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1 Modal Logic and Classical Logic

Modal Logic is traditionally concerned with the intensional operators "possibly" and
"necessary”, whose intuitive correspondence with the standard quantifiers "there exists"
and "for all" comes out clearly in the usual Kripke semantics. This observation underlies
the well-known translation from modal logic into the first-order language over possible
worlds models (van Benthem 1976, 1984). In this way, modal formalisms correspond to
fragments of a full first-order (or sometimes higher-order) language over these models,
which are both expressively perspicuous and deductively tractable. In this paper, we shall
enquire which features of 'modal fragments' are responsible for these attractions.
Throughout, we shall concentrate on the basic language of modal propositional logic,
which still serves as the 'pure paradigm' in a rapidly expanding field of more expressive
modal formalisms (Venema 1991, De Rijke 1993). What precisely are 'modal fragments'
of classical first-order logic? Perhaps the most influential answer is that of Gabbay 1981,
which identifies them with so-called 'finite-variable fragments', using only some fixed
finite number of variables (free or bound). This view-point has been endorsed by many
authors (cf. van Benthem 1991). Our paper presents a critical review of its supporting
evidence, adding some new results about finite-variable fragments, including failures of
the Los-Tarski preservation theorem. But there is also a second answer to our question,
implicit in much of the literature, which emphasizes so-called 'bounded quantification'.
As our positive contribution, we shall develop the latter perspective here, showing its
utility as a guide towards generalization of modal notions and techniques to larger
fragments of classical logics. In particular, we prove decidability for a large ‘bounded
fragment' of predicate logic, and point out several applications. One can also combine the
two views on modal logic, as will be illustrated. Finally, we shall make another move.
The above analogy works both ways. Modal operators are like quantifiers, but quantifiers
behave like modal operators. This observation inspires a generalized modal semantics for
first-order predicate logic using accessibility constraints on assignments (cf. Németi
1986, 1992) which moves the earlier quantifier restrictions into the semantics. This
provides a fresh look at the landscape of possible predicate logics, including candidates
sharing various desirable features with basic modal logic — in particular, its decidability.

This paper is the first public version of a longer projected document — whose current
working version is Andréka, van Benthem & Németi 1994A. Further off-spring of this
Amsterdam-Budapest collaboration in the field of modal logic and universal algebra are
Andréka, van Benthem & Németi 1993, and Andréka, van Benthem & Németi 1994B.



2 Basic Modal Logic

2.1  First-Order Translation

Consider the basic propositional modal logic, in the language with Booleans — & v and
modalities Q © . The following effective translation takes modal formulas ¢ to first-
order formulas ¢ with one free variable (standing for the 'current world' of evaluation)

recording their truth conditions on possible worlds models:

p Px X () -0
dvy ovy & v&Y
00 Jy (Rxy & ¢(y)) Qo Vy (Rxy = &(y))

where y is some fresh variable over worlds in the last two clauses.

Other semantics for the modal language may inspire other forms of translation, but we
stick with the standard case here. This embedding into predicate logic gives a number of
facts about modal logic for free, namely those universal properties of first-order logic
which are inherited by all its fragments, such as the Lowenheim-Skolem Theorem, or by
all its effective fragments, such as recursive axiomatizability for universal validity. What
the embedding does not give is specifics in the latter case: for that, more detailed analysis
is needed (see below). Moreover, typically, we do not get more complex meta-properties
for free, that make existential claims. E.g., consider Interpolation. If a modal formula ¢
implies another modal formula v, then, through the translation, some interpolant must
exist in the first-order language — but there is no guarantee that this interpolant will itself

be (equivalent to) a modal formula: we shall have to work for this (see again below).

2.2 Invariance for Bisimulation
The expressive power of the basic modal language with respect to classical logic is

measured precisely by the following Invariance Theorem (van Benthem 1976, 1985):

Theorem A first-order formula ¢(x) is equivalent to the translation of a modal

formula iff it is invariant for bisimulation.

Here, a bisimulation is a binary relation between the universes of two models linking only
points with the same unary predicates P, and satisfying back and forth conditions with
respect to relational R-successors in both directions. (Thus, if x bisimulates y , and
Rxz , then z bisimulates some u with Ryu , and vice versa. This is a kind of
unbounded Ehrenfeucht Game with restricted choices of objects in each move, which

has a natural generalization to the case with whole families of accessibility relations.)



'Invariance' means that a formula gets the same truth formula in any two models at states
connected by a bisimulation. This result subsumes the usual facts in the modal literature

about preservation under 'generated submodels', 'disjoint unions' and 'p-morphic images'.

Proof of the Theorem For later reference, we sketch a proof of the Invariance Theorem.
First, modal formulas must all be invariant, by a simple induction on their construction.
Here, the existential modality is taken care of, precisely, by the two zigzag clauses.
Conversely, suppose that ¢ = ¢(x) is an invariant first-order formula. Let mod(¢) be the

set of all modal consequences of ¢ . We prove the following implication:
Claim mod(¢) I=¢ .

From this, by Compactness, ¢ is easily seen to be equivalent to some finite conjunction
of its modal consequences. The proof of the Claim is as follows. Let M, x be any model
for mod(¢). Now consider the complete modal theory of x in M together with {¢} .
This set of formulas is finitely satisfiable, by a simple argument (using the fact that
mod(¢) holds at M, x ) . By Compactness, it therefore has some model N,y . Now ,
take any two w-saturated elementary extensions M+, x and N*,y of M,xand N,y,

respectively. (These exist, by a simple argument in the style of Chang & Keisler 1973.)

Claim The relation of modal equivalence between worlds is a bisimulation between the
two models M* and N* , which connects x with y.

Here, of course, the key observation lies in the back-and-forth clauses. If some world u
in M+ is modally equivalent with v in N*, and Rus holds, then the following set of
formulas is finitely satisfiable in N+ : {Rvt} plus the full modal theory of s in M+ .
But then, by w-saturation, some world t must exist satisfying all of this in N+ : which is
the required match. The converse argument is symmetric. Having thus proved the second
claim, we return to the first, and clinch the argument by 'diagram chasing'. For a start,
N,yl=¢, and hence N+, yl=¢ (by elementary extension), whence M+, x I=¢ (by

bisimulation invariance), and so M, x |= ¢ (an elementary submodel). [ |

This style of argument can be extended in many directions, by modulating the key
connection between zigzag clauses and restricted quantifier patterns. A much more
elaborate discussion of this result and its generalizations to richer modal languages may
be found in van Benthem and Bergstra 1993, De Rijke 1993. (These also discuss

connections with the work by Hennessy & Milner 1985 on modal process equivalences.)



2.3  Decidability via Semantic Tableaus

A next pleasant feature of the modal formalism is the existence of a simple semantic
tableau method for checking universal validity. Its rules include the usual decomposition
principles for Boolean operators on sequents, of which the following are samples. (Here,
we take semantic consequence between sets of formulas in the usual appropriate sense,

as going from the truth of all premises to that of at least one conclusion.)

,mA= A iff = AA
X = A&B,A iff 2= A Aand ¥ = B,A

In modal tableaus, the key rule is that for existential modalities, which are best treated in

a bunch, when no further propositional reductions are possible:

true: 0(1)1, - <>¢n *w 0\|I1, - O\Vm :false
create new worlds vy, ..., vp with Rwv; (1<i<n)
and start these with sequents ;i *yi V1, ..., Ymn -

Theorem Modal semantic tableaus are adequate for valid consequence in the

minimal modal logic (over the universe of all possible worlds models).
Corollary Modal universal validity is decidable.

The corollary follows since all tableau rules decrease formula complexity of sequents
(even though they may temporarily increase the number of parallel tasks). That tableaus
are adequate for validity hinges on the semantic validity of the above Q-Rule. Let P, Q

be disjoint sequences of proposition letters. Then we have the following equivalence:
P, 001, ..., 00n 1= Q, Oy, ..., Oy iff forsome i(1<i<n), ¢; I= yy, ..., W

This is immediate from right to left. The opposite part of the proof depends essentially on

bisimulation invariance, through a well-known semantic construction of 'joint rooting":

any family of models M, v l=0; & =~ Y1 & ... & — Yy, (1<i<n)

can be 'glued disjointly' under one new common root:

/.W\

*VE ® Vn

M] Mn



Here, the models M; lie embedded as 'generated submodels' (the identity relation is a
bisimulation), whence no truth values change for modal formulas in their roots — and so
the new top node w verifies 001 & ... & Obp & = Oy1 & ... & — Oym, thereby refuting the
top sequent. We shall return to this 'quantifier decomposition' in Section 4, extending
these ideas to larger 'loose' decidable fragments of predicate logic.

24  Proof Theory via Sequent Calculus

Another way of describing validity is proof-theoretic. Read bottom-up, tableau rules
become introduction rules in the 'Minimal Modal Logic' consisting of a Gentzen-style
calculus of sequents (cf. Fitting 1993), with axioms

T =>A with ZNA non-empty

The following logical introduction rules are involved:

A= A ZT=2A A

T =>-AA Z, A=A

A B=>A T=AA 2=B.A
Z,A&B=A I=>A&B,A
A=Bi..Bn

0A=0B1,..., OBm ' the part "By, ..., By" may be empty

the rules for v and U are analogous.

Moreover, this calculus has two structural rules of

Permutation inside the premises and the conclusions
Monotonicity from X =>A to X,Z=AA

These are needed to get the exact correspondence with closed semantic tableaus right.
Note that the other main classical structural rule of Contraction is redundant for the
completeness proof. (It deduces £, A= A from X, A, A= A.) In classical tableaus or
sequent proofs for predicate logic, this rule is needed to ensure that false existential (and
true universal) formulas can produce as many substitution instances as are required for
the argument. With modal formulas, however, no such unbounded iteration is needed: we
did all that is needed in one fell swoop. Thus, our calculus involves no shortening rules,
and the proof search space is finite. (In a sense, then, at least as far as quantification is

concerned, 'linear logic' is already complete for modal fragments of predicate logic.)



2.5  Interpolation
The basic modal logic shares several important meta-properties with first-order predicate
logic. One important example is Interpolation:

Theorem Let ¢ |=wy . Then there exists a modal formula o« whose proposition
letters are included in both ¢ and y suchthat ¢ l=a =y .

Proof We present two proofs here, illustrating the above two perspectives at work.

