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Abstract

In this paper we study embeddings of Heyting algebras (Ha's). It is pointed out that such
embeddings are naturally connected with Derived Rules and with propositional theories. We
consider the Ha's embeddable in the Ha of the Intuitionistic Propositional Calculus (IPC),
i.e. the free Ha on X generators, those embeddable in the Ha of Heyting’s Arithmetic (HA)
and those embeddable in the Ha of HA™*, a ‘natural’ extension of HA. We prove the follow-
ing theorems. The same Ha's on finitely many generators are embeddable in the Ha of IPC
and in the Ha of Boolean (or: Brouwerean) combinations of Z-sentences of HA. The Ha's on
finitely many generators embeddable in the Ha of IPC are finitely presented. There is a non-
recursive Ha on three generators that can be embedded in the Ha of HA. Every recursively
enumerable prime Ha is embeddable in the Ha of HA™*.

1 Preliminaries

1.1 Introduction

This paper sprung from an interest in the Heyting algebra’s (Ha’s) of Constructive arith-
metical theories. This interest was in its turn inspired by an interest in the propositional
derived rules of constructive arithmetical theories.

An approach parallel to the study of Heyting algebras of constructive theories is the
study of propositional theories faithfully interpretable in constructive theories. Consider a
sequence of arithmetic sentences Ay, ...,A, (or similarly an w-sequence of such sen-
tences). In a theory like HA (Heyting Arithmetic) these sentences are said to (faithfully)
interpret the propositional theory {B(p,...,p,) |HAFB(A,,...,A)}. Such a theory of
propositional formulas is closed under modus ponens, but not under substitution. Alter-
natively, one may consider the Lindenbaum algebra of HA (which is a Heyting algebra,
for the formal definition, see section 1.4) and its subalgebra generated by A;,...,A,. This
subalgebra and the propositional theory determine each other, of course, so, the ap-
proaches of interpretability of propositional theories in an arithmetical theory and embed-
dability of Heyting algebras as a subalgebra of the Heyting algebra of an arithmetical the-
ory are equivalent. Here we generally take the Heyting algebra point of view.



Closely connected are derived rules. If, for all Ay,...,A,, in the language of a theory
T, TEB(Ay,...,Ay) implies THC(A,, ..., A,) for some propositional B,C, then the rule
B(is----Pn)/C(py, ..., Pp) is called an admissible rule for T. It is well-known that stan-
dard theories like HA admit additional rules not derivable in intuitionistic logic, the best
known being:

-A—>BVvVC)/(-A-B)v(-A—-0) (Independence of Premise Rule)
This has as a consequence that propositional theories that are not closed under this rule
are automatically disqualified for being interpretable in the standard theories. The same
holds, of course, for Heyting algebras that do not validate the rule above in the obvious
manner.

We study and compare four specific Ha’s in some detail:

*  ¥ipc, the Ha of the Intuitionistic Propositional Calculus (IPC), in other words, the
free Ha on X generators,.

* ¥y, the Ha of Heyting’s Arithmetic (HA).

*  PHa., the Ha of BX;-sentences in HA (here BX; is the set of Boolean, or perhaps
more appropriately: Brouwerean, combinations of X;-sentences).

s Jpyax the Ha of HA¥, an arithmetical theory studied in Visser[82].

We ask ourselves which r.e. (recursively enumerable) Ha’s can be embedded in our tar-

get algebras. The restriction to recursively enumerable Ha’s is evident for finitely gener-

ated Heyting algebras, because only r.e. algebras of such a kind can be embeddable in

r.e. theories T, and quite a reasonable one in general. The answer to our question also

determines, as we will see, what the Propositional Derived Rules for the various theories

are. A reasonably complete answer has only been obtained for #p,+. All r.e. algebras of

which one could reasonably expect it, i.e. those satisfying the property of primeness

(corresponding to having the disjunction property), are embeddable in Fy,«, and, in

consequence, the admissible rules of HA™ are precisely the trivial ones, i.e. A/B is an

admissible rule of HA™ iff IPC - A —B (corollary 5.9). This property of HA* is a nice

one—and in a surprising manner enables one to prove some properties of HA itself—but

it does not seem to hold for more usual theories. Many of these algebras cannot be em-

bedded in ¥4, nor in #Hpc, since, as mentioned both these theories validate the Inde-

pendence of Premise Rule.

