 53, 55) = Bisep(Ln, Myn, Myn, My) = Wopn = Miup.

The case a = § + w” is considered in the same way.

Now, by 3.9 we have S, = Muu = M;, , and similarly in the reducible
case. This completes the proof.

We conclude this section by a result relating the fine hierarchies over
different bases. By a morphism of a base L into a base L’ (in B’) we mean
a BA-homomorphism ¢ : U, L, — U, L! sending any L, into L. The notion

a?
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of an isomorphism on bases looks similarly. In the next result the assertion
(1) is immediate by definition, and (ii) by induction on «a.

3.11. Proposition. (i) For any m, {ST'} is the FH over {Li}i>m.

(i1) Any morphism (isomorphism) g from L into (resp. onto) L' sends
any class ST into (resp. bijectively onto) S%.

4 Syntactic Fine Hierarchy

Here we study technically useful fine hierarchies over some bases defined in
terms of the typed variables v} € V from Section 2. The word ”syntactic” is
not very informative, it just stresses the specific nature of these hierarchies.

Fix a pair F = (F;F) formed by a finite set ' C V and a nonempty
family F C P(F). Define preorderings <, (n < w) on P(F) as follows:
R <, S, if R** = S<" and R* C S", where R*(R<") denote the set of
variables of type n (resp. of type < n) in R. Note that for sufficiently large n
the relation <, is the equality, and that R <,;; S imply R =, S (=, is the
equivalence relation generated by <,). Let £, be the class of all subsets of
F closed upwards under <,, and £ = LF = {L.}. The next result is clear.

4.1. Lemma. For any F, LF is a base satisfying U, L, = P(F).

We will study the FH {S,} over L called also the (syntactic) FH over F.
The next result provides invariants for all constituents of this hierarchy.

For a given u € w<¥, by a p-alternating tree for X we mean a sequence
{Rys : 0 € 2<¥,|o| < |u|} of elements of F such that Ry ¢ X and R, &
X,Rn € X,R; <,.(o) Ror for |o| < |u| and k < 2. By a special p-
alternating tree for X we mean a sequence {R, : 0 < |o| < |¢|} of elements of
F satisfying the properties above (with the exception Rg) and the additional
property Ro =¢ R; for k = p(0) —1 (for £ = —1 we think that R =, S for all
R,S € F). For a nonempty p such a tree may be considered as the ”pair”
of trees {Ros, R1c}io|<|u|- L€t po be the string from Propositi9n 3.10.

4.2. Proposition. (i) For all X C F and a < €9, X ¢ S, iff there is a
Uo-alternating tree for X .

(ii) For all X C F and nonzero a < €9, X & Up<a(Ss U Sp) iff there is a
special py-alternating tree for X.

Proof. (i) One direction was stated in the proof of Theorem 5.1 in Se9?
(see also Se91), the other is similar to the proof of Theorem 2 in Se91a.

(ii) Let first & = B+ 1. By (i), X ¢ Sp U Sp iff there are ps-alternating
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trees {R,} and {S,} for X and X respectively. This is equivalent to the
existence of a a special y,-alternating tree for X (consider the pair of trees
{R,, S5} and note that u,(0) =0 and Ry =_1 Sp).

The case of a limit ordinal « is more tedious. First let us relate to any
such ordinal the ordinals oy = g(a, k) by induction: g(wP*!, k) = wP(k + 1),
g(w?, k) = wI™H) for a limit A, g(8 +w?, k) = §+ g(w?, k) for § =w? -8 >0
and v > 0. It is clear that for « = w and a@ = § + w all ax are successors,
in other cases all oy are limit ordinals, and in any case ap < a3 < -+ and
a = sup{axlk < w}.

It suffices to show that X ¢ UrS,, (i-e. X has a u,,-alternating tree for
any k) iff X has a special p,-alternating tree. By induction on a we prove
the following more general assertion:

(¥) for all n < w,m < n and £ € W<, X has a pj, m-alternating tree
for any k iff X has a special plmé-alternating tree.

We shorten upmé and uj, m¢ respectively to v and vx and consider the
following alternatives for the ordinal a: w, w*! for a nonzero v, w* for a
limit A, § + w, 6 + W™, § + w*. In the last three cases v > 0, A is limit and
6 satisfy the usual condition, as above.

For the case a = w we have u = (n+1), o4 = k+1and p} = (n,...,n),
the last string is of length k£ + 1. Suppose for a contradiction that the direct
implication in (%) is false, and choose k bigger than the cardinality of F.
Then X has no special v-alternating tree but has a v;-aternating tree {R,}.
By definition, R, <, Ry for |o| < k and ¢ < 2. We claim that R,o #, Rs1
(otherwise let S; = R,; and Sir = Rgiwrr for ¢ < 2,0 < |7] < |€] + 1 and
|o1?| = k; from m < n it follows that {So,, Sir}jr|<|s| is a special v-alternating
tree for X which is a contradiction). So for any o of length < k there isi < 2
satisfying R, <, Rsi. But then there is a <,-chain of k elements of F
contradicting to the choice of k.

In the opposite direction, from a special v-alternating tree {S;;} for X’ one
constructs a vg-alternating tree (for any k) {R,} for X as follows: R, = S
for |o| < k, and Ryir = Si, for |o| =k, i <2 and || < |v].

For the case a = w*! we have u? = pt] = (n + 1)p (where p = pitt),
o = wY(k+1) and u?, = pnpn--- p (n occurs k times). Let I; = (5+1)|p[+7,
so vk(lg) = m, v (l;) = n and v(l; + a) > n for all j < k and a < |p|.

Suppose that the direct implication in (*) is false and choose k and {R,}
as in the case a = w. Define a function f on 2<¥ by f(0) = 0 and f(07) =
f(O')OIPIi. Then |f(o7)| = l|o) + 1, so Rf(o) <n Rj(si) for lo| < k and ¢ < 2.
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As above, it suffices to show that Ry,0) #Zn Ry(e1) for |o| < k. Suppose
not and set p = Iy — ljgj41, Sin = Ry(oi)y for |n| < |p| and Siyr = Ry(oiynier
for i < 2,0 < |7| < [£| +1 and |p| = |p|- From m < n and properties
of [; it follows that {Sos,Sis}jr|<|| is & v-alternating tree for X’ which is a
contradiction.