Proof-theoretic Argument  ('Tracing a Sequent Derivation')

By induction on derivations in the above Gentzen sequent calculus. . It is convenient to
work only with formulas rewritten to the special format (- ) atom, &, v, 0,0Q, 1, T
(Cf. Schiitte 1962, Roorda 1991 for this technique.) The single axiom case is clear, and

one constructs interpolants inductively following the successive rules in a derivation. W

Model-theoretic Argument  ('Amalgamation via a Bisimulation")
Let Lgy be the joint language of ¢ and y . Consider the set consgy (¢) of all modal

consequences of ¢ in this language. We prove the following uniform assertion:
Claim consgyy (¢) I= y.

By Compactness, then, some finite conjunction of formulas in consgy (¢) implies y
(and is implied by ¢ ). It remains to prove the Claim. Let M, x be any Ly—model which
verifies consgy (¢) . We must show that M, x |=y . First, by a routine argument, the
modal Lgy—theory of M, x is finitely satisfiable together with {6} . By Compactness
again, there is an Lg—model N,y |=¢ with the same modal Lgy—theory as M, x . Next,
as in the earlier proof of the Invariance Theorem, we can pass to w-saturated models here,
without loss of generality. By that earlier argument, there exists an L¢y, —bisimulation =
between the two models which connects x to y . (Here, the language subscript reminds
us that = only needs to respect proposition letters which are shared by ¢ and y.) Now,
we construct a new product model MN out of these two bisimulating ones, which will
be a kind of 'joint unraveling under bisimulation'. Its worlds are finite sequences of pairs
<(X1, Y1), ---» (Xk» Yk)> , where always x;=y;, and moreover, each world X;;; must be
an R-successor of x; — and likewise for the sequence of worlds y; — for 1<i<k . Now,
consider the two natural projections from the final pairs of such sequences, one going to
M and the other to N . Along these, we can lift the valuation for all proposition letters in

Ly—L¢y from M, and that for Ly-Lgy from N . The result is the desired model MN
for the joint language Lo U Ly , whose two projections to M (N) have now become



Ly~ (Lo~ ) bisimulations. But then, we can argue 'clockwise'. First, N,y I= ¢ , whence
MN , <(x, y)>I= ¢ (by bisimulation). Now, since ¢ I=y , also MN , <(x, y)>I= .
But then finally, M, x I= y (again by bisimulation). [ |

Remark This argument was first stated in correspondence between the authors in 1992.
In the meantime, more elaborate versions have appeared independently in Visser et al.
1994, Marx 1994, clarifying its general categorial background.

Remark Modal Unraveling and Concrete Representation

Behind the preceding proof, as well as others to come, lies the well-known observation
that each possible worlds model M, x bisimulates with an 'unraveled' model consisting
of finite sequences of objects (namely, worlds that R-succeed one another), in which the
accessibility relation is end extension by one additional element. This may be regarded as
a semantic 'normal form' in which abstract accessibility has been replaced by a concrete
uniform set-theoretic relation. (Marx 1994 has more elegant concrete representations of
this kind for general modal logics, following the program of Henkin-Monk-Tarski 1985.)

2.6  Model Theory and Preservation
More generally, much of classical Model Theory holds within the modal fragment. One

good example is the Los—Tarski Theorem, stated here in its 'upward version":

Theorem A modal formula is preserved under model extensions iff it can be
defined using only propositional atoms and their negations, &, v, Q.

Proof 1 Original Model-Theoretic Version

(The following argument was written up in correspondence with Albert Visser around
1985, but published only in van Benthem 1991.) A straightforward induction shows that
existential forms are preserved under model extensions. Conversely, suppose that ¢ is so

preserved. We shall prove the following semantic consequence:
exist (0)I=¢, where exist (§) =def { ¥ existential | ¢ =y }.

Then the required existential modal form for ¢ will exist by Compactness for first-order
logic, being of the form &A for some finite set of formulas A contained in exist () .
Let M, x |= exist (¢) . Without loss of generality, again, we can take the model M, x to
be w-saturated. Next, in the usual manner, we find a second model N,y such that

*N.yl=0 * N,y I=a = M, xI=o for all existential modal formulas «



Next, take the standard 'modal unraveling' of N,y via finite sequences of worlds, say,
Nunrav, <y>, which bisimulates N,y via end points of sequences. This will yield the

following diagram:

N,y = exist-fragment M, x
bisimulation F

Nunrav, <y>

Now, by induction on the length of sequences in Nypray, @a map F may be defined from
Nunrav to M sending <y> to x which is a homomorphism with respect to R , and
which respects atomic facts in worlds. (The w—saturation of M, x is used here to find

suitable R-successors for points already mapped.) Finally, we perform a useful trick.

Add a disjoint copy of M, x to Nyprav, <y>, and extend the relation R as follows:

for all sequences Y in Nypray : YRz if F(Y)Rz.

Claim F united with the identity on M, x is a bisimulation between
the two models Nyprav, <y> + M, x and M, x ..

Proof This follows by a simple inspection of cases. The point of using the unraveling

Nunrav instead of N here is to get unambiguous relationships — while that of adding a
copy of M, x to the left is to enforce the backward clause of bisimulation (on top of the
already established 'forward' homomorphism). n

To clinch the total argument, we again chase ¢ around the diagram:

N,yl=¢ (by construction)

Nunrav » <y> =0 (bisimulation)

Nunrav, <y> + M, x =6 (model extension!)

M, xI=0¢ (bisimulation). [ |
Proof 2 Stream-Lined Modern Version

In the meantime, simpler proofs of the above result have appeared. One version is
essentially due to Dick de Jongh (cf. Visser et al. 1994). Here is a sketch of the idea, for
the equivalent preservation theorem involving submodels and universal modal forms.
Start again from some model M, x |= univ (¢). Unravel this model to a bisimulation

equivalent M*, <x> in the form of an intransitive acyclic tree.



Claim The atomic diagram of M*, <x> can be satisfied together with ¢ .

Once this is shown, the usual argument works. From the resulting model N,y , our ¢
can be transferred to its submodel (modulo isomorphism) M, x . To prove the claim,
consider ¢ together with any finite set of (negated) atoms that are true in M™, <x> .
The worlds mentioned in the latter can be described as some finite subtree, via branches
going down all the way to the root <x>. Now, the resulting branching structure can be
described completely via some (inductively constructed) existential modal formula.
Moreover, ¢ cannot imply the (universal) negation of the latter, given the assumption
that M*, <x> |= univ (¢) . Hence ¢ can be satisfied together with this existential
description in some model N . By unraveling N once more, this model can be taken to
be an intransitive acyclic tree itself. But then, all atomic (negated) facts that were true in
the above finite submodel of M™*, <x> must also be true here. (No R-steps will be

available except those explicitly demanded, which takes care of all negations.) n

This second proof is close to the standard model-theoretic argument (cf. Chang & Keisler
1973), specialized to the modal fragment of the first-order language, more or less 'as is' .
We shall return to this observation below in a more general setting. Further evidence for
this analogy may be found with other model-theoretic preservation theorems, which may
be obtained using similar methods. One example is the Lyndon homomorphism theorem

for positive formulas (cf. van Benthem 1976). Here is a sketch for another classical case.

Example Preservation Under Unions of Chains

The first-order formulas that are preserved under unions of chains of models are precisely
those that are definable with a universal-existential (II7) prenex form. In modal logic, the
corresponding format must be extended (in the absence of prenex forms), just as above.
We only allow formulas constructed from atoms and their negations, using & , v as well
as O, 0, provided that the former never scopes over the latter. (In intuitionistic logic,
this would become the natural class of formulas with 'implication rank' 2.) The classical
argument again starts from a model M in which the univ exist consequences of ¢ hold.
Then, two models N, K are found such that (1) M is a submodel of N and N of K,
(2) M is an elementary submodel of K, (3) ¢ holds in N . Iterating this move, a chain
of models arises, in whose union ¢ holds, which fact can then be transferred to the
elementary submodel M . Inspecting the details of this standard argument, while using
the above methods, similar triples of models may be constructed for the modal language.
|

10



2.7  Analyzing the General Situation: Transfer Results

The similarities between modal logic and standard first-order logic that have come to
light so far call for more general explanation. There must be some general feature in the
above arguments that can be isolated, and used to explore the full extent of the analogy.
One obvious general point is the pervasive use of bisimulations, which are close to the
fundamental notion of 'partial isomorphism' =, between first-order models ('cut off’
at length 2). This observation may be found in van Benthem 1991, and it has inspired a
systematic investigation of model theory for basic poly-modal logic in De Rijke 1993,
whose results revolve around the 'heuristic equation'

Modal Logic : Bisimulation = Predicate Logic : Partial Isomorphism.

Another approach is to scrutinize the above arguments, and identify some key lemmas
that allow for 'transfer' between modal and classical reasoning. One such result is easily
extracted from the earlier proof of the Invariance Theorem. Two models M, x and N,y
have the same modal theory iff they possess elementary extensions which bisimulate.
(De Rijke 1993 observes that one can choose the latter to be countable ultrapowers.) Here
is another result of this kind, which may be of independent interest. It shows how one can

'upgrade’ modal equivalence to full elementary equivalence, up to bisimulation:

Lemma Two models M, x and N,y have the same modal theory if and only if
they possess bisimulations with two models M*, x and N*,y (respectively)

which are elementarily equivalent.

Proof From down to up, the assertion is immediate. Consider the downward direction.
The required models are constructed using standard Unraveling by finite sequences of the
form (x =) X1, X2, ..., Xk , where each xj41 is an R-successor of x; (1<i<k), having
'immediate succession' for their accessibility relation, and bisimulating with the original
model via their last elements. This unravels to the familiar intransitive acyclic trees.
In addition, we perform Multiplication, making sure that each node (except the root x )
gets copied infinitely many times. This can be done as follows, while maintaining a
bisimulation at each stage. First, copy each successor of x at level 1 countably many
times, and attach these (disjoint) copies to x . There is an obvious bisimulation here,
identifying copies with originals. Next, consider successors at level 2 on all branches of
the previous stage, and perform the same copying process at all level-1 worlds. Again,
there is an obvious bisimulation with the original model. Iterating this process through all

finite levels yields our intended models M*,x and N*,y.

11



Claim M+, x and N*,y are elementarily equivalent.

Proof The argument uses Ehrenfeucht Games. It suffices to show, for arbitrary finite n,
how the Similarity Player can win in any game over n rounds between these structures.
What we know at the outset is that the two roots x, y satisfy the same modal formulas.
In fact, as we shall prove separately, they even satisfy the same tense-logical formulas.
This observation will be used to describe the proper invariant for the Ehrenfeucht game.
Assume that in round i of the game, a match = has been established already between

certain finite groups of worlds in the two models which satisfies three conditions:

. if a=b, then M+, a isequivalent with N*,b
for all tense-logical formulas up to operator depth 2n-i

. if a=b and a'=b', and the distance between a and a' is at most 2n-i
then the distance between b and b' is the same on the other side, and it runs

via an isomorphic path, all of whose members have been matched at this stage.