We will show that all Ha’s on finitely many generators embeddable in #pc are
finitely presented (i.e. are the Ha’s of finitely axiomatized IPC-theories). In contrast there
is a non-recursive (and hence not finitely presented) Ha on three generators, that can be
embedded in 4. It is an open question, whether there is a finitely presented Ha on
finitely many generators that can be embedded in ¥y, but not in #ypc. It is also open



whether HA and IPC have the same admissible rules. On the other hand, we will show
that the same Ha’s on finitely many generators are embeddable in $yyp and in Hppc. It
follows that rules validated by HA when one restricts oneself to substitutions of proposi-
tional combinations of X;-sentences, and rules validated by IPC are the same. It is open
whether 5 and #pc are isomorphic. We conjecture that they are not. We state some
sample results with the places, where they can be found:

* Any re. prime Ha € can be embedded in = (theorem 5.2).

* There are X;-sentences A and B such that the subalgebra of #y« generated by A and
B is r.e., non-recursive (corollary 5.14).

e There are X;-sentences A and B and a sentence C, such that the subalgebra of g
generated by A,B and C is r.e., non-recursive. It follows that ¥4 is non-recursive
(corollary 5.15).

* Let ¥ be a Ha on finitely many generators which is embeddable in #pc. Then ¥ is
the Ha of a finitely axiomatizable IPC-theory (theorem 2.3).

* Let ¥ be a Ha on finitely many generators. Then ¥ is embeddable in Sy 4 iff ¥ is
embeddable in #pc (theorem 6.5).

The paper is organized as follows. In section 1, we define Ha’s in the presentation most

useful to our purposes. In section 2, we introduce the notion of embedding and a con-

nected notion of propositional formulas exactly provable for sentences of a theory.

Propositional formulas with no iterations of implications on the left (NNIL formulas) turn

out to play an important role. In sections 3 and 4 necessary facts about HA, and IPC and

HA™ respectively, are given. In section 5 the above mentioned ‘r.e. universality’ of HA*

is proved. It is shown that, in consequence of the previous results, there is a non-recur-

sive Ha on two generators that can be embedded in #yyp*, whereas such an algebra could
never be embeddable in Pyyp or Hypc. The theorem that there is a non-recursive Ha on
three generators that can be embedded in 7, is an immediate consequence of this last
result. It then follows that J€yy is non-recursive. In section 6, Sy is treated. In an ap-
pendix the density of ¥ is proved for all reasonable arithmetic theories.

Technically, theorem 5.2 on the r.e. universality of HA™ can be considered as the
main theorem of the paper, but, of course, the applications to the standard theory HA are
of more general interest.
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Some of the main methods employed in this paper were invented by Volodya
Shavrukov (see Shavrukov[93]) and further developed and simplified by Domenico
Zambella (see Zambella[94]). The work of Shavrukov and Zambella concerns embed-
dings of r.e. Magari algebras (up to recently usually called Diagonalizable algebras) into
Magari algebras of Classical arithmetical theories.

A major tool of the present paper is also Pitts’s Uniform Interpolation Theorem.

1.2.1 Uniform Interpolation Theorem (Pitts[92]) For each formula A of IPC and
each list of propositional variables q there exists a uniform pre-interpolant Vq A and a
uniform post-interpolant 3q A, both containing only variables occurring in A that differ
from the ones in q, such that, for each B in IPC that does not contain q,

(i) FB—A ifandonly if FB > V(qA,

(i) FA—B if and only if F3qA —B.

1.3 The classical case
Before going on, let us briefly look at the Boolean algebras of classical arithmetical theo-
ries. The Boolean algebras of all consistent r.e. arithmetical theories extending Q are iso-
morphic to the free Boolean algebra on X, generators, i.e. to the Boolean algebra Bcpc
of the Classical Propositional Calculus (CPC). As far as we can trace it this result is
folklore. It follows from three observations. First, the Boolean algebras of all consistent
r.e. arithmetical theories extending Q are countably infinite and (by Rosser’s Theorem,
see the appendix for some more details) atomless. Second, Bcpc is countably infinite
and atomless. Third: all countably infinite atomless Boolean algebras are isomorphic.