The opposite implication is considered similarly to the previous case.

In the case @ = w* we have u* = u3*! and Ko, = uf\‘:l. By induction
hypothesis () is true for A, so it is true also for a. In the case a = § + w we
have p? = pné and pu, = n...nd, so the assertion (*) immediately follows
from the case a = w. The last two cases follow respectively from the cases
a = w"! and @ = w* in the same way. This completes the proof.

Now we state conditions on F implying the emptiness of some con-
stituents. For R € F and n < w, let [R] = [R]n41 denote the set of all
S € F with § <,41 R. We say that F is: discrete, if (F;<o) has a least
element; interpolable, if for all n < w any two disjoint sets of the form [R], [S]
defined above are separable by an element of the BA (L,) generated by L,;
perfect, if it is both discrete and interpolable.

The next evident fact gives examples illustrating the introduced notions
for the pairs G, = ({v5}; {0,{v}}) and H, = ({vg, v7'}; {{vg}, {v7}}).

4.3. Lemma. (i) The pairs (0; {0}) and G, (for any n < w) are perfect.

(i1) The pair Ho is interpolable but not discrete.

(iii) For any n, the pair Hy41 is discrete but not interpolable.

The next result relates the introduced notions to the emptiness of the
constituents. :

4.4. Proposition. If F is discrete (interpolable, perfect) then the S,-
constituents are empty for all successor (resp. limit, nonzero) ordinals c.

Proof. By Proposition 3.5, it suffices to show that F is discrete (in-
terpolable, perfect) iff the base LF has the same property. For the case of
discreteness this is clear. '

Let F be interpolable and disjoint X,y € L,41 be given; we have to
separate X’ from ) by a class from (£,). By definition of L1, X = U;[R)]
and Y = U;[S;] for some finite number of R;,S; € F. Let Z;; € (L,)
separates [R;] from [S;], i.e. [R] C Zi; C [S;]. Then X C Z C Y for
Z =0N;U; Zij € (L,), so Z separates X' from ). The opposite direction
(that F is interpolable if £F is) is trivial.

The case of perfectness immediately follows from the preceding cases.
This completes the proof.
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Call pairs F = (F;F) and G = (G;G) syntactically isomorphic if there
is a bijection g : F' — G respecting the types of variables and satisfying
G = {g(R)|R € F}. Any such g induces an isomorphism of the bases LF, L&
and (by 3.11.(ii)) of the corresponding fine hierarchies.

Relate to any pairs F = (F; F) and G = (G; G) with disjoint F, G the pair
H = (H;H) as follows: H=FUG and H ={R C H|RF € F,RG € G}
(the disjointness above is not essential because there is always a pair G’
syntactically isomorphic to G and satisfying F NG’ = (). Let us state some
properties of the introduced operation.

4.5. Lemma. If the pairs F = (F;F) and G = (G;G) are discrete
(interpolable, perfect) then so is also the pair H=F U G.

Proof. The map R — (RF, RG) is clearly an isomorphism of (H;<,)
onto the Cartesian product (F; <,) X (G; <,) for any n < w. This fact and
Proposition 4.4 immediately imply our assertion for the case of discreteness.
This implies also that for all R,S € H and n < w

[RI[S]#0 +ff [RF][SF]#0 and [RG][SG] # 9, (2)

where [R] is as above, and that the map X — X* = {RC H|RF € X} is a
morphism from LF into LH (and similarly for G).

It remains to prove the lemma for the case of interpolability (for the
perfectness it would then follow). Let n and disjoint elements [R], [S] of £EL,
be given; we have to separate the elements by a class from (£H). By (2),
either the classes [RF],[SF] or the classes [RG], [SG] are disjoint. Consider
e.g. the first case, then [RF] C X C [SF] for some X € (LF). By the
preceding paragraph, [RF]* C X* C [SF| and X* € (CH). But [R] C [RF]*
and [S] C [SF]*, so ™ separates [R] from [S] completing the proof.

We conclude this section by a result showing that Proposition 4.4 is op-
timal in the sense that all the constituents not excluded by this proposition
can be nonempty.

4.6. Proposition. (i) For any a < ¢ there exists a perfect pair with the
nonempty Sy -constituent.

(ii) For any a < €o there exists an interpolable pair with the nonempty
5'0,4.1 -constituent.

(iii) For any limit a < €q there exists a discrete pair with the nonempty
ga-constituent.

Proof. (i) It suffices to construct by induction on « a perfect pair F2(n <
w) and a class X* € S* \ 87 (in the FH over F?). We use the objects from
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4.3 and 4.5 and sometimes omit the superscript n. Consider the following
alternatives for the ordinal a: 0,1, w” for a nonzero v, B + 1 for a successor
B, 8+ 1 for alimit 8, +w” for f=w?-F; >0 and v > 0.

In the first two cases the objects Fo = (0;{0}), F1 = G,, &, = 0 and
X1 = {{v3}} clearly work. The case a = w?” is immediate by induction: let
F? = F2*! and X7 = A%, For a = #+41 and f successor, let F, = FBLIG
and X, X*X* Fora—ﬁ+1andﬂhm1t let F, = FglUG,UG, and X, =
YVoldo U )Jll/ll, where U; = {{u:}}* (uo, u; are the variables from G, UG,) and
Yo = XUy, Y1 = XjUo. Finally, for a = f+w” let Fy = FgUF, UG, UG,
and Xa = you() @] ylul U X:7U0U1.