Here, distance is measured as follows: "go from node a to node b by descending the
minimal distance needed to climb up to b again" . (This possible backward movement
forces us to employ two-sided tense-logical formulas in the description of the invariant.)

. if the distance between a and a' is greater than 2M—1 , then on the other side,

b and b' have distance greater than 2n-i to0.

The upshot of all this is a number of 'matched islands' on both sides, all lying a distance
of more than 20"-1 steps apart. Now, we have to show that this invariant can be
maintained in the next step, whatever world the Difference Player chooses. Let the next

choice be some point P in either tree.

Case 1 P has distance < 2N-i-1 o some point Q that was
already matched at the previous stage, say to some point Q'.

Consider the (unique) path of length k (say) between P and Q, and attach complete
tense-logical descriptions & to its nodes up to operator depth 2N-i=1 | This path may

then be described, from the perspective of Q, by a tense-logical formula of the form

PAST (8; & PAST (... & PAST (; & FUT (0j+1 & ... & FUT (&) ),
where Oy is the full 2N-i-l_description in tense logic of the point P .

12



The total operator depth of this formula is at most 2N-i=1 (being the length of the path) +
2N-i-1 (the quality of the descriptions at its nodes), which is at most 2N-i . Now, at the
previous stage 1. Q and Q' agreed on tense-logical formulas up to the latter depth.
Hence this path description is also true at Q', and we can find corresponding worlds on
the other side, making the two paths isomorphic as required by our invariant, while also

achieving the right degree of tense-logical equivalence.
Case 2 P lies at distance > 2N-i=1 from all previously matched points.

In this case, take the unique path from the root to P . Describe that path completely as
before, with node descriptions up to level 2N-i-1 . The resulting tense-logical formula
may be of high complexity (since there is no bound on the path length), but since the two
roots agree on all tense-logical formulas. there must be a similar path on the other side,
whose end-point is an appropriate match for P. Moreover, this path can be chosen so as
to remain at a suitable distance from all nodes in already matched regions. because of the
Multiplication of nodes (this is the only point where we use this feature). Thus, in this

case too, the above invariant is maintained.

Finally, after n rounds, this invariant will lead to a partial isomorphism, which is a win
for the Similarity Player. (To get a concrete feel for the strategy, compare two modally
equivalent trees where one has an infinite branch and the other does not. This example
also shows that we cannot improve our Lemma to the existence of a bisimulation between

the unraveled multiplied models.) To wrap things up, it remains to prove the announced

Sublemma If the roots of two unraveled modal models have the same modal theory,
then they also have the same tense-logical theory (in the language extended with
a modal operator for "past").

Proof It suffices to observe a number of tense-logical validities on trees like this. First:
FUT (PASTo & B) <> o & FUT FUT (- PAST O & ) <> — o & FUTJ

As a result. using some standard modal manipulations, every formula is equivalent to one
without future operators scoping over past ones. This just leaves compounds of 'pure
future' (i.e., modal) formulas combined using — . & and PAST . The latter can still be

simplified using two more valid equivalences:

PAST (0. & B) <> PAST o & PAST 3 PAST — O ¢> — PAST o0 & PAST true

13



As a result, every formula is equivalent to a Boolean combination of formulas PAST! ¢
(with 1 repetitions) where ¢ is purely modal. But then, the roots must agree on all tense-
logical formulas. They already agreed on all modal formulas, and they will both reject
any PAST formula (lacking predecessors). |

Using similar techniques of modal unraveling plus Ehrenfeucht Games, one can also
show a related transfer result. Two models M, x and N,y bisimulate if and only if

their multiplied unraveled versions are partially isomorphic .

2.8  Analyzing the General Situation: Predictions

Finally, as to the full extent of the analogies between modal logic and classical logic, let
us risk a bold generalization. The set of all predicate-logical formulas may be viewed as
the domain of a ('meta-")model which carries some natural structure. For instance, meta-
theorems like Interpolation are themselves (I1) first-order statements about this model,
in the following similarity type: one binary relation of "semantic consequence”, and
another binary relation of "vocabulary inclusion". (A closely related meta-model has been
investigated in Mason 1985. The complete first-order meta-theory of propositional logic
turned out to be effectively equivalent to True Arithmetic — thereby saving the logical
profession from rapid extinction.) Similar observations can be made concerning other
preservation theorems. For instance, the Los-Tarski Theorem can be restated as an
equivalence between (1) ¢ |= (®)A (i.e., ¢ implies its own relativization to some new
unary predicate A ) and (2) the existence of some universal formula equivalent to ¢ .
Both assertions involve some slight expansion of the above meta-model to include further
predicates encoding 'elementary syntax' into the similarity type. Thus formulated, the
Los-Tarski theorem becomes a simple IIp-sentence, too. Now, note that the modal
fragment is a submodel of at least the first of these predicate-logical meta-models, in an
obvious way. (With the second one, we have to be more careful, as the result needs to be
restated due to the lack of modal prenex forms — though not of modal relativizations.)
In this perspective, here is a guess which would explain why one always seems able to

'witness' existential quantifiers over formulas inside the modal fragment:

Conjecture ~ The modal fragment is an elementary submodel of full predicate logic
in the first similarity type given above.

With results like this, one could decide transfer of meta-theorems between first-order

logic and modal logic by merely inspecting their form.

14



2.9  Poly-Modal Generalizations

One test for the naturalness of the above results for the basic modal language is how they
survive generalization. At least, things work very smoothly for the practically important
case of poly-modal languages with families of unary modalities Oi (ie]) , each with their
corresponding accessibility relation R; . One can virtually literally transcribe the above
theory, putting in appropriate indices. Nevertheless, subtleties do arise occasionally. For
instance, in the Interpolation Theorem, one can now also talk about the shared modalities
of the two original formulas, and an interpolant should contain only these. But then, the
above proof is incorrect as it stands. For, the amalgamation defined in Section 2.5 only
yields bisimulating projections for (relations corresponding to) the shared modalities. In
order to make the amalgamation bisimulate with the two separate models in their full
language (as is required by the final argument), one has to add copies to the amalgam
MN of those parts of M and N that branch off via non-shared successor relations, and
extend the projection via the identity map on the new parts (cf. van Benthem 1994B).

This is not a serious departure from the basic modal case, but it is not totally trivial either.

Next, we consider a more serious generalization, namely to polyadic modalities. Here,

one needs (k+1)—ary accessibility relations for each k-ary existential modality:
0 ¢1...9¢ translatesinto Ty ... yx (Rk+lx, y; . yx & &1si5k 0i (vi)

We give a quick run-down of some basic results, showing what remains the same, and
where some cosmetic changes are needed. Under translation, modal formalisms of this

kind end up in what may be called the restricted fragment of first-order logic:

« start with all unary atoms Px, and allow
¢ closure under Boolean operations for compounds with the same variable

» closure under existential quantifiers of the form
3y1 - Yo (RM*Ix, yp oy & 01 (Y1) & ... & Gn(yn)) -

Any set of restricting predicates R is allowed in the first-order language. The Restricted
Fragment turns out to inherit all attractive properties of the original modal one, via

obvious generalizations of earlier arguments (cf. van Benthem 1991, de Rijke 1993).

1 The 'restricted formulas' are precisely those first-order formulas ¢ (x) which
are invariant for bisimulation with respect to the new extended set of relations.
(One now has to find back-and-forth matches for triples R3 x, y1y2 , etcetera.)

The earlier model-theoretic proof goes through with mere notational changes.
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2 There is an adequate semantic tableau method which establishes decidability.

3 There is a complete sequent calculus axiomatization for universal validity,

whose principles may be read off from closed tableaus.

Even though there is no change in principle here, practical complexity may increase in
this proof system. For instance, the introduction rule for a binary existential modality that

emerges from the tableau calculus will now read as follows:

& ky1ox (o -{yilieX) or Bl-{8y,...0k}—{&lieX})

OOCB - <>‘Y] 1, ..., <>'Yk8k

4 Craig Interpolation holds, and it may still be proved constructively using the

sequent proof calculus, as well as model-theoretically.

S The Los-Tarski Preservation Theorem holds, by essentially the earlier argument
with bisimulation invariance and copying. This requires a notion of 'unraveling'

via suitable finite sequences for many relations at the same time.

The latter is again one of the cases where some care is needed in formulation of results.
For instance, in unraveling a triple Ra,bc , one has to keep track of the whole ternary
configuration, indicating that the step from a to b went via the triple (abc), in order to
distinguish this from a possible other situation Ra,bd . There are several notational

solutions to problems like this, which we do not elaborate here.

3 Finite Variable Fragments

3.1 The Finite Variable Hierarchy

Finite-variable fragments of first-order logic were introduced for technical reasons in
Henkin 1967. These consist of all formulas using only some fixed finite set of variables
(free or bound): say {x}, {x, y}, {X, y, z}, etcetera — but otherwise allowing arbitrary
combinations of quantifiers and connectives. An important connection with modal logic
was pointed out in Gabbay 1981. Finite operator sets generate modal languages whose
transcriptions involve only some fixed finite number of variables (free and bound). For
instance, the basic modal language can make do with two world variables only (as may
be seen by further analysis of the earlier translation, judiciously 'recycling' just X,y ),
while, e.g., the well-known temporal language with 'Since' and 'Until' uses essentially

three variables. Thus, there is a Finite Variable Hierarchy:
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5
\\ "

inside whose levels one finds modal logics of ascending expressive strength. This is a
natural division. Like the basic modal language itself, these successive levels can be
characterized via a semantic invariance property (van Benthem 1991). To state the result,
we follow the usual convention that ¢ (xi, ..., Xx) denotes a formula whose free variables
are all among ({xi, ..., Xx}. Moreover, by k-variable formulas we shall mean first-order
formulas all of whose variables (whether free or bound) are among {xi, ..., Xk} .

Theorem A first-order formula ¢ (X, ..., Xk) is equivalent to a k-variable formula

if and only if it is invariant for k-partial isomorphism.

Here, k-partial isomorphism is a cut-off version of the well-known notion of 'partial
isomorphism' from Abstract Model Theory. That is, we have a non-empty family I of
partial isomorphisms between two models M and N , which is closed under taking
restrictions to smaller domains, and where the standard Back-and-Forth properties are
now restricted to apply only to partial isomorphisms of size at most k .

Proof (A complete argument is in van Benthem 1991.) An outline is reproduced here,
for convenience. First, k-variable formulas are preserved under partial isomorphism, by a
simple induction. More precisely, one proves, for any assignment A and any partial
isomorphism IeI which is defined on the A-values for all variables xi, ..., Xk , that
M,Al=0 iff N.IcAl= ¢.