It is not difficult to show that every countable Boolean algebra can be embedded into

RBepc

1.4 Heyting algebras

A Heyting algebra (Ha) ¥ is a structure (H,<,A,v, L, T,—), where (H,<,A,v, L, T)is
a lattice with bottom L and top T, so that x<y holds if and only if xvy=y, and - is a
binary operation satisfying x Ay<z iff x<y —z. We demand that # is non-trivial, i.e. that
H contains at least two elements. It is easily seen that, if a partial order can be extended to



a Ha, such an extension is unique. Ha’s can be shown to be distributive lattices. Con-
versely, every finite distributive lattice determines a Heyting algebra. There are many
good sources for Ha’s. We just mention Troelstra & van Dalen[88b].

The point of the present subsection is to clear up the connection between Ha’s and
propositional theories, to make precise what it means for a Ha to be r.e. or recursive and
to give a simple condition on Ha’s to be used later to decide that certain Ha’s are not re-

cursive.

1.4.1 Definition We will write:
e X = x—1,
* X©Yy : EX=>y)A(Y—X),
e HEAX) & AX)=T,
where A is a polynomial in A,V, L, T,— and X is a sequence of elements of #.
e fiH=H & fisanembedding of ¥ into K
#H=H & fH=NH forsomef
e H=H © H=HandH=%

Clearly, = is a preorder on Ha’s with induced equivalence relation =.

1.4.2 Example Equivalent Ha’s need not be isomorphic.

It is easily seen that any linear order with endpoints determines a Ha; one defines
x—y =T if x <y, and x> y=y if y<x. Moreover, an embedding of linear orderings de-
termines an embedding of Ha’s. Consider the algebras given by the real interval [0, 1] and
by [0, 1/,]U{1}. These algebras are equivalent but not isomorphic.

Let T be any consistent theory in constructive or predicate logic. We take € to be the
obvious Ha given by the T-provable equivalence classes. Sometimes we will consider
only equivalence classes of a subset X of the language of T which is closed under the
propositional connectives. In this case we write #(X). In this manner, we can go from
theory to algebra. Obviously, it is sometimes natural to go back and recover theories from
algebras. We introduce some notions relevant to this motion, which is executed by

equipping the algebra with a set of generators.



1.4.3 Definition

* A numbered Ha ¥ is a pair ( f, %), where
(1) f is a function (not necessarily injective) from, either n={0,...,n—1}, or w, to Hg;
(ii) ¥ is generated by the range of f.

* A numbered Ha is finitely gripped if dom(f) is finite.

* %, is the language of IPC if v=w, and the language of IPC restricted to py, ..., pp.1 if
v=n. We often write £ for &,

* ForAe gdom(f)’ FHE=A = ¥H=A[f], where A[f] is the result of substituting f(i) for
p; in A (for each relevant i). It is pleasant to use = also when A contains p; for
j&dom(f); in this case we substitute T for p;.

*  Th(%) := {Ac Ljomep | HFA}.

1.4.4 Fact Let % =(f, %) be a numbered Ha. Then ¥ is isomorphic to Hh(Te)-

1.4.5 Definition

* A numbered Ha ¥ is r.e. (recursive) if Th(%) is r.e. (recursive).

* A Haisr.e. (recursive) if it can be extended to an r.e. (recursive) numbered Ha.
* A numbered Ha % is finitely presented if Th(F) is finitely axiomatizable

In other words, the recursiveness or recursive enumerability of numbered Ha’s is reduced
the theories associated with them, and Ha’s themselves are considered to be recursive or
r.e. if they are so with some designated generators. Note that the Ha of an r.e. (recursive)
theory is r.e. (recursive).

1.4.6 Example Let #py:=(f,%p,), where f(i) is the equivalence class of an arithmeti-
cal sentence A if i is the Godelnumber of A, and f(i) is T if i is not the Godelnumber of
an arithmetical sentence. Let % cpc:=(g, #cpc), where g(i) is the equivalence class of p;.
Then Fp, is r.e., non-recursive and ¥ cpc is recursive. This is to be contrasted with the

fact that, by section 1.3, #p, and #Hpc are isomorphic and hence py is recursive.

1.4.7 Lemma Suppose # is r.e. (recursive) and suppose =%, where I is an Ha on
finitely many generators. Then any numbered finitely gripped Ha (f,X) is r.e. (recur-
sive).