By 4.3 and 4.5, any F7? is perfect. From 3.2 and Yololhy = Iilhlh; it
follows that X" € S™. It remains to check that X ¢ S”. By 4.2, it suffices
to find a ul-alternating tree for X7. For the first three cases above this is
trivial. Let @« = 8+ 1 and 3 be a successor. By induction hypothesis, there
is a pj-alternating tree {R,} for Xp. Let Ty = To = Ry, To, = Rs U{vg} for
0 < |o| < |pp| and Th, = Rs U {vg} for |o| < |uf|. Then {T,} is a u}-tree
for X7. :

The remaining cases are similar to one another, so consider only the case
a = f + w". By induction hypothesis, there are a pg-alternating tree {R,}
for X and a p,v-alternating tree {S;} for X,+. Let T; = S; for |7| < |pwr|
and Troo = S U R, U {uo}, Tr1o = Sr U Rs U {ue} for |7| = |pur], lo| < |,u$|
Then {T,} is a uZ-alternating tree for X? completing the proof of (i).

(i) Let F = FS U Ho and X = XU U XUy, where U; = {{v{}}. Then
F is interpolable, Uoll; = 0, Llo Ul = F and Uo,Uy € Lo, 50 X € Soy1. As
above, both X and X have pC-alternating trees, so X ¢ S, U S,

(111) By induction on a we define the pairs E” and the classes Z7, consid-
ering the following alternatives for a: w, w* for a limit A, w"*! for a nonzero
v, B+ wY for f=w?-PB; >0 and v> 0.

Let E* = H,y; and 2" = {{v§*'}}. For a = w* let E? = E}* and
Zr = Z”H. For a=wtllet E? = F*, UH,; and Z* = Yoldy U D1l
where Yo = X%, V) = Yo and U; = {{v”“}} For a = B+ w” let E? =
Fz u En'y UHn+1 and Z = y()uo U )71L{1 UyzL{()ul, where y() = Xﬁ ) yl )70,
Y., = 27, and U; be as in the previous case.

Similarly to (i) and (ii), E? are discrete and Z* € 8". So it remains
to find a special ,uZ—alternating tree for Z2. For the first two cases this is
trivial. For a@ = w*! choose a u".,-alternating tree {R,} for X+ and let

Too = R, U {v3*™} and Ty, = R5 U {v]*'}. Then {To,, T1,} is a special u™-
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alternating tree for Z7, because Ty =, T;. For the case a =  + w” a special
pr-alternating tree for Z7 is constructed from a special u,-alternating tree
{S:} for Z7, and a pj-alternating tree { R, } for X} similarly to the last case
in (i). This completes the proof of the proposition.

4.7. Remark. Let wp = 1 and wi4y = w**. From the proofs of 4.2 and
4.6 it follows that if we consider only sets F' containing variables of types < k
for a given k < w, then we get the refinements of these propositions with wy
in place of gq.

5 Fine Hierarchy and Boolean Terms

Here we prove some of our main results by relating the syntactic FH {S,}
over £ = LF to the FH {S,} over an arbitrary base L (the most important
particular case is of course L = {£0,;}). Relate to any X C P(F) the
”disjunctive normal form” dy = U{er|R € X}, where eg = ek are the
”elementary conjunctions” from Section 2. It is well-known that X +— dy is
a bijection (even a BA-isomorphism) between P(P(F')) and the terms ¢t € Tr
modulo equivalence in the theory of BA’s. As in Section 2, let t[L, F| be the
set of all values t[a] of t € TF on the F-assignments a : F' — U, L,.

The results of this section show that the map X + dx[L,F] provides a
close connection between our hierarchies.

5.1. Lemma. If X € S, then dx[L,F] C S,, and similarly for the
classes S., S..

Proof. It clearly suffices to prove the assertion for S,. We have to show
that X € S, implies dy[a] € S, for any F-assignment a. By 3.11.(ii) it
suffices to show that the map X +— dx[a] is a morphism from £ to L. It is
clearly a BA-homomorphism from P(F) to U, L, (because dz[a] = 0 and a
fortiori dr[a] = 1). So it remains to check that dy[a] € L,, for X € L,. We
can assume that X is a "cone” {S € F|R <, S} for some R € F, because
X is a union of such ”cones”.

For n = 0 we have X = {S € F|R® C S}, so dx[a] = N{a}|v? € R} € L.
For n > 0 we have X = Y\ Z, where Y = {S € F|RS" C S} and Z =
{S € FIR<™ C S}. As for the case n = 0, dy[a] € L, and dz[a] € L, so
dx[a] = dyla] \ dz[a] € L, completing the proof.

The next result is in a sense reverse of 5.1 for the reducible bases.

5.2. Lemma. For any reducible base L and any X C F we have:
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(i) if X & Sa then S, C dx[L, FJ;

(i1) if X & Upca(Sp U Sp) then Sy C dx[L,F].

Proof. (i) Let X and b € S, be given. We have to show that b € ¢[L,F],
where t = dy. By 4.2 and 3.10, there are a p,-alternating tree {R,} for
X and a reduced p,-tree {b,} defining b. We have to find a F-assignment
a = {a}|v} € F} with b = t[a]. We claim that the assignment a} = U{b%|v} €
R,} has the desired property.

First we check that a} € L,. It suffices to show that if v} € R,, then
bx C ¢ C a} for some ¢ € L,. Let oo be the least (with respect to C) string
such that o9 C o and p(|r]) > n for all 7 satisfying 09 C 7 C 0. Then
R,y <n+1 R,, so v} € R,,. By minimality of oo, b,, € L, (for oo = 0 we
have b,, =1 € Ly, otherwise [ = y(|oo| — 1) < n and b,, € L;).

Let m be the least number ¢ satisfying |o| < ¢ < |u| and p(z) < n (if
there is no such an 7, let m = |g|). Finally,let T = {r 2 0o : |T| < m}
and ¢ = U{d*|r € T}. Then 0 € T and v} € R, for all 7 € T (because
VP € Ryy <n R:), 50 b5 C ¢ C a}. But ¢ = by, \ U{b; : T D 00, |7| = m + 1},
bso € Ly and b, € Ly(m) for |[T|=m +1, s0 ¢ € L, and a is a F-assignment.