The crucial step in the induction is the quantifier case. Quantified variables are irrelevant
to the assignment, so that the relevant partial isomorphism can be restricted to size at
most k-1, whence a matching choice for the witness can be made on the opposite side.
This proves "only if". Next, "if" has a proof analogous to that of the Invariance Theorem
(cf. Section 2.2). One shows that an invariant formula ¢ (xi, ..., Xx) must be implied by
the set of all its k-variable consequences. The key step in this argument goes as before.
We find two models which are elementarily equivalent for all k-variable formulas. These
then possess w-saturated elementary extensions — for which the relation of k-elementary
equivalence itself defines a family of partial isomorphisms between tuples of objects up

to length k , which satisfies all the above requirements for k-partial isomorphism. |
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3.2  The Case For
In addition to the preceding natural semantic characterization, several arguments plead in

favour of the preceding fragmentation of first-order logic. We list a few positive features:

* Gabbay's Functional Completeness Theorem (Gabbay 1981) also shows how,
conversely, for each finite-variable level, a finite set of modal operators can be
constructed effectively whose modal language yields precisely that fragment.

* Variables are 'semantic registers', whence the Finite Variable Hierarchy provides a
natural fine-structure of expressive complexity. This leads to hierarchies of time
complexity for verification of first-order statements (Immerman 1981, 1982).

* The controlled use of more variables, free and bound, in these fragments suggests
natural 'many-dimensional completions' of modal languages (Venema 1991).

* Finite-variable fragments have also emerged naturally in other areas of mathematical
logic, such as Relational, Polyadic and Cylindric Algebra (Németi 1991), and they
are crucially involved in the formalization of set theory of Tarski and Givant 1987.

* Finite-variable fragments provide natural query languages supporting fixed-point
operators in Finite Model Theory (cf. Kolaitis and Viidnédnen 1992).

3.3  The Case Against

But there are also some negative counterpoints to the preceding observations. Notably,

* k-variable fragments have a poor proof theory. No finitely axiomatized Hilbert-style
system exists (Monk 1969), and the complexity of the necessary axiom schemes is
inevitably high (Andréka 1991).

* Craig Interpolation and Beth Definability fail (Sain 1989, Sain & Simon 1993,
Andréka, van Benthem & Németi 1993).

Our contribution to this discussion will be both critical and constructive. First, we notice
one more failure. The Los-Tarski Theorem fails for most finite-variable fragments, who
therefore lose much of the meta-theory of full first-order logic. On the other hand, we do
prove a natural modified version of the theorem, replacing submodels by a more general
(and absolute) notion of 'partial embeddings'. Finally, we note that the theorem may also
be reinstated by withdrawing to 'restricted quantifier fragments' (cf. Section 4.3 below),
or by providing finite-variable fragments with a suitable kind of 'generalized semantics'
(cf. Section 5 below). The latter move also provides a good proof theory, as well as
interpolation and definability theorems (cf. Németi 1985, Németi 1992, Andréka, van
Benthem & Németi 1994B, Marx 1994).
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3.4  Failure of the Submodel Preservation Theorem

The standard Los—Tarski Theorem trivially fails for finite-variable fragments. E.g., the
1-variable formula VxAxvVxBx is preserved under submodels, while lacking a universal
prenex form with one variable (two are needed). But the more natural conjecture is this:
a k-variable formula is preserved under submodels iff it can be defined as a k-universal
formula. Here we define k-universal formulas as all those that can be constructed in the
k-variable fragment using atoms and their negations, &, v and V . (The above formula

is 1-universal as it stands.) But this result, too, fails in finite-variable fragments.

Theorem For each k=23, the k-variable fragment contains formulas that are

preserved under submodels, while lacking any k-universal equivalent.

Proof We do the case k=3 for an illustration. The general case is completely analogous.
Let R be some 3-place relation. Define &(x) := Jyz Rxyz (' x is in the head of R"').

Consider the following first-order formula:

18I<2  ("there are at most two objects satisfying 6 ") &
(1811 v Vxx'yz (Rxyz & Rx'yz) — x=x')) ) )

This formula can be written as a purely universal prenex form (and even as a 4-universal
formula, by proper variable management.) So, ¢ is preserved under submodels. Now,

consider the following variant ® of ¢ (involving existential quantifiers):
1812 & (16I<1 v Vxyz (Rxyz — 3x ( 8(X) & — Rxyz))) ()

Claim 1 ¢ and @ are logically equivalent.

Proof This is a simple computation. In both directions, it suffices to consider the case
where there are exactly two objects satisfying 6 .'From ¢ to ®'. Assume that Rxyz.
Then there must be some x' #x in & which cannot have Rx'yz, by ¢ . This is the
required witness for the existential quantifier. ' From @® to ¢ '. Assume that Rxyz,
Rx'yz. Since &(x) , there must be some x" in O with — Rx"yz. But then, x, x" are

different, and hence, x' must be equal to one of them. The only option here is x'=x ,

since Rx'yz, = Rx"yz rules out x'=x". |
Claim 2 ® is in the 3-variable fragment.
Proof By some straightforward syntactic manipulation. n
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Now, we introduce two special models M = (D, Z), N=(D, U) for this language, where

D={0,1,2,3,4,5}
U={0,1}x{2,3}x {4,5}
Z={(,j,k)e U | i+j+k iseven}.

Claim 3 MI=®, butnot NI=d .-

Proof By direct inspection. In both cases, there are exactly two objects in 6 . Note how
the parity in the definition of Z ensures that there will be another object in & which

does not have the same 'tail'. The problem with U is that too many tails are allowed. W
Now, the counter-example is complete once we prove our final
Claim 4 Every 3-universal formula which holds in M also holdsin N.

Proof There are several methods here. One way is to use a one-sided Ehrenfeucht game
with three pebbles (cf. Immermann & Kozen 1987). Here we use another road, which will
be suggestive for later developments. Consider the set 3PI of all partial isomorphisms f
with size at most 3 between N and M , which satisfy the additional restriction that,
whenever f(a)=b,then a and b lie in the same component {0, 1}, {2, 3} or {4,5}.
We show that this family has the "Forth" property, from N to M . More precisely, let
f(a) = b and let ¢ be an arbitrary object in D . We find an object d such that the map
(f-{(@,b)}) U {(c,d)} is againin 3PI . It suffices to consider the case where c#a .
We distinguish some cases for the remaining f-arguments (after removal of the object a ).
Case 1 "c equals some existing f-argument different from a" . Then let its mate d be
the corresponding f-value. (This must yield a partial isomorphism of the right kind.)
Case 2 'c is different from all existing f-arguments". Case 2. I Suppose that c¢ is in
the same component as some existing f-argument. Then let d be the remaining
possibility in this component. (In this case, no Z- or U-relation can hold on either side
of the partial isomorphism.) Case 2.2 Suppose that c is in a different component from
the existing f-arguments. This case, too, will yield a partial isomorphism. Case 2.2.1
The other f-arguments lie in the same component, and hence no Z- or U-relations can
hold: let ¢ be its own image. Case 2.2.2 These arguments lie in different components.
Then, the choice of an image for c in its component may be made according to the parity
of the sum of the values assigned to the other arguments. (One of the two available

options will always do.) Finally, an easy induction on 3-formulas shows that
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Whenever fe 3PI, A is some assignment whose values are in the domain of f,
and o is some 3-existential statement such that N, A l=a,
then M, Aof I= ot .

This shows that all true 3-existential statements in N are also true in M , from which
the required assertion about 3-universal statements follows by duality. |

Some Remaining Questions

1) Does the Los Theorem hold for the 2-variable fragment?

(2)  Our counter-examples involve k-ary relations for k-variable fragments.
Can they also be given more uniformly employing just one binary predicate?
(We have such an example for k=3, but not for k>3.)

3) k-variable formulas that are preserved under submodels must have universal
equivalents somewhere in the finite-variable hierarchy, by the ordinary
Los-Tarski Theorem. Is there a recursive function f of k such that every
k-variable formula preserved under submodels has an f(k)-variable
universal equivalent? In particular, does the choice f(k)=k+1 work?

And what about a similar function defined over formulas?

For further information, we refer to Andréka, van Benthem & Németi 1994B, which
presents a more elaborate version of the above argument, that extends to first-order
languages without equality. Moreover, related ideas are used in Andréka, van Benthem &

Németi 1993 to construct uniform failures of Interpolation in finite-variable fragments.

3.5 Modified Preservation Theorems

The above negative argument contains the core of a positive result. (For convenience, we
shift to a dual existential formulation here.) What can still be proved is a Los-Tarski
Theorem for k-variable fragments characterizing their appropriate syntactic notion of
'k—existential definability' (in terms of atoms and their negations, &, v and 3 ) via
preservation under so-called 'k-partial embeddings', being restriction-closed non-empty
families of k-partial isomorphisms which satisfy the Forth-condition only. (The latter
notion was introduced in van Benthem 1991.) Here is the relevant result, characterizing

the class of existential formulas in the k—variable fragment model-theoretically:

Theorem A k-variable formula is k—existentially definable iff

it is preserved under k-partial embeddings.

21



Proof That existential formulas are so preserved follows by a straightforward induction.
Conversely, assume that ¢ is preserved under k-partial embeddings. Earlier kinds of
argument apply. It suffices to show that ¢ is a consequence of the set k—exist (¢) of all
k—existential logical consequences of ¢ . So, let M, A |= k—exist (¢) . Then, by familiar
reasoning, we can find a model N, B for ¢, each of whose k—existential formulas is
true in M, A . Without loss of generality, we may assume that M, A is ®-saturated.

But then, the following stipulation defines a k—partial embedding from N into M :

all partial isomorphisms f from N to M of size at most k ,
such that, for all k—existential formulas o,
if N, Al=o ,then M, Aof I= .

In proving the "Forth" clause here, one has finite approximations of the new element by
means of k—existential formulas, and then finds a simultaneous witness via Saturation.

In particular, our embedding sends the sequence of B—values on our k variables to the
corresponding A-values, whence ¢ must hold in M, A, too. ||

'Partial embedding' stands to 'submodel' as 'partial isomorphism' stands to 'isomorphism'.
That is, it is the closest 'absolute’ notion, in the sense of Abstract Model Theory.

Similar finite-variable modifications exist for other classical model-theoretic results.

3.6  Failure of the Interpolation Theorem
Other classical key properties may fail, too. Here is a simple argument to this effect.

Theorem Craig Interpolation fails in all k—variable fragments (k>2).