Proof: If ¥ is recursive or r.e., then, for some choice of generators, the theory is recur-
sive (r.e.). The finite set of generators designated for J{ by f has a finite number of de-

scriptions in terms of those generators and, hence their theory is also recursive (r.e.). QO



Lemma 1.4.7 will be used to conclude that certain Ha’s cannot be recursive from the exis-
tence of some non-recursive finitely gripped numbered Ha that happens to be embeddable
in them. The next corollary clarifies the issue somewhat further.

1.4.8 Corollary If (f,J) and (g,X) are both finitely gripped, then (f, ) is recursive
(r.e.) if and only if (g, X) is recursive (r.e.).
Proof: Apply lemma 1.4.7 with J{ for 7€. a

1.4.9 Definition Let T be any theory and let f be a function from the propositional
variables to the language of T. We write A[f] for the result of substituting the f(p;) for p;
in A. Define:

*  AETB:© Vf(if THA[f], then T-B[f]).

We say that the inference from A to B is an IPC-admissible rule for T.

Since all admissible rules considered in this paper are IPC-admissible we will suppress
the ‘IPC’. (Note that we could easily adapt the definition of an admissible rule to Heyting
algebras instead of theories.) The IPC-admissible rules are studied in detail by V.V. Ry-
bakov. A good reference is Rybakov[92], where it is shown that the IPC-admissible rules
for IPC are decidable. The following fact lays down the exact relationship of numbered
Ha’s with admissible rules.

1.4.10 Fact AFpB if and only if for each (f,J) with ¥ embeddable in ¥, if
(L) =A, then (f, ) =B.

Example 1.4.2 is an indication of the fact that many properties of Ha’s are not captured
by embeddability results. Properties of this kind are not the main subject of our paper, but
they merit some attention in passing. In particular, many such properties of the Boolean
algebra of classical arithmetical theories can be generalized to the constructive case. An
example is the property of density. A proof that Heyting algebras of standard theories are

dense is given in an appendix.

2 Embeddings into free Heyting algebras

Every Ha on countably many generators is the homomorphic image of #pc. In other
words, it is the Ha of some theory in IPC. On the other hand, not every Ha on countably



many generators can be embedded into ¥ypc. First of all, #pc is prime, i.e.,
#H1pc Exvy implies #pc Ex or Hypc Yy, or, in other words, IPC has the disjunction
property. Clearly, subalgebras inherit primeness. In this section we illustrate that many
countable prime Ha’s are not embeddable in #jpc, even some that are embeddable in
# 1A, thus showing up some distinctions between these algebras. We provide some in-
formation about the Ha’s on finitely many generators that are embeddable in #pc. How-
ever, the problem of giving a neat characterization of the algebras embeddable in #pc is
still open.

Whenever ‘+’ is used without exhibiting a theory we intend it to be read as provabil-
ity in IPC.

2.1 Example There are many non-trivial admissible rules for IPC. For example:

* (==A—>A)>AvV-A/—-—Av-A (De Jongh[82])

e =A->BvC/(=A—-B)v(-A—-0C) (Independence of Premise Rule)
This means that every embeddable algebra # will satisfy:

o HE(=-x—>X)—>>xVv-x implies # F—-—xVv—-Xx

» HE-x—>yvzimplies  E(-x—>y)Vv(—x—2z).

2.2 Example We give an infinitary admissible rule. Let F,(p) be an enumeration of the
countably many formulas presenting the non-top elements of the Rieger-Nishimura Lat-
tice. (For information about this lattice, see e.g., Troelstra & van Dalen[88a], p49.) We
have for arbitrary A and B:

e If, forall n, F,(A)—B, then -B.

It follows that in an embedded Ha, for no x, can there be an element between all of the
F,(x) and the top. (We will illustrate in 5.12 that this rule is not admissible for HA.)
Proof: Suppose, for all n, - F(A)—B. Let p be a propositional variable not in A or B.
It follows that, for all n, - F,(p) = ((p<>A)—B). By Pitts’ theorem (1.2.1) a uniform
pre-interpolant Vq((p<> A)—B) of ((p<>A) —B) w.r.t. to the variables in this formula
other than p exists. This means that, for any formula D containing no variables of A or B,
we have FD— ((p<>A)—B) if and only if D — Vq((p<> A)—B). It follows that, for
every n, -F,(p) > Vq((p<>A)—B). By the properties of the Rieger-Nishimura lattice
(Vq((p<>A)—B) only contains p!), - Vq((p<>A)—B) and hence - (p<>A) —B. Sub-
stituting A for p we find -B. a