Note that if z € b then v} € R, & z € a} (the implication from left to
right is by definition of a}; in the opposite direction, if z € a}, then z € b}
for some 7 with v} € R,; but by 3.7.(iii) the components b} are pairwise
disjoint, so ¢ = 7 and v} € R,). In other words, z € b* implies = € eg,[a];
so bt C eg,[a].

Now we can show that a is a F-assignment, i.e. eg[a] = 0 for R €
P(F)\ F. It suffices to deduce R € F from eg[a] # 0, so let = € eg[a] for
some z. We have U,b%: =1, so ¢ € b% C ep,[a] for some o. But the elements
esla] (S C F) are pairwise disjoint, so R = R, € F.

Finally, by 3.7.(i) we have b = U,b}; C User,,[a] C t[a] and b = b5 U
(Uy %) C ery[al U (User,,[al) C t[a]. So b = t[a] completing the proof of (i).

(i) is proved in the same way, one should only exclude Ry from the
consideration and remember that in this case Ry =; Ry for | = po(0) — 1,
and by = 0). This completes the proof of the lemma.

Now we prove the main result of this section.

5.3. Theorem. QOver any reducible base L we have:

(i) {t[L,F] : t € Tr,F perfect} = {Sa,Sa: @ < &o};

(i) {¢[L,F] : t € Tr, Finterpolable} = {Sa, 5:0,, Sas1:a < &0l

(iii) {t[L,F]:t € Tr,Fdiscrete} = {Sa, S, Sx : , A < €0, A limit}.
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Proof. (i) Let F be perfect and t € Tp. Take X C P(F) with dy
equivalent to t. We may assume that X C F, because dy[L,F] = dy»[L,F)].
By 4.1 we have X € U,L,, so X belongs to a constituent of the FH over F.
By 4.4, this is either a S,-, or a S,-constituent. By 5.1 and 5.2, t[L, F] is one
of S,, S,. It remains to find for a given « a perfect pair F and a term t € Tx
with t[L,F] = S, (the assertion for S, would then follow). By 4.6, there are
a perfect F and a class X € S, \ So. By 5.1 and 5.2, the term ¢t = dy has
the desired property.

(i1) and (iii) are considered in the same way completing the proof.

This result immediately implies the assertion of Theorem 2.2 for any
reducible base. But it is well-known that the base {X2,,} is reducible, so
Theorem 2.2 is true. Theorem 2.1 follows from 5.3.(i) because t[L] = t[L, F]
for F = (F; P(F)) and F is perfect by 4.3 and 4.5 (F is isomorphic to a pair
of the form G, U --- U Gy,).

6 Completeness Condition

Here we prove Theorem 2.3 and of some its refinements. These results sig-
nificantly simplify and strengthen the completeness condition from Se91 (in
particular, the next result shows that one can replace the perfectness in the
condition from Se91 by a much weaker property of discreteness). Please re-
call the notion of a complete F-assignment A and notation like F4 = (F'; F4)
from Section 2. We call A discrete (interpolable, perfect), if so is the pair F 4.

6.1. Proposition. (i) Any Boolean combination of members of a com-
plete F-assignment A is m-complete in one of ¥y, Ilo, Aay1 (o < €).

(ii) Any Boolean combination of members of a complete discrete assign-
ment A is m-complete in one of £y, I, (o < €0).

Proof. First check that for any ¢t € Tr the Boolean combination ¢[A]
is m-complete in t[L,F4]. We clearly have t[A] € t[L,F 4], so it remains to
reduce any X € t[L,F 4] to t[A]. Let B be a F4-assignment with X = ¢[B].
By completeness of A, B <,, A. Let f be a recursive function reducing B to
A. By induction on t, t[{B] = f~}(t[A]), so X <, t[A].

From 2.2 it now follows that t[A] is m-complete in one of ¥, 14, A 4q.
It can not be complete in Ay for a limit A, because Ay by a result in Se83
has no m-complete set. This states (i).

To prove (ii) choose X C F4 satisfying dy[L,F 4] = t[L,F 4] and note that
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by 4.4 X can not belong to a S,41-constituent of the FH over F4. So t[A]
can not be m-complete in A, ;. This completes the proof of the proposition.

6.2. Remarks. (i) We see that for a complete A the pair F4 can not be
arbitrary (e.g. the S,-constituent of the FH over Fy4 is empty for any limit
a). It seems interesting to characterize such pairs F 4. In particular, is any
such F4 interpolable?

(i) From the proofs of 4.2 and 6.1 it follows that from (a canonical index
of) F4 and t one can effectively compute the level of FH in which the set
t[A] is m-complete.

Our next goal is to prove that all the possibilities in 6.1 are realized but
it requires some preliminary work. For XY Cw,let X @ Y = {(z,y) : z €
X,y € Y}. For a F-assignment A and a G-assignment B with FG = () define
the (F' U G)-assignment C = AU B as follows: Cf} = A} ® w for v} € F
and CP = w ® BY for v} € G (as in Section 4, the condition FG = 0 is not
essential).

6.3. Lemma. If the assignments A and B are complete (discrete, inter-
polable, perfect) then so is also the assignment AU B.

Proof. First we check that H = FUG, where F = (F; F4), G = (G, FB),
H=FUG and H = (H; F¢). For any R C H we have el = e£zN e, so

e [C] = (err[A] @ w) N (w ® Rl B)) = errlA] ® efglB].

This implies that e [C]is nonempty iff both e£[A] and e§;[B] are nonempty.
So Fc = {R C H|RF € F,RG € Fg},ie. H=FUG.

The preceding paragraph and Lemma 4.5 imply the assertion for the
properties in parenthesis. It remains to m-reduce any H-assignment D to C.
Note that the restrictions D and Dg of D to F' and G are respectively F-
and G-assignments (e.g. for F' we have: if S € P(F)\ Fa, then SUT ¢ F¢
for all T C G, so e£[Dr] = U{eZ ;[D] : T C G} = 0). Let f and g be
recursive functions m-reducing respectively D to A and Dg to B. Then the
function h(z) = (f(z), g(z)) reduces D to C' completing the proof.