Proof Consider any k-variable fragment Ly , and take k unary predicates Ajy, ..., Ak .
Let the first-order formula ¢X say that (i) each A; holds for one object (this needs two
variables), (ii) all A; are disjoint (this needs one variable) and (iii) every object satisfies
at least one A; (again, one variable). Note that ¢K holds only in domains of size k . In a
similar way, one constructs a formula yk+! | using new unary predicates By, ..., Bxyq ,
true only in domains of size k+1 . Clearly ¢X |= — yk+!  with both formulas from Ly .
By Interpolation, there should be a k-variable formula o containing only identity with
oK I= o0 I= — yk+1  But this is a contradiction. For, pure identity formulas using only k

variables cannot make a diference between domains with k and with k+1 objects. M

The counter-example generalizes to first-order languages without identity, by replacing =

with a suitable equivalence relation.
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3.7  Conclusion

Finite-variable fragments, though attractive, do not explain all there is to Modal Logic.
Hence, we now turn to an alternative analysis, whose focus is restriction of quantifiers.
This alternative is not exclusive. The finite variable hierarchy can be superimposed on it

- and then, it will regain the positive properties that were shown to fail above.

4 Bounded Quantifier Fragments

4.1  The Basic Restriction Schema

Evidently, the basic modal fragment is only a subset of the full two-variable fragment,
since its syntax satisfies additional constraints. In particular, all quantifiers in translations
of modal formulas occur 'restricted’, in the forms

Jy Rxy & ¢ (y)), Vy Rxy = ¢ (y)) .

Semantically, the latter form correlates with the earlier definition of bisimulation,
explaining its particular zigzag clauses. This observation suggests another classification.
What we are dealing with are quantifier restrictions, which may be varied along various
dimensions. The general schema here is as follows:

Jdy(Ry,x & 0(x,y,2)) where X, Y, Z are finite sequences of variables.

And the question is how much can be allowed as to variable occurrences without losing
the attractive features of the basic modal logic, in particular, its decidability. We shall
take this perspective as our point of departure in a hierarchy of 'restricted' or 'bounded'
fragments of predicate logic. Some initial stages already occurred in Section 2.9 above.
For instance, polymodal logic shows that families of different restricting predicates R;
are admissible. And polyadic modal logics showed that one can allow restrictions of the
special form 3y (Rx,y & &i 0; (yi) ) without major changes in theory and practice.

We shall be concerned mainly with the following schemata in what follows:

Fragment 1 dy (Ry,x & 0 (y))
Fragment 2 Jy (Ry,x & 0 (x,y))
Fragment 3 Jdy (Ry,x & ¢ (x,y,2)).

As for the attraction of this schema, restricted formulas play a crucial role in absoluteness
in Set Theory (being called 'Ap—formulas'). The precise point of the latter analogy for

modal logic remains to be understood (cf. van Benthem 1994A for some connections).
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Let us now be a bit more precise. Our fragments are defined inside a first-order predicate
language. We start with arbitrary atoms, and allow further constructions with Boolean
operators as well as the above restricted quantifier schemata (where the R can be any
relation symbol). Many variations are possible here without affecting our main results.
Here are some. (i) The y-arguments can occur at any place in Ry, x , (ii) Boolean
compounds of restrictions, such as 'Rxy; & Rxy2', may be allowed in special cases (but
we shall see below that this is not always admissible), (iii) some restricting relations
might be forbidden to occur elsewhere as atoms, and (iv) [moving slightly, though not
essentially, beyond standard first-order logic:] restricting predicates R may be allowed
variable finite arity for their x— and y-—arguments. More problematic seems the addition
of an identity predicate. Nevertheless, in the full version Andréka, van Benthem &
Németi 1994A, we extend our decidability results to the latter case as well. Note that the
original basic modal fragment coincides with our Fragment 1 where we have only one

special binary restricting relation symbol (that can occur in restrictions only).

These fragments may be understood in various ways. Model-theoretically, it is easy to
extend the earlier notion of modal bisimulation to describe them (cf. Section 4.4 below),
which can be used to see that we have a genuine upward hierarchy of expressive strength.
But for the moment, we choose another, more combinatorial approach, which focuses on
their 'looseness' and decidability (cf. Section 2.3 above). Fragment 1 is decidable, being
still close to modal logic. Also, it is not too hard to see that Fragment 3 is undecidable.
Our main result in this Section is that the rather powerful Fragment 2 is decidable and has
a (uniform) finite model property. As we shall show, this theorem generalizes several
existing results from the modal and algebraic literature.

4.2  Decomposition of Universal Validity

One way of understanding the nature of restricted fragments is by extension of the earlier
semantic tableau analysis. The crucial point there was to find some decomposition rule
for validity of a sequent involving only existential quantifers (plus perhaps atoms) on
both sides. As a warming-up, here are two useful decomposition properties for the
original modal fragment. The first is an earlier observation:

Fact 1 Jy; Rxy1 & ¢1 (y1)), .., Tyk Rxyk & dk(yK) I=

Jy1 Rxy1 & Y1 (¥1))s - IYm RXYm & Wi (Ym))
iff for some i(15i<k) ¢; =y, ..., Ym
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This fact depended on bisimulation invariance for this language. In fact, we only need
invariance of these formulas for the generated submodels in the rooting construction.
(The latter notion admits a larger class of predicate-logical formulas as invariants.) There
is another convenient reduction for modal formulas involving different 'current worlds'
(cf. Kracht 1993 for this generalization inside modal logic itself):

Fact 2 o1 (X1), o Ok (XK) = W1 (X1), s Wk (XK)
iff for some 1 (1<i<k) ¢; (i) |= W (X))

This may be proved like Fact 1, but now, by mere disjoint union of counter-examples to
the lower sequents. Thus, Fact 2 holds for all first-order formulas that are invariant for
disjoint unions (van Benthem 1985 has a preservation theorem defining them). These

points will return below, as our modal arguments can be generalized to first-order logic.

Fragment 1 is Decidable
We start with a simple warm-up case, which is still very close to basic modal logic.

Theorem Validity of formulas in Fragment 1 is decidable.

Proof (Outline) First, we perform all possible propositional reductions in a sequent, so
that only atoms and existential quantifiers remain on both sides. Then we prove a
reduction to matrix formulas like above. The point is to glue together counter-examples
for sequents below where the quantifiers have been stripped off, so as to refute the
original sequent with quantifiers. The presence of longer sequent arguments x,y does
not make an essential difference to this construction. And neither does the presence of
arbitrary arguments y in the matrix formula (rather than the 'separated conjunctions'
employed in polyadic modal logic), provided that the former have the required invariance
property. Indeed, even when starting with 'mixed’ initial formulas 3y (Rx1x2,y & 01(y)),
dy (Rx3x1,y & ¢2(y)) and Ty (Rxa,y & ¢3(y)) followed by similarly heterogeneous
conclusions, one can just match up premise/conclusion pairs with identical sequences of
x—parameters, as there are no semantic dependencies between the behaviour of R-
successors for sequences and their subsequences. (In more specialized model classes,
however, with extra 'frame conditions' on R, this would all have to be re-checked.) |

The preceding argument actually establishes a bit more than was stated. It is easy to see

that all counter-examples constructed for non-valid formulas may be taken to be finite:

Corollary Fragment 1 has the finite model property.
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Fragment 2 is Decidable

Things become more difficult at the next level, where the parameters x can also occur in
the matrix formula (Fragment 2). For instance, here, we do have the valid consequence
dy (Rxy & — Rxy) I= Jy (Rxy & 1), but we do not have — Rxy I= L or any obvious
variant thereof. Nevertheless, several strategies are available for establishing decidability.
First, we shall extend the above direct modal reduction to deal with the quantifier
restriction schema Jy (Rx,y & ¢(x, y)) dividing up full occurrence sets of free variables.
This reduction has some limitations, however, in that we must forbid occurrences of the
relation R outside of restrictions. (On the other hand, R may be taken to allow arbitrary
finite tuples of x-arguments, while it has some fixed finite arity for its y-arguments.)
After this first argument, we shall present a second modified reduction strategy which
deals with the whole of Fragment 2, including arbitrary occurrences of R—-atoms.

First Reduction Strategy

For a start, we note a useful normal form.

Fact Every formula is equivalent to one whose immediate quantifier scope jumps,
being of the form [a=] Iy (Rx,y & ... [B=] TZZRu,z& ...)..),

always have at least one variable y from y among the parameters u .

Proof If this normal form fails somewhere, then repair this, working inside out, by

removing inner formulas outside of the scope of the outer ones — using the valid logical
equivalence o < (B & [T/Blo) v (= B & [L/B]a) . [ |

Next, we need a simple semantic fact of possible independent interest, inspired by the
earlier 'unraveling' technique for modal logic. The result may be proved via bisimulations
for Fragment 2 — but we give a direct argument here. Consider any first-order model M .
The unraveled model Mypray consists of all finite sequences of objects from M ,
with predicates defined as follows:

RX;..XkY1... Yy iff ddy ... dm : Rm last (Xp) ... last (Xg) dj ... dpy
& Yi = X17... "Xk <di>  (1£i€m)

and for all other Q ,

QX1 ..Xn iff Qm last (Xy) ... last (Xp)

Note how unraveling forces R-successors to grow in size, while encoding the route

which produced them. Here is the key semantic fact concerning this construction.

26



Lemma For all formulas ¢ = ¢ (x, ..., Xp) in the current fragment,
Muynray I= 0 [X1, ..., Xp] iff M= ¢ [last (X}), ..., last (Xp)]

Proof Use induction on the complexity of ¢ . The key step Jy (Rx,y & ¢(x,y)) runs as
follows. From Mypray to M, use the truth definition and the definition of Rypray .
Conversely, suppose that M |I= dy (Rx,y & ¢(x,y)) [last (X}), ..., last (X;)] . Then
there exist objects dj , ..., dm with Ry last (Xy), ..., last (Xy), dy , ..., dn such that
M = o(x,y) [last (Xy1), ..., last (Xp), d;, ..., dm] . Now, the following unraveled
successors of Xj, ..., Xp will ensure that Myprav I= ¢(X,y) [X1, ... Xn, Y1, ..., Yl :
set Yi = X1"... " X" <dp> (1<iSm). n

Remark Moving Upward in Evaluation

Combining the Unraveling Lemma with the earlier normal forms, we see that, for normal
forms dy (Rx,y & ¢(x,Y)), evaluation of the part 0(x,y) 'moves upward'. That is, its
truth value depends only on inspection of objects which are reachable through some finite
chain of R-steps, starting from a tuple containing some y in Yy . In particular, no

immediate R-successors of x are ever encountered during the process of evaluation.