2.3 Theorem Every Ha on finitely many generators that is embeddable in #pc is
finitely presented, i.e. the Ha of a finitely axiomatizable IPC theory.
Proof: Suppose the generators of the algebra go to A,,...,A,. We have:

FB(Ay,...,A,) if and only if H(py & ADA .. AP AL 2By, Pn)-
We suppose that {p;,....p,}N"VAR(A;)=7 and VARB)<={py,.--.Py}. Now take the
Pittsean post-interpolant 3q((p; > ADA.. AP AY)) of (P ADA AP AL
w.r.t. the variables in the A;. The only variables of 3q((p;<>Aj) A...A (P> A)) are
the p; and we have +B(A,...,Ap) if and only if FAq((p; > A A ... A (P> A,)) —B,
ie., Aq((p1 > ADA...A(py<>A,)) axiomatizes the propositional theory of Ay,...,A,. O

2.4 Corollary Every Ha on finitely many generators that is embeddable in Fp( is re-
cursive.

Proof: This is immediate from the fact shown in the proof of theorem 2.3 that the theory
generated by Aj,...,A, is axiomatized by Iq((p; A A...A(p,<>A,)) and, as this
formula can be found effectively, even decidable in the parameters A, ..., A, Q

As we will see in 5.15, three elements can be found in #4 that generate a non-recursive
subalgebra. A fortiori, this subalgebra is not a finitely presented algebra. Thus, no ana-
logue of 2.3 holds for .

Which formulas C are axioms of Ha’s on finitely many generators that are embed-
dable in #;pc? Such C are called IPC-exactly provable. In this paper we will abbreviate
IPC-exactly provable by exact. So, C(py,...,pp) is exact if there are A,..., A, such that,
for all B(py,...,pp), FB(Ay,...,A,) if and only if -C —B. Clearly, by the above, the ex-
actly provable formulas are precisely those which are provably equivalent to Pitts formu-
las of the form Aq ((p; @A) A...A(py <> A,)) Where q contains all and only the variables
occurring in the A; and where none of the p; is in q. The notion of exactly provable for-
mula was introduced in De Jongh[82]. More discussion relating the concept of exact
provability and the notions presented here can be found in De Jongh-Chagrova[95]. In
this paper a specific instance of corollary 2.4 was proved and discussed, namely, the case
that 3q((p; @ ADA...A(pp<>A))) is provable in IPC. Sentences A,...,A, with this
property are called independent. By the remark in the proof of corollary 2.4, it follows
that the property of dependency is decidable.

We write IPC+ A for the propositional theory axiomatized by A over IPC, rather than
the logic given by A. Thus IPC+ A need not be closed under substitution.



2.5 Definition We say that A is prime if #1pc, A is prime, i.e., IPC+A is consistent
and IPC+ A has the disjunction property:

e forallB,Ce¥, if FA—>BvVvC,thenA—Bor-A—C.

In an alternative formulation, adhering to the convention that the empty disjunction is L,
A is prime if, for every finite set of formulas X, - A— /X implies 3B € X (A — B). The
notion of primeness extends to sets of formulas; a set A of formulas is also called prime if
it has the disjunction property.

We give some properties of exact formulas and provide some special classes of such
formulas. We have not as yet succeeded in providing a complete characterization of the
exact formulas in simple semantical or syntactical terms. For our purposes in section 6.2
we need to show that all prime NNIL-formulas are exact and we will restrict ourselves to
that here although our methods go a little further. The NNIL-formulas are the formulas
with No Nestings of Implications to the Left, but let us define them more precisely. We
work in a language where — and <> are defined symbols. Let Sub(A) be the set of sub-
formulas of A. We have:

* Aisin NNIL iff, for all B—Ce Sub(A), B does not contain —.
The class of NNIL-formulas is studied in Visser[85], Renardel[86], Visser[94] and
Visser et al[95].