Now we are able to prove the ”"optimality” of 6.1.

6.4. Proposition. (i) For any a < ¢ there exists a complete perfect
F-assignment A such that some Boolean combination of its members is X -
complete.

(i1) The same is true for the interpolable assignments and the levels Ayyq.

Proof. Let G, = {v}} and A™ be the G,-assignment sending v} to a
X0 ,1-complete set. This assignment is clearly complete and G, = (Gr; Fan),
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where G, is from 4.3. Repeating the proof of 4.6.(i) with A™ in place of G,
and applying 6.3, we get the assertion (i). Now let Hy = {v),v{} and B be
the Hoy-assignment sending vQ to the set of all even and v? to the set of all
odd numbers. Then B is universal and Hy = (Ho; Fg), where Hj is from 4.3.
Taking B in place of Hg in the proof of 4.6.(ii), we get the desired assignment
for (ii). This completes the proof.

Propositions 6.1 and 6.4 imply Theorem 2.3. They imply also Corollary
2.4. To see this, consider ”index sets” A™ = {(z1,...,zk)|Pu(z1,...,2k)} Of
the predicates P, in the trivial identity numeration of w. The assignment
{A"} is universal, so suitable Boolean combinations of these sets are m-
complete in all levels ¥,. But these combinations are ”index sets” of Boolean
combinations of the predicates P,, so 2.4 is true. Note also that the proof of
6.4 and Remark 4.7 imply the refinement of 2.4 whith "n < k” in place of
"n < w” and wy in place of €g, for every k£ < w.

We conclude this section by relating the F-assignments to a bit more gen-
eral finite sequences {A;};cr naturally arising in applications. The notions of
”elementary conjunction” eg(R C I), of its value eg[A;] and of m-reducibility
for such sequences {A;} are similar to the corresponding notions for the as-
signments. We call a sequence {B;}ier compatible with {A;}, if egr[A;] = 0
implies eg[B;] = @ for all R C I. For a given map M — {X9 TI2|n > 0}, call
{Ai}ier a M-sequence if A; € M; for all « € I. Such a sequence {A;} is uni-
versal, if any M-sequence compatible with {A;} is m-reducible to {4;}. Call
sequences {A;}icr and {B;};ecs isomorphic if A; = By, for a bijection g be-
tween I and J. Of course all "nontrivial” notions on sequences are invariant
under isomorphism.

Now let A be a F-assignment and T' C F. Define the maps MT and AT
as follows: MT = %9, and AT = A} for v = v} € T, and M =112, and
AT = A7 for v = v} € F\ T. Then {AT},¢F is clearly a MT-sequence, and
any M-sequence is isomorphic to a sequence of this form.

Let us state some relations between introduced notions for assignments
and sequences. Let G be the set of all R C F with er[AZ] # @ (note that G is
in a natural bijective correspondence with atoms of the BA generated by the
sets A}). Relate to any R € G the unique R* € F4 with eR[A:";] = ep+[A];
this is a bijection between G and F4. Let <, be the preordering on G induced
by the preordering <, in this bijection.

6.5. Proposition. (i) A is a universal F-assignment iff {AL} is a
universal M T -sequence.

20



(i) R =%, S iff R<" = S<*, R*T C ST and ST C R"T.

Proof. (i) is clear, so consider (ii). It is easy to see that R* = F'\ (RAT),
where A is the symmetric difference. From definition of <, in Section 4 one
by cases easily gets the desired equivalence. This completes the proof.

The reduction of M-sequences to assignments simplifies technical details
because definition of <,, is simpler than the description (ii). This is a reason
why the proof of the completeness condition here is simpler and clearer than
the proof of a weaker condition in Se91.

7 Definable Index Sets

The main goal of this section is to prove Theorem 2.5. This needs some
preliminary work and a citation from Se91.

By a r.e. BA we mean a pair B = (B, f) consisting of a BA B =
(B;U,Nn,7,0,1) and a map S from w onto B (called a numeration of B) in
which the Boolean operations are representable by recursive functions and
the equality relation on B is r.e. Two such objects A and B are recur-
sively isomorphic (in symbols A ~, B) if there exists a BA-isomorphism
between A and B representable by a recursive function in the corresponding
numerations. Call a r.e. BA B universal, if any r.e. BA A is recursively
isomorphic to an initial segment b = {z € B|z < b},b € B (with the induced
numeration). In Pe91 and Se91 it was shown that any two universal r.e.
BA’s are recursively isomorphic. In Han75 and Pe82 it was shown that the
Lindenbaum algebra from 2.5 is universal. For technical reasons it is more
convenient to work with another universal r.e. BA constructed as follows.

Call a sequence {A,} of r.e. BA’s uniform, if the Boolean operations
in these algebras are recursive, and the equality relations are r.e. in the
corresponding numerations uniformly in n < w. By an acceptable numeration
of r.e. BA’s we mean a uniform sequence {B,} such that for any uniform
sequence {A,} there exists a recursive function f satisfying A, ~, By,
for all n. In Se91 we constructed such an acceptable numeration by taking
B, essentially as the quotient structure of the free countable BA under the
congruence relation induced by the r.e. set with the standard number n.
From {B,} we constructed a universal r.e. BA U = (U, v) as a ”direct sum”
BoUB; U ---. Namely, let Ug(U;) be the set of all sequences {b,} such that
b, € B, for all n and b, = 0p, (resp. b, = 1p,) for almost all n. Define the
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Boolean operations on U = Uy U U; componentwise and let v be the natural
numeration for which U is a r.e. BA and both sets v~1(U;) are recursive.
This U is universal, so it is recursively isomorphic to the algebra from 2.5
and it suffices to prove 2.5 for the algebra U.

We start with the following easy fact:

7.1. Lemma. (1) UOU1 = @, Uo U U1 =U and Ul = (70.

(i1) Uy is an ideal, and U, is a filter of U.