Now, we are ready to describe the desired general reduction. Consider any first-order
consequence schema in Fragment 2 (in its current restricted form) which is of the form #

non R—atoms non R—atoms
& = V
Jdy Rx,y & ¢(x,y)) Ju (Rz,u & y(z,w))

Without loss of generality, we may assume that no atom occurs on both sides, and that
each 'parameter group' X occurs on both sides. (The latter can always be achieved by
inserting 'inert' formulas with a constant 'true’ or 'false’ matrix for these parameters). Note

that there can be more than one formula to the left (or right) for each parameter group.

Proposition A consequence # holds if and only if, for some totally disjoint choice of
variables y , we have a valid schema of the following form £:

non R—atoms non R—atoms
& aix I= Voax Vol o(x,y)
o(x, y) Y(X,y)
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Example Let the schema # to be reduced have the form displayed below:

Jy1y2 (Rxixay1y2 & 1(X1, X2, ¥1, ¥2))

& 3Jysys (Rx1x2y3y4 & 02 (X1, X2, Y3, 4))
& ysye (Rx1ysye & 3 (X1, ¥5.,¥6))

=

Jy7ys (Rx1x2y7y8 & W1 (X1, X2, Y7, ¥8))

v Jyoyi0 (Rx1ygy10 & W2 (X1, ¥9,Y10)) -

Then, its reducing schema £ described in the above Proposition will look as follows:

o1 (X1, X2, Y1, ¥2) Y1 (X1, X2, ¥1, ¥2)
& &2 (X1, X2, ¥3, Y4) I= vV Y1 (X1, X2, Y3, Y4)
& $3(x1, ¥5.96) vV Y2 (X1, ¥Y5,¥6)

Outline of a Proof for the Proposition  First, from £ to #, a simple inspection suffices.
Next, from # to £ , suppose that the reducing sequent is not valid. Then it has a
counterexample M with some assignment verifying its antecedent, while falsifying
every disjunct in its consequent. Unravel M , and choose sequence-objects for the
various y in the parameter groups y on the left which make all of them incomparable.
In particular, then, their hereditary R-successors (recall the above remark about upward
evaluation) will all be different. This gives us freedom for the following stipulation:

For each of the parameters x, let its only R-successors be the vectors of objects
for its associated y in the list of formulas to the left of # .

By previous observations, this does not affect truth values in M for matrix formulas ¢ .
Thus, this slightly modified model verifies all restricted formulas Jy (Rx,y & ¢(x, y)) to
the left of schema #, and it falsifies all formulas Ju (Rz,u & y(z, u)) on its right. |

Comments

(1) This construction depends crucially on the independence of the successor sets R[x],
even for parameter groups X that may be structurally related (say, as subsequences).
Imposing structural constraints on the relation R may affect our results. For instance,
one can easily allow permutation or contraction of x-parameters (cf. Alechina 1994), but
it is less clear what happens when some form of (generalized) transitivity is imposed.
(Here, the modal analogy with the logic K4 would still suggest decidability, though.)

(2) These reductions may also be used to measure complexity of decidability.
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Second Reduction Strategy
Next, we introduce another semantic method, which yields the desired result for our full

fragment — without the earlier syntactic proviso on restricting atoms R .
Theorem Universal validity for formulas in Fragment 2 is decidable.
As before, it will follow from the proof that Fragment 2 has the finite model property.

Proof Again, use standard propositional reductions to arrive effectively at a consequence
problem # of the following kind. As usual, the notation ' ¢(u) ' indicates that all free
variables of ¢ are among those listed in u:

atoms atoms
& = 2
Jy Rx,y & 0(x,y)) v (Szv & y(z, v))

More explicitly, this schema says that

o, dy1 (Ryy1, X1 & ¢1 (Y1, X1)) 5 - » 3¥n (Rp ¥no Xn & On (¥ns Xn))

B, 3zy (S1z1, vi & Wi (21, V1)), ..., Jzk (Sk Zk, Vk & Yk (Zk, VX)) ,

where o, B are sequences of atoms. Here, we may assume that all bound variables are

distinct from each other, and from all free variables xi, vj. Also, by earlier observations,
we can make sure that the free variables of ¢; properly overlap y; —and also for ;| z;.

Next, we collect all free variables in the preceding schema into a single sequence, say x.
For convenience, at this stage, we introduce an identity predicate = into our argument,
but only in a limited form. We fix any formula stating that the values of the variables in

y are all different from the values of the variables in the parameter sequence X :
& {—y=x1yey, xex} y#X

Then, by substituting variables and using standard reasoning with identity, we have the

following general equivalence, using new quantifiers only over objects 'disjoint from x ' :
dyd < {Jyj (yizx & ¢') | yoyi, ¢' some substituted form of ¢ } .

For instance, with x = xyx7 , the formula 3y;y; ¢ is equivalent with the disjunction of

the following variants involving substitutions: (X1, X1), 0(X1, X2), 0(X2, X1), 0(x2, X2),
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Jy (y#x1 & y#x2 & &(y, x2)), Jy (y#x1 & y#x2 & 0(y, x1)), Jy (y#x1 & y#x2 & O(x1, y)),
Jy (y#x1 & y#xz & 6(x2,y)), Iy1y2 (V1#x1 & y1#x2 & yr#x| & y2#x2 & 0(y1, ¥2)) -
Note that these variants remain inside Fragment 2. Next, we define an auxiliary notion:

Definition Let x be any sequence of variables. We say (inductively) that a formula
¢ is x-normal if ¢ is either an atom or it is of the form

Jy (y#x &Ry, z & &ie1 (=) i (y,2),

where y is distinct from x,z, R is arelation symbol, and the ¢; in the matrix are all

x—normal formulas whose free variables overlap with y .

By previous observations, any formula in Fragment 2 can be transformed algorithmically
into a Boolean combination of x—-normal formulas. Let us assume that this has been done
to the above schema # . Now, we can state our key quantifier reduction — this time,
focusing on the left hand side (recall that o, B were sequences of atoms):

Proposition  The following two statements are equivalent:
i) o &ier Jyi (yirx &Riyi i & i (yis Xi)) 1=
B, V jey Jzj (zj2x & Sjzj, Xj & Vi (24, Xj )
(i) o, yirx &Rjyi, xi & 0i (¥i, Xi ) I=

B, V jer Jzj (zj£x & Sjzj, xj & Yj (24, Xj)) , for some iel.

Proof From (ii) to (i), the implication is immediate. From (i) to (ii), suppose that no
conjunct o, yi#x & Riyi, Xi & 0i (yi, Xi)) implies the consequent. Hence, there exist
models M; with assignments s; verifying that antecedent and falsifying the consequent.
Without loss of generality, these models may be taken to be disjoint except for the objects
d assigned to the variables x , where all of them coincide. Now, let M be the union of
all models M; (‘glued together' at the x—objects). We claim that this provides a counter-
example to the implication (i), with the obvious joint assignment to all variables involved.
The crucial observation here is this: M—evaluation of x—normal formulas can only

involve one specific 'lobe' M; of the glued disjoint union. More precisely, we have this

Claim Let v be an x—normal formula whose free variables are not all in x .

Let the assignment s send X to the common objects d, and the other free
variables of y to the rest of M;. Then we have M,s|=vy iff Mjsl=wy.
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The Claim is proved by induction. The crucial quantifier case has the following shape:
Jy (y#x & Ry,z & & e (=) ;i (y,2)) . If such a formula is true in M;, then it holds
for objects (assigned to) y that are distinct from all d . Moreover, not all free variables
of the x—normal formulas ¢; are included in x (at least one variable yey must have a
free occurrence). Therefore, the inductive hypothesis applies to the ¢; : these hold in M,
and therefore, so does the whole formula. Conversely, if the above formula holds in M ,
then the objects (assigned to) y must lie inside the domain of M; . (This is because of
the true restriction Ry, z : if one of its objects occurs in some lobe, then all of them do.)
But then again, the inductive hypothesis applies to the ¢; : and we are done.

From the Claim, we see that the truth of the above separate x—normal formulas yj#x &
R;yi, xi & ;i (yi, Xij) (whose free variables are not all among x ) is preserved in going
from M; to M, whence dyj (yi#zx & Rjyi, Xj & &; (yi, Xj)) istrue in M as well.
But also, if any formula 31j (zj#x & Sjzj, Xj & Yj (24, Xj)) were to become true in M,
this can only be the case for objects e (assigned to zj ) which lie in one component M;
(in its part disjoint from the common d ) : by the definition of relations S; in a disjoint
union. Again, this will imply that the x-normal formula zj#x & Sjzj, Xj & Y (zj, Xj)

does not change its truth value in going to Mj : which contradicts its falsity there. |

In conjunction with general predicate-logical validities, the preceding Proposition allows
us to reduce any consequence problem to one with only atoms o in the antecedent
(involving free variables x ), and with atoms [ plus existential forms in the consequent
(quantifying about objects disjoint from all x ). It remains to give the 'coup de grace'.

Indeed, it is easy to see (by considering any 'minimal model' for the antecedent atoms)
that this final consequence holds iff o l= : which is trivial to decide. |

Applications will come below. We end with a negative result about our third fragment.

Fragment 3 is Undecidable
The general parametrized quantifier restriction schema Jy (Rx,y & ¢(x,y, z) ) becomes

as powerful as predicate logic itself.

Fact Predicate-logical satisfiability is effectively reducible to satisfiability in

the parametrized restriction language.

Proof The relevant reduction takes any predicate-logical sentence ¢ to its relativization
p(¢) to some unary predicate U not occurring in ¢ . p(¢) lies inside the parametrized

restriction language. It is easy to see that ¢ is satisfiable if and only if p(¢) is. |

31



4.3  Meta-Properties of Bounded Fragments

Other modal techniques from earlier sections may also be generalized to these fragments.
We will merely formulate a short list of results obtained along the above lines. (The two
question marks indicate open problems.) Detailed statements and proofs may be found in
Andréka, van Benthem & Németi 1994A.

Gentzenizable Validity Decidability Los-Tarski Interpolation
Fragment 1 + + + +
Fragment 2 + + + +
Fragment 3 - - ? ?

The first negative outcome for Fragment 3 is true in a very strong sense, as the non-finite-
axiomatizability arguments of Andréka 1991 generalize to this case. We conjecture that
the questions left open for Fragment 3 will receive positive solutions. But, the Table also
suggests further issues. In Section 3 above, we saw that the finite variable hierarchy does
not behave as well with respect to first-order logic as its modal counterpart. But this
behaviour may improve when a finite-variable hierarchy is super-imposed on restricted
quantifier fragments. In particular, we have proofs for complete finite axiomatizability,
Craig Interpolation and Los-Tarski for all k-variable levels of Fragment 2. By contrast,
one can obtain negative solutions to the above open questions for all finite—variable levels

of Fragment 3. This may be proved by suitably relativized versions of earlier results.