2.6 Lemma If A is exact, then A is prime.
Proof. Just apply the disjunction property of IPC itself. a

Remember that the converse of lemma 2.6 doesn’t hold. Counterexamples are
(—=—-p—p)—>pVv—p and ~p—>qvr (see example 2.1). If f witnesses the exactness of A,

we will say that A is exact via f. Written out, this means the following:

2.7 Fact The formula A is exact via f iff for all B with only the propositional variables
of A, -B[f] if and only if - A—B.

2.8 Lemma Suppose that A is exact via f, and that B[ f] is exact via g. Then AAB is ex-

act via fog.
Proof: We have A AB —C if and only if FA — (B —C) if and only if (by fact 2.7)
(B —C)[f] if and only if - B[f]—> C[f] if and only if (by fact 2.7) - C[f1[g]. a

10



2.9 Lemma (i) p is exact via [p:=T], (ii) p— A is exact via [p:=pAAl.

Proof: (i) is trivial. We prove (ii). Without loss of generality we may assume that p does
not occur in A, since H(p—=>A)<>(p—A[p:=T]) and FpAA & (pAA[p:=T]). We have
Fp—A)->Ciff H(ppAA)—>Ciff FC[p:=pAAl. a

2.10 Definition We say that a formula is confined if it is a conjunction of formulas of
the form p—B. A formula is strictly confined if it is confined and if for any two distinct
conjuncts the antecedent variables are different. (We consider T as the empty conjunc-

tion, so T is strictly confined.)

2.11 Corollary Any confined formula is exact.

Proof: Suppose A is confined. First rewrite A to a strictly confined formula A' by
merging different conjuncts p—B and p—C to p—>B AC. Suppose A’ is of the form
(p— D) AE. This formula is equivalent to A":=(p—D[p:=T]) AE. According to lemmas
2.8,2.9, A" is exact if A*:=E[p:=(pAD[p:=T])] is. Clearly A* is again a strictly con-
fined formula with less conjuncts than A'. Repeat the procedure till all conjuncts are

eliminated and we end up with T which is exact by the identity substitution. Q
Note that it follows that confined formulas are prime.

2.12 Lemma Suppose p does not occur in A. Then A is prime if pAA is.

Proof: Suppose pAA is prime. Let X be a finite set of formulas and suppose HFA — VX,
Without loss of generality we may assume that p does not occur in X. It follows that
FpAA—V X and, hence, FpAA—B for some Be X. By substituting T for p we find
FA—B. Q

2.13 Theorem Every prime NNIL-formula is exact.

Proof: Let A be a NNIL-formula. We will reduce A to a NNIL-formula A (not neces-
sarily equivalent to A in IPC) satisfying:

(a) If A, is exact, then A is exact.

(b) Ay is confined or a prime NNIL-formula with strictly less propositional variables
than A.

If A, is confined, we are done; otherwise we keep repeating the procedure until we do get
a confined formula.

Step 1: An occurrence of L in a given formula A is trivial if it is not equal to A and if it

does not occur as conclusion of an implication. An occurrence of T in a given formula A

11



is trivial if it is not equal to A. We eliminate all trivial occurences of T and of L. Note
that the procedure may end up in T, but, by primeness, not in L.

Step 2: Write A in disjunctive normal form (treating the implications as atoms). Since A
is prime, the disjunction is non-empty and A is equivalent with one of its disjuncts, say
A'. A' is a conjunction of atoms and implications. Primeness precludes the occurrence of
L as a conjunct. So, by step 1, all atomic conjuncts of A' are propositional variables. If
the number of atoms is zero, go on to step 3. Otherwise, write A’ in the form pAC.
Clearly pAC is equivalent to pA(C[p:=T]). Put Ay:=C[p:=T ]. Note that A, is again
prime by lemma 2.12, and that A is exact if A is, by lemmas 2.8, 2.9.