(iii) For any uniform sequence {A,} of r.e. BA’s there exists a v-recursive
sequence {a,} of pairwise disjoint elements of Uy with A, ~, a,.

(iv) For anya € Us, @ ~, U.

Proof. (i) and (ii) are clear. Let {A,} be the sequence from (iii) and f
be a recursive function satisfying A, ~, By(,). From definition of {B,} it
follows that we may assume f to be injective. Now let a, be the sequence
{bk} defined by b, = 1B, and bx = 0B, for k£ # n. The sequence {a,}
has the desired properties.

(iv) It suffices to show that @ is a universal r.e. BA, and this is immediate
by definition of {B,} and U. This completes the proof.

Recall definitions of some objects relevant to the elementary classification
of BA’s due to A.Tarski, see e.g. CK73 or Er80. For any BA B, let T'(B)
be the ideal of B generated by the atomic and by the atomless elements
of B. Let B©® = B and B("*V) be the quotient of B under T(B™).
Let A7(B}, A™) be the class of BA’s B such that B(™" has < 2* elements
(resp. has < k atoms, is an atomic BA). Let U be the class of all BA’s,
and for any sentence ¢ let M, = {B € U|B = ¢}. From the elementary
classification of BA’s it follows (see Se90) that the classes M,, (i.e. the finitely
axiomatizable classes of BA’s) are exactly the Boolean combinations of the
classes A}, BE, A™(n, k < w) inside U, and there is an algorithm computing
from a given sentence ¢ a Boolean combination coinciding with M.,,.

Let us return to the main problem and describe the predicates definable
in U (as well as in any other BA); this realizes the stage (i) of the program
in Section 2. For m < w,I C m = {i|t < m} and a class C of BA’s, let
Cr=CP ={acU™: e;Ez] € C}, where a = (ao,...,am-1) and ey = €T are
again the ”elementary conjunctions” with m variables.

7.2. Proposition. A predicate on U is definable iff it is a Boolean
combination of the predicates C7*(m < w,I C m,C € { A}, B;, A"}). For any
formula ¢(vo,...,vm—1) in the language of BA’s one can effectively find a
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Boolean combination of the specified predicates coinciding with P,.

Proof. One direction is immediate because the specified predicates are
definable. In the other direction, let a formula ¢(vo, .. .,vm-1) be given. By
Se91 and Se92, one can effectively find a number ! and sentences 6 (I C
m,t < 1) in the language of BA’s such that

U k= ¢(ao,- - yam) iff /(A erla] = 67)

i<l ICm

for all @ € U™. So it suffices to show that for any sentence @ the predicate
e;[\a] = 0 is a Boolean combination of the specified predicates. But this is
immediate by the remarks above completing the proof.

For any fixed m,q > 0, let ¢ = G, = {A},Bp, A"|n,k < ¢} and H =
Hy = {CI|IC € G,I C m}. By 7.2, the U-definable predicates are exactly
the Boolean combinations of the predicates from H7* for all m,q. So for the
realization of the stage (ii) of the program in Section 2 we have to find a
complete sequence containing the members of {v~*(X)|X € HJ'} (the last
sequence itself is unfortunately not complete). For this aim consider the
predicates Ry = R} = {a € U™ : ej[a] € Uy} for J C m.

7.3. Lemma. (i) The sets v=}(Uy) are recursive, pairwise disjoint and
ezhaust w.

(ii)) The map a — {esla]}scm is a bijection between U™ and the set of
sequences {by}jcm such that by € U, by are pairwise disjoint and Usb; = 1.

(iii) For allC € G and I Cm, RiC; = 0.

Proof. (i) and (ii) are clear, so consider (iii). Let a € Ry, then by 7.1.(iv)
67[?1,] ~y. It is well-known that for any C € G there is a recursive BA not
belonging to C. So U ¢ C and a ¢ C; completing the proof.

Now we realize the stage (ii) of our programm as follows:

7.4. Proposition. The sequence {v=1(C;),v Y (R;)|C € G;I,J C m} is
complete.

Proof. First we show that the sequence A; = {v~(C;)|C € G} is com-
plete for any I C m. In Se91 we proved that B = {6C|C € G}, where
0C = {z|B, € C}, is a complete sequence satisfying

0AG € Thnia, 0AR € T4, 0BF € T, 5, 0A™ €114, 3)

(see the notion of a complete M-sequence in Section 6). So it suffices to
state that A; =,, B. For ¢ = (wo,...,Zm_1) let a® = (vzo,...,vTm_1), then
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{e.r/[;“”]} is a uniform sequence of r.e. BA’s, so e;[;”] ~, By(,) for a recursive
function f. This function m-reduces A; to B. To state B <, A; it suffices
to find a recursive function g with B, ~, e;[b], b* = a?(®). By 7.1.(iii), there
is a recursive function & with B, ~ vj(;). Define b* € U™ by: b7 = vy(y) for
@ € I and b7 = vy for ¢« ¢ I; this b has the desired property.

Now let D = {Se¢,1,T5|C € G;I,J C m} be any sequence compatible with
the sequence C from the formulation of the proposition; we have to show
D <,, C. For any I C m the sequence {S¢(|C € G} is compatible with
A, so by the preceding paragraph it is m-reducible to A;. Let {b%} be a
v-recursive sequence of elements of U™ such that z € S¢; iff b € C;. By
7.1.(iii)) we may assume that the elements d% = e;[b%] are pairwise disjoint
and belong to Up.

By compatibility of D with C and by 7.3.(1), the sets T are recursive,
pairwise disjoint and exhaust w. So for a given £ we can compute the unique
J = J; with ¢ € T;. By 7.3.(ii), there is a unique ¢* € U™ such that e;[c*] =
d% for all I C m, I # J (then automatically ¢® € R;). The sequence {c*} is
v-recursive, so ¢ = a?®® for a recursive function g. From the construction it
follows that g m-reduces D to C' completing the proof of the proposition.