Example Failure of Submodel Preservation in F3.3

Consider the counter-example ¢ to the Submodel Preservation Theorem from Section 3.
Its relativization U to some new unary predicate U is in Fragment 3 . It is easy to see
that ¢U, too, is preserved under submodels. Now, suppose that it had a universal
equivalent o in the three-variable fragment of Fragment 3 . This cannot happen, because
we can now compare the two models constructed in the proof of Claim 4 in Section 3.4,
both having U as the universal predicate. There is a 3—simulation from one to the other,
which refutes the adequacy of o just as before.

44  Bounded Fragments and Bisimulation

The above fragments may be analyzed in terms of modal bisimulations. For this purpose,
one can fix the earlier Invariance Theorem as a target result, and use its model-theoretic
proof as a heuristic device for generating the appropriate notions of semantic simulation.

We omit technical details here. Here are the outcomes for this style of analysis:
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. in all cases, bisimulations will be binary relations between tuples of objects in the
two models being compared (the modal fragment made do with single objects)

. all matches between tuples correspond to partial isomorphisms
. in general, bisimulations must be closed under restrictions, in the obvious way
. the back and forth conditions reflect the existential quantifier patterns

of the fragments in a straightforward fashion (we display one side only):

Assume that two tuples a and b are already matched, then we must require
fragment 1
given any tuple ¢ R—dependent on a, one chooses some new tuple d on the
other side, matching c¢ in the bisimulation, which must be R-dependent on b
fragment 2
given any tuple ¢ R—dependent on a, one chooses a tuple d on the other side,
R-dependent on b such that the a*c and b*d match up in the bisimulation
fragment 3

here, R-restricted choices may depend on subsequences of a, b .

The crucial test, in each case, is that, in the earlier proof of the Invariance Theorem,
elementary equivalence in the relevant fragment between tuples of objects defines a
bisimulation of the appropriate kind, at least between -saturated models. The outcome

of this analysis is a sequence of Preservation Theorems, characterizing Fragments 1, 2, 3
as consisting of precisely those first-order formulas (up to logical equivalence) which are
invariant for these three types of bisimulation. Here is an application of this analysis.

Theorem Our three fragments form a properly ascending hierarchy.

Proof (1) The formula Jy (Rxy & Sxy) is in Fragment 2, but not in Fragment 1.
For, the following two models have different truth values for this formula — even though
a Fragment—1 bisimulation exists between them, consisting of the following matches

between single objects: (X, x), (¥, Y1), (¥,y2) .
y y1 y2
T T R, S R S
X X

(2) The formula Jy (Ay & — Rxy) is in Fragment 3, but not in Fragment 2 . For, it can
distinguish between the following two models (both without any R-links), even though
they admit a Fragment—2 bisimulation, consisting of only the match (x, x) :
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X X

(3) Finally, Fragment 3 is still poorer than predicate logic as a whole. For instance, the
formula VxAX is beyond it. This may be shown by the Fragment-3 bisimulation (x, Xx)

between the following two models:

y

More generally, the bounded fragments serve as a point of departure for a new hierarchy
in predicate logic, orthogonal to the finite-variable levels:

What is the natural layering here? In addition to the degrees of freedom in the above
restriction schema, one can vary the format of the restricting predicates themselves. E.g.,
Temporal Logic would typically involves "Betweenness": 3z (Rxz & Rzy & ¢(z) ) . Or,
Dynamic Logic has predicate operations, with the pattern: 3z (O (R, ...) xz & ¢ (2) ) .
Some operations O produce formulas inside our restricted fragments (e.g., sequential
composition and choice), while others lead outside of them (e.g., predicate intersection
and complement, which violate 'bisimulation invariance': cf. van Benthem 1993). Such

more expressive fragments, too, can be analyzed via our previous techniques.

The preceding results can all be specialized to Finite-Variable fragments of Bounded
fragments. For instance, it may be of interest to consider 'joint simulations' combining the

restrictions of Sections 4 and 3 . Even so, the two hierarchies seem largely orthogonal.
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5 Generalized First-Order Semantics

5.1 A Modal View of Tarski Semantics

In our discussion so far, the main impact of modal techniques on standard logic has been
the identification of first-order fragments that behave well over standard Tarski models.
But one can also turn the tables, and interpret the full language of first-order predicate
logic over generalized first-order models — where assignments (or objects) may only be
‘available' subject to certain constraints (again, regulated by certain accessibility relations
R), retaining the core of Tarski's truth definition. This proposal originates in algebraic
logic (cf. Németi 1981, 1990, 1992 on relativizations of representable algebras of logics,
with applications to the field of logic itself). This approach has been pursued since with
modal techniques as well (cf. Venema 1991, Marx 1994, van Benthem 1994B). This
second research program is not the subject of the present paper, but it is closely related in

motivation and content. Here is a brief sketch of its main features and outcomes.

Modal first-order models are triples of the form M= (S, {Rx}xevARr, I) where S is
a set of 'states’, Ry a binary relation between states for each variable x,and I is an
'interpretation function' giving a truth value to all atomic formulas Px, Rxy, Ryx, ... in
each state o . This abstract modal format turns out to be all that is needed to set up the

standard inductive truth definition for first-order logic:

M, o I= Px iff I (a, Px)
Boolean connectives as usual
M, o l=3x0 iff for some B :Ryof and M,B1=¢.

Thus, predicate logic becomes a poly-modal logic with 3x as an existential modality.
In this full generality, models may deviate considerably from the standard paradigm.
Notably, the interpretation of intuitively related atoms like Rxy and Ryx may become
completely independent. And the same holds for such related formulas as Px and JyPx .
Nevertheless, one can easily enforce such desired behaviour by additional stipulations
(cf. Andréka, Gergely & Németi 1977, Németi 1986: section on "NA", Németi 1992:
sections 7, 12, or Németi 1994: section 8). In particular, also, one might insist that the
binary relations Ry be equivalence relations, as they are in standard Tarski models. This
happens in a natural 'half-way house’, in between modal first-order models and standard
Tarski semantics, which we shall call generalized assigment models. Here S is some
family of assignments in the usual sense (not necessarily the full function space DVAR) |

while the accessibilities Ry are the standard relations =y of identity up to x-values.

35



The resulting assignment gaps have positive virtues. They model the natural phenomenon
of 'dependencies' between variables: when changes in value for one variable x may
induce, or be correlated with, changes in value for another variable y . (Examples in
natural deduction and probabilistic reasoning are in Fine 1985, van Lambalgen 1991).
Dependence cannot be modeled in standard Tarskian semantics, wich modifies values for
variables completely arbitrarily. Finally, to get an even closer approximation to the

standard first-order language, one must introduce substitutions in the models (see below).

There is a growing literature on this generalized semantics. In particular, modal first-
order models validate a 'minimal predicate logic', which is really just the minimal poly-
modal logic, with all the positive properties studied in this paper (including decidability).
On top of that lies a landscape of further calculi, all the way up to full predicate logic:
which now becomes the particular (undecidable) mathematical theory of full function-
space assignment models. The modal logic of the above generalized assignment models is
an interesting intermediate possibility (called 'cylindric-relativized-set algebras' in the
algebraic literature), which is decidable and has positive meta-properties (Los-Tarski,
Craig Interpolation). Natural extensions arise by imposing constraints on the admissible
assignments, such as 'local squareness' or the 'patchwork property' (cf. Németi 1992).
Many results on completeness, correspondence and interpolation for modal first-order
logics in this sub-classical landscape, as well as representation theorems for its-abstract
models, may be found in Németi 1992 and other papers cited above. (Cf. also van
Benthem 1994B, Marx 1994.) One novel feature of this approach is that the generalized
semantics invites the introduction of new vocabulary, reflecting distinctions not usually
found in first-order logic. Examples are irreducibly polyadic quantifiers Jy binding
tuples of variables y , or modal calculi of substitutions (cf. van Lambalgen & Simon
1994, Andréka & Németi 1994, Németi 1994, Venema 1993).

Illustration  Modal Analysis of Substitutions

For each variable x, we already have an accessibility relation Ry in modal first-order
models, corresponding to 'random assignment'. Next, we can also introduce "determinate
assignment' mirroring the syntactic operation of substitution. Here is a way of doing this.
For each pair of variables X, y , introduce a new unary modality Sxy with the intended
meaning that, for each formula ¢ of predicate logic, Sxy¢ is equivalent to the formula
[y/x]¢ in which all free occurrences of x have been replaced by y in the usual way.
That is, Sxy0 is equivalent with dx (x=y & ¢) . Now, modal first-order models will

carry extra accessibility relations Ay y , that can be subjected to the following constraints
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'corresponding with' substitution principles in the modal sense (cf. van Benthem 1984).
(1) Ay,y is a function (this reflects commutation of Sxy with the Booleans). (2) Axy is
contained in Ry (this reflects the axiom Sxy¢ — Jx¢) . (3) As a function, Ayy Axy =
Ay,y (this reflects the axiom SyySxyd <> Sxy0 ) . (4) Likewise, the substitution axiom
SxySyx® ¢ Sxyd corresponds to Axy Ay x=Ayx. (5) Finally, the interpretation function
I can be restricted to satisfy all atomic substitution laws, such as SyyRxz <> Ryz ,
etcetera. The resulting modal logic displays all the positive properties of our basic modal

logic. For generalized assignment models, these definitions become even easier.

5.2  Back-and-Forth Between Modal Logic and Predicate Logic

Comparing the main thrust of this paper and the program outlined in Section 5.1, two
main approaches emerge towards 'taming' classical first-order logic: i.e., localizing what
may be called a well-behaved decidable 'core part'. One can either use standard semantics
over non-standard language fragments, or use non-standard generalized semantics over
the full standard first-order language. The former approach is more 'syntactical' in nature,
the latter more 'semantical’. (Eventually, as so often in logic, this distinction is relative.
For instance, one can also translate 'semantic' modal discourse about the above modal
first-order models into a restricted syntactic fragment of a two-sorted first-order logic,
with direct reference to both 'individuals' and 'states'. But also conversely, ... etcetera.)
More specifically, evident technical analogies exist between existing proof methods for
generalized semantics in the sense of Section 5.1 and those of the present paper. We feel
that there is a mathematical duality lurking in the background here, largely unexplored -
which we illustrate by some simple observations. In particular, our earlier analysis of
bounded first-order fragments may be used to derive results about generalized assignment

semantics, or equivalently, about relativized cylindric algebras (i.e., Crs-models).