So the structure U is easy. By the effectiveness in 7.2 and by 6.2.(iii), it
is easy in the effective sense described in Section 2.

The realization of the stages (iii) and (iv) in Section 2 requires some
additional considerations. Recall from Section 6 that instead of the complete
sequence B above we can consider an isomorphic complete assignment A,
and F4 is in a natural bijective correspondence with the set of atoms of the
BA generated by C(C € G) inside P(w), and a fortiory with the set at(G) of
atoms of the BA generated by G inside «. We will work with the last set. Let
<; be the preorderings on at(G) induced by the corresponding preorderings
on F4. We need an explicit description of these preorderings.

We have the following evident inclusions of the introduced classes of BA’s:

ApC AL,y © AT C ATH, BLA = A7, A7 C B} C BR,, C AT,
Let aj(b%,a™) be the difference of A} (resp. of Bf,.A") and the "lesser”
classes with the indices < ¢ (e.g. b = BIBgAT). Let ¢ = A?BE, then at(G) =
{a},b%,a™, cIn, k < q}. By definition, the types of the atoms ag, a},,, b}, a", ¢
are respectively 4n,4n+1,4n+2,4n+ 3 and 4n + 3 (so the types correspond

to the levels in (3)). From 6.5 we immediately get the following description
of the preorderings (at(G); <;):
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7.5. Lemma. In (at(G);<;) the atoms of type < @ are incomparable
with all other atoms, and the atoms ot type > 1 are pairwise equivalent. In
addition, we have: .

(i) fori=4j,j < g, the atoms of type > 1 are less than af;

(i) fori =45 + 1,5 < q, the atoms of type > ¢ are greater than ag, and

a; > > a{;
' (iii) for i. =45+ 2,5 < g, the atoms of type > i are greater than b), and
b; >0 > b—é’

(iv) fori =45 + 3,5 < q, the atoms of type > i are greater than a’;

(v) fori=4¢+3,a? < c.

The operation A x B of Cartesian product of BA’s induces the operation
x X y (denoted also by xy) on at(G) as follows: if A € x and B € y then
X X y is the atom containing A X B. The definition is clearly correct. Let us
state some properties of the introduced operation.

7.6. Lemma. (i) For all x, adx = x.

(ii) If x <i x1 and 'y <; y1 then Xy <; X1y1.

Proof. (i) immediately follows from the well-known property of BA’s
(A x B)™ ~ AM™ x B(™. This property implies also the equalities on the
atoms like xc = ¢, afa} = a3, a7y = b3 (if 3 < ¢), a"a™ = a™, ata] = a™.

The assertion (ii) follows from these equalities, Lemma 7.5 and the evident
facts that the introduced operation is associative and commutative, and that
the type of xy is not less than that of x. This completes the proof.

We need also a description of atoms of the BA’s generated by H and by
K = K7 = {Cr,R;IC € G;1,J C m} inside P(U™) and of the preorderings
<, on at(K) defined similarly to the preorderings on at(G). In the next lemma
(1) and (ii) follow from 7.3, and (iii) follows from 6.5. For f : P(m) — at(G),
let f*=nNyf(J)J.

7.7. Lemma. (i) at(H) = {f*|f : P(m) — at(G),c € rng(f)}.

(i) at(K) = {f*Ri|f : P(m) — at(G), f(I) = c}.

(iii) For all f*Ry,g*Ry € at(K) and ¢t < w, f*Rr <; ¢*Ry iff = J and
f(K) < g(K) for all K Cm.

Our next (and the last) lemma relates the introduced notions for different
m. Define the projection p : U™ — U™ by p(ag,...,am) = (ag, .- .,am-1).
Let {Sa} be the FH over £ = {L,.}, where L, consists of unions of subsets
of at(K7") closed upwards under <, (by the end of Section 6 and by 3.11.(ii),
this hierarchy is isomorphic to the corresponding syntactic FH). For I C m,
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let I, = I U{m}.

7.8. Lemma. (i) For any a € U™, ef[p(a)] = er[a] U ey, [a].

(ii) For any I C m, p~'(RF) = RP* U RPH.

(iii) For any f : P(m) — at(G), p'(f*) is the union of g* for all g :
P(m + 1) — at(G) satisfying f(I) = g(I) x g(Im) for any I C m.

(iv) For any X CU™, if X € S, then p™}(X) € S,.

Proof. (i) and (ii) are clear, so consider (iii). Let a € p~'(f*), i.e.
erfp(a)] € f(I) for all I C m. Define g : P(m + 1) — at(G) as follows:
for any I C m, let g(I) and g(I,.) be respectively the elements of a¢(G)
containing the BA’s e;[\a] and e ,r:Ta]. By (i) and by the well-known fact that
£ Uy ~ 7 x§ for all disjoint z,y € U, we have a € g* and f(I) = g(I)xg(I).
This proves a half of our assertion; the other half is proved in the same way.

(iv) By 3.11.(ii), it suffices to show that the map X — p~!(X) is a
morphism from the base £ over K" into that over K™+, This is of course a
BA-monomorphism, so it remains to check that p™*(X) € £, for X € L,.. It
suffices to show that for all x,y € at(K7*+"), if x C p™(X) and x <, y then
y Cp Y X). By 7.7, x = g*R; and y = h*Rj for some ] C m + 1 and g,k
satisfying ¢g(I) = A(I) = c and g(K) <, h(K) for K C m+ 1. Assume that
I € m (the other alternative is considered similarly). Define the functions
g1,h1 @ P(m) — at(G) by ¢1(J) = g(J) x g(Jm) and similarly for h. Let
x; = ¢gtRT and y; = ATRP. By (ii) and (iii), x; C X. By 7.7, x; <, y1, so
y1 € X. Again by (ii) and (iii), y C p~1(X). This completes the proof.

Now we are able to prove the main statements. The next result classifies
definable index sets in the structure (U;Up) otained by enrichment of the
BA U by the unary predicate "a € U,”.

7.9. Theorem. Any (U;U,)-definable index set is m-complete in one of
levels ¥y, Iy, Apy1( < €o), and all the posibilities are realized.

Proof. A quantifier elimination similar to that in 7.2 shows that the
(U; Up)-definable predicates are exactly the Boolean combinations of the
predicates from K7'(m,q > 0). So one half of the theorem follows from
7.4. It remains to show that any of the specified levels is realized. In Se90
and Se91 we proved that the sets in (3) are m-complete in the corresponding
levels. This fact and the proof of 7.4 imply that for any n < w there is a U-
definable unary predicate X C U with »~!(X’) m-complete in X2 _,. By 2.4,
for any a < ¢ there is a Boolean combination X, of these predicates with
v~1(X,) m-complete in ¥,. Note that the predicates X, are U-definable.
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It remains to realize the level A,;;1. Choose m,q > 0 for which X, is in
the BA generated by K7 inside P(U™). By the isomorphism of {S,} with
the corresponding syntactic FH and by the proof of 6.1, X, € S, \ S,. By
4.2, there is a p,-alternating tree {x,} for X (we use the isomorphic copies
of the trees in Section 4, so in particular x, € at(K7') and x,; C X). By 7.7,

= f*RT for some ﬁxed I C 'm and functions f, satisfying f,(I) = c. Let
y = p Y (X)) RPT U p 1(X)RT', then Y € Saq1 by 7.8 and 3.2. Define
9oy ho : P(m+1) — at(G,) as follows: for any K C m, let g,(K) = ho(Kp) =
f-(K) and ¢,(Kpn) = ho(K) = a. From 7.8.(ii) and 7.7.(3) it follows that
{g;R:} and {h} Ry, } are the u,-alternating trees respectively for ) and ).
So Y is in the S,-constituent. By the proof of 6.1, »=1())) is As41-complete.
This concludes the proof of the theorem.

Proof of 2.5. First we check that all the specified levels are realized.
For the levels ¥, the predicates X, above work. For a limit o < €, con-
sider the U-definable predicate Y = p™'(X,)Uo U p~1(Xa)Uy, where Uy =
Nicm(A) s, and Uy = Nycm(AY)s. The trees {g R;} and {h*RIm} above
are p,-alternating trees respectively for ) and YV, s0)Y € S, U S,. We
have U; € Lo, Ry, Ry, € Lo and Ry Uy = Ry = § for all J C m. By
3.2, YRy, = p ' (X)UiR;, € So and YR; = p{(X)UoR; € S, So the
sets Rg(K C m + 1) are Lo, pairwise disjoint, exhaust U™*! and satisfy
YRk € 8o US,. By 3.2.(v), Y € Sat1, 50 v71(Y) is Ayyp1-complete.

It remains to show that the levels A, are not realized, i.e. the Sa+2-
constituent is empty for any a < go. It suffices to show that if X is in the
BA generated by HT and X' ¢ Sp41 U Sot1 then X ¢ Suyz. Let f(I) = c for
any I Cm. By 7.7, f* € at(H7'), so either f* C X or f* C X. Consider
e.g. the first alternative. We have X ¢ S,41, so there is a py41-alternating
tree {x,} for X. By 1.7, x, are of the form g: Ry for some fixed I C m and
functions g, with g,(I) = ¢. Let yy = yo = f*Rr, y1 = Xp and y;, = X5 for
i <2and 0 < |o| < |gat1|- By 7.5 and 7.7, yo <o ¥, for all o. By definition
of fiay2 in Section 3, poy2 = 00uq, 50 {Yo} is @ fa42-alternating tree for X
and a fortiori X & Say2. This completes the proof of the theorem.

Let (DI{y; <m) be the stucture of m-degrees of index sets of n-ary U-
definable predicates. In Se91 and Se92 we have shown that the structure
(DI{; <m) is almost well-ordered with the corresponding ordinal w?. An
analysis of the proofs above shows that for any n the structure (DI{y; <n,) is
almost well-ordered with some ordinal < €g. By 2.5, the structure (DIy; <)
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is almost well-ordered with the ordinal 9. From these estimations we can
deduce the following result on nondefinability in U.

By a coding on U we mean any injection of U x U into U. By remarks
on the universal r.e. BA’s at the beginning of this section, there is a coding
on U which is even a recursive isomorphism (because U X U is universal). Is
there a definable coding on U (i.e. a coding with the definable graph)?

7.10. Corollary. There is no definable coding on U.

Proof. Suppose the contrary: (ao,a1) +— [ag,a;] is such a coding. Let
¥(vo, v1,v) be a formula defining the graph [ag,a1] = a in U, then v is a
¥2-formula for some nonzero n < w. Define [aq, . . ., ax] by induction on k as
follows: [ao] = ao, [ao,- - -, ak+1] = [[@o, . - ., ak], ak+1]. For any k, the function
(ao,---,ax) — [ao,...,ax] is an injection of U**! into U, and it is definable
by a X2-formula vx(vo, ..., vk, v) (e.g. for k = 2 we have [ao, a1, as] = a iff
3b([ao, a1] = bA[b,az] = a), so we can take v, = Ju(y(vo, v1, u) Ay(u, vz, v))).

Relate to any formula 8(v, .. .,vk) the unary formula

6(v) = v+ Fou(me(¥o, - - -, 01y 0) A (v ., ).

For all ao,...,ax € U we have: U = 0(ao,...,ax) iff U | 6*([ao, . - ., a]).

Now let A = ! and <" be the relativization of <,, to h. It is easy to
see that v~1(Py) =k v=1(Py.) for any 8(vy, . ..,vi), so the quotients S and Sy
of respectively DIy and DI{; modulo =! are the same. But from the cited
result it follows that S; is well-ordered with some ordinal < w?, and from
2.5 and 3.11.(i) it follows that S is almost well-ordered with the ordinal €.
This contradiction completes the proof.

A similar argument shows that for any n > 0 there is no definable injection

of U™ into U™.
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