From Bounded Fragments to Cylindric Algebra
Consider any k-variable language L{xi, ..., Xk} . Let R be some new k-ary predicate.

We define a translation trg from k—variable formulas to restricted first-order formulas:

Global Relativization
trg (¢) arises from ¢ by relativization of all its quantifiers

to the same atom Rxj...xg

Note that the relativized images trg (¢) will even lie inside our bounded Fragment 2.
Next, we define a corresponding operation on models. Let M be any generalized

assignment model for L{xjy, ..., Xk} (as yet without the new predicate symbol R).
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Restricted Standard Models

The standard model M. is M , viewed as a standard model,

and expanded with the following interpretation for the new predicate:
R(dy, ..., dy) iff the assignment x;:=d; (1<i<k) is available in M .

The purpose of this construction shows in the following fact.

Proposition For all available assignments o in M, and all formulas ¢,
M, o I= d) lff Mrest, o I= trg (¢)

Proof Induction on first-order formulas. The crucial case is that of existential quantifiers.
In particular, suppose that Myegt, 0t |= trg (3x; ¢) = 3x; (RX1..xk & trg(¢)) . Then, there
exists a satisfying k-tuple of objects in R for trg(¢) , which corresponds to an available
assignment in M which is an i-variantof o .Le., M, a I= 3x;¢. |

As a consequence, one can effectively reduce universal validity over all generalized
assignment models (i.e., in Crs) to standard validity in Fragment 2.

Corollg! |=gen‘d ¢ lff |=standard RX] Xk trg (¢)

Proof 'Only if.If ¢ has a generalized counter-example M, a, then the above model
Mies; falsifies Rxj...xg — trg (9) . 'If'. Suppose, conversely, that the latter formula has a
standard counter-example M, o . Now define a corresponding generalized model M, by
retaining only those assignments whose values for Xxi, ..., Xk stand in the relation Ry
(in particular, the falsifying assignment o itself remains available). Then ¢ is falsified
in Mg by o as above. |

This result provides a new 'modal’ proof for the following theorem (cf. Nemeti 1992).

Theorem Validity in Crs is decidable, and Crs has the finite model property.
Proof This follows from the corresponding results for Fragment 2 . |
Remark Uniform Translation

The above translation can be made to work for the whole first-order language at once,
using a slightly more complex model construction. (The idea is to assign one additional
'dummy object' to all but finitely many variables in our 'available assignments'. Cf.
Andréka, van Benthem & Németi 1994A.)
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There is more to the above analysis, however. Special classes of generalized assignment
models have arisen by imposing more specific constraints on admissible assignments.
Now, the first-order theory of such classes, too, will be decidable, as long as their
additional conditions can be stated in first-order forms translatable into Fragment 2 .
Checking some examples found in Németi 1992, we see that this analysis applies to 'Dg/

or 'Gy' . In particular, we have a new proof for the following resulit.

Theorem Universal validity is decidable on the class of generalized assignment
models which are locally square.

Proof The reason is that the requirements for being locally square are all expressible
inside Fragment 2. Here is an example of the relevant kind of formula:

Vxy (Rxy — (Ryx & Rxx & Ryy)) |

By contrast, we know that validity is undecidable in the class of generalized assignment
models satisfying the Patchwork Property. Again, this checks out. In first-order form, the
latter constraint involves statements like

Vxyzuv ((Rxyz & Ruyv)— (Rxyv & Ruyz))

Note that these are not in Fragment 2: variable inclusion holds from matrix to restriction,
but the latter is not one single atom. (This shows that we cannot allow arbitrary Boolean
combinations of restrictions in our earlier results.) This style of analysis is quite powerful,
and it can be used to predict decidability of many other combinations of algebraic axioms

on top of Crs, as long as their complete frame properties fall inside Fragment 2.

We conclude with a natural converse question. Can one also derive the behaviour of our
modal bounded fragments from algebraic results about generalized assignment models?
In particular, is there a converse reduction going from standard validity of formulas
in Fragment 2 to generalized validity of suitable formulas red(y) over generalized
assignment models? At least, the identical translation does not work here. The following

Fragment 2 formula is valid, but it is not in Crs:
Ix (Ax & Jy (Rxy & Ay)) — Ty (Ay & Ix (Rxy & Ax))

We do have some partial converse results, that work for suitably 'uniformly relativized'

formulas in Fragment 2 — but we shall leave this matter open here.
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Remark Dependency Semantics

The preceding analysis also suggests a comparison between generalized assignment
models and the 'dependency models' for generalized quantifiers Qx* ¢ proposed in van
Lambalgen 1991, Alechina & van Benthem 1993. These quantifiers are read there as
stating the existence of some object 'depending’ on the range of the assignment so far.
The two semantics are evidently related in spirit, but still they are not quite isomorphic.
For instance, generalized assignment semantics validates unrestricted Monotonicity for
the existential quantifier (i.e., 3x ¢ — 3x (pvy) ) , whereas dependency semantics does
not. (It only retains Monotonicity and Distribution with suitably 'balanced' variables.)
On the other hand, dependency semantics validates the unrestricted axiom 3x ¢ — ¢
(when x is not free in ¢ ), which does not hold on all generalized assignment models.
We briefly analyze the situation from the preceding point of view. Dependency semantics
may be said to arise from first-order logic through a 'local translation' tr; which is much
like the above 'global translation' trg , but with the following delicate difference. At each
subformula 3x; y , one only relativizes to an atom Rx where x enumerates all free
variables of the local context . This difference explains all the deviant behaviour. E.g.,
consider the effect of the two translations on the above-mentioned Monotonicity. The

global one makes this principle valid in Fragment 2, whereas the local one does not:

Vy (Vx (Ax = Bxy) — (IxAx — IxBxy))

translation trg

Rxy — Vy (Rxy —

(Vx (Rxy = (Ax = Bxy)) — (3x (Rxy & Ax) — 3x (Rxy & Bxy)))
translation trj

Yy (Ry —»

(Vx (Rxy = (Ax = Bxy)) — (3x (Rx & Ax) = 3x (Rxy & Bxy)))

Nevertheless, all our general results apply — since trj, like trg , takes first-order formulas
to formulas in Fragment 2. Therefore, we can derive the decidability result of Alechina
1994, and also, we can predict decidability for all stronger dependency logics having their
characteristic frame conditions inside Fragment 2 (cf. Alechina & van Lambalgen 1994).

Bisimulation and Ehrenfeucht Games

Next, consider basic notions of equivalence between models in the respective domains.
As was pointed out in van Benthem 1991, de Rijke 1993, bisimulation stands to modal
logic as Ehrenfeucht games (or rather, 'partial isomorphism') to standard first-order logic.

As before, comparisons in the present setting are promising but somewhat inconclusive.
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For instance, a modal bisimulation = between generalized assignment models which
relates assignments o, B only if they have the same domain, induces an obvious relation
PI between (those tuples of objects that form) the ranges of o and B . PI is a family of
partial isomorphisms. It will satisfy the usual back-and-forth extension conditions for
'partial isomorphism' iff our generalized first-order model satisfies the following Update
Postulate: 'For any object, any assignment has an extension which assigns that object to
some fresh variable'. Then, the bisimulation clause for the latter variable will do the job.
Conversely, given a partial isomorphism PI between two models, we can define a modal
bisimulation = between partial assignments over them by checking whether their ranges
are a matching pair of object tuples in PI . But perhaps, the more interesting comparison
lies in the differences. Generalized assignment models suggest a change in the standard
model-theoretic notion of partial isomorphism, using a finer-grained connection between

partial assignments (rather than flat sequences of objects) in the two models involved.

Thus, the mathematical analogies between generalized assignment models in Cylindric

Algebra and possible worlds semantics for Modal Logic have proved of evident benefit.

6 Further Directions

At various places so far, we indicated open research questions. These concerned both
technical elaboration within our framework (details of Los-Tarski theorems in Section 3,
meta-properties of further first-order fragments: cf. Section 4) and extensions to a broader
environment (e.g., mathematical connections with generalized assignment or dependency

semantics: cf. Section 5). In this last Section, we briefly mention some further directions.

6.1 Special Frame Constraints

Basic modal logic is usually enriched with special frame conditions , as with S4, S5 or
more complex systems, imposing transitivity or other natural frame conditions. How do
these additional conditions systematically affect the above picture? (Note, e.g., that the
generalized Tarski Semantics of section 5 employs, at least, S5-like frame conditions.)
What we also need to understand here is the possibility of a systematic 'trade-off’ between
'packages’ of first-order translations plus frame constraints. For instance, S5 can also be
translated faithfully without any frame constraints by dropping the accessibility
restriction on quantifiers. And more subtle examples of this phenomenon exist as well.
(Cf. the modelling for the modal logic B of all symmetric frames in van Benthem 1983.)
To complicate the picture even further, other first-order translations may be studied from

this perspective, too, such as the 'path formulas' of Ohlbach 1991.
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6.2 Infinitary Extensions
'Restriction’ works just as well in fragments of higher-order languages, such as L) or

Lwg or second-order logic. We can transfer our 'modal hierarchy' up to here:

NN /S e

Restricted

Fragment

first-order

Possible analogies to be explored lie in second-order logic (cf. Gallin 1975 on the good
behaviour of restricted 'extensional fragments') and in admissible set theory (cf. Barwise
1975). Possibly significant here is the simple folklore characterization of bisimulation
between arbitrary models via their elementary equivalence in the Le.g—version of modal
logic with arbitrary set conjunctions and disjunctions (van Benthem and Bergstra 1993).
(De Rijke 1993 present more sophisticated results, e.g., inside Ly .) Can we also

generalize other results from the above, such as the Los-Tarski Theorem?

6.3  Extended Modal Logics

What we have not considered here are enriched modal operator formalisms, in the style of
Gargov, Passy & Tinchev 1987 or de Rijke 1993, which allow both modest additions
(such as the 'difference modality') and strong extensions in expressive power (such as
temporal logics of 'since’ and 'until'). It would be of interest to extend our analysis in this
direction. This would also fit in with the move towards introducing richer vocabularies in
generalized assignment semantics, mentioned in Section 5. The important point to note

here is that our strategy of 'fragments' by no means implies logical poverty.

6.4  Alternative Semantics

There are still further alternatives in modelling first-order predicate logic which may be
relevant to our present concerns. For instance, starting from a more computational
motivation in 'dynamic semantics', Hollenberg & Vermeulen 1994 propose a stack-based
account of first-order logic which makes the latter's two-variable fragment as powerful as
the whole language. (In essence, this says that two variables over finite sequences are as
good as arbitrary finite numbers of variables over individual objects.) It remains to be

seen how our considerations fare in such sequence semantics.
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