Step 3: A'is a conjunction of implications. Reduce, IPC-equivalently, subformulas of
the form BAC —-D to B—(C—D) and subformulas of the form BvC —D to
(B—D)A(C—D). Repeat the procedure till no such subformulas are left. Let A be the
result. Since A' was in NNIL and since by step 1 we cannot end up with conjuncts of the
form L —(.) or T —(.), clearly A is confined. a

3 Some useful facts about IPC and HA

In this section we provide some technical preliminaries to the result of section 5. We sup-
pose the reader is familiar with Kripke models for IPC (see Troelstra & van Dalen[88a],
or Smorynski[73]). To fix notations, a Kripke model is a structure K= (K, <,k), where
K is a non-empty set of nodes, < is a partial ordering, I is the atomic forcing relation, a
relation between nodes and propositional atoms satisfying persistence, i.e., if k<k' and
k Ep, then k' Ep. The relation = can be extended to the full language of IPC in the stan-
dard way. We write K FA for Vke K.k FA. A rooted Kripke model K is a structure
(K, kg, <,F), where (K, <,k) is a Kripke model and where k)€ K is the bottom element
w.r.t. <. For any ke K, K[k] is the model (K',k,<', '), where K":={k'|k<k'} and
where <'and k' are the restrictions of < respectively F to K'.

The object of the present section is the following. In section 5, we will show that any
r.e. prime € can be embedded in #y4*, or in other words, that any r.e. prime A can be
faithfully interpreted in HA*. The proof needs as input a A that is provably prime in HA.
To get the result we want it is therefore sufficient to show that any r.e. prime A is an HA-
provably r.e. prime A, or put in a more precise way, that we can get a presentation A' of
A in HA that proves the same IPC-formulas and is provably prime. This is executed in
the present section. For the purpose we develop some Kripke model theory and formalize
it in HA.

12



3.1 Definition (The Henkin construction) A set X is adequate if it is finite, closed
under subformulas, and contains L. A set I is X-saturated if:

i I'ex

@ I'mL

(iii) if ' -A and A€ X, then AeT,

@v) if '-BvCand BvCeX, thenBel or Cel.

The Henkin model Hx has the X-saturated sets as its nodes and C as its accessibily rela-
tion. The atomic forcing in the nodes is given by I'k=p iff pe I'. We have by a standard
argument, for Ae X, I'FAiff Ael.

3.2 Definition

(i) Let X be a set of Kripke models. Then M(X), the disjoint union of %, is the model
with nodes (k, ) for ke Ke ¥ and ordering (k,K)<(m,M) :< K=M and k<m. As
atomic forcing we take (k,K)Fp 1< ki p. (In practice we will forget the second com-
ponents of the new nodes, pretending the domains to be disjoint already.)

(ii) Let K be a Kripke model. Then B(K) is the rooted model obtained by adding a new
bottom b to K and by taking bkp : & KEp. We write Glue(¥):=BM(¥) and e.g.
Glue(Z, K) for Glue(ZX U{IK}).

3.3 Push Down Lemma Let X be adequate. Suppose A is X-saturated and KEA.

Then Glue(Hx[A], K)EA.

Proof: We show, by induction on A€ X, that b= A if and only if A€A. The cases of
atoms, conjunction and disjunction are trivial. If B—Ce X and bEB—C, then AkB—C
and hence B—>CeA. Conversely, suppose B—>CeA. If b# B, we are easily done. If

bEB, then BE A, hence Ce A, and, by the Induction Hypothesis, b= C. Q

3.4 Theorem If X is adequate and A is X-saturated, then A is prime.

Proof: A is consistent by definition. Suppose A-CvD and A +C, A ¥D. Suppose,
moreover, KFA, K#C, MEA and M#D. Consider Glue(Hx[A 1, K, M). By the Push
Down Lemma we have b=A. On the other hand, by persistence, bk C and b¥D, a con-
tradiction. Q

3.5 Lemma Take the Kripke model with the set of nodes (I', X ), where X is adequate
and I' is X-saturated, and (I, X)<(A,Y)iff €A and XCY, and (I',X) Ep iff peT.
Then, for all Ae &, (I',X)= A iff I' - A. Thus, a big Henkin model is obtained.

Proof: Use theorem 3.4. a

13



We need to formalize these lemmas in HA.

3.6 Lemma HA - “IPC-provability is decidable”.
Proof: We first formalize Kripke completeness of IPC for finite models in Peano Arith-
metic (PA). Noting that the model existence theorem yields a multi-exponential bound E
on the size of the Henkin model we formulate the result as follows:
PAFVA((VIKSE(A).KEA)—>IPCHA).

The formula proved is II,, so we see, by Kreisel’s theorem that PA is I1,-con-
servative over HA, that HA-VA((VK<E(A).K EA)—>IPCH A). Since the converse is
readily verifiable in HA, we find HA-VA(VK<E(A).KEA) <> IPCA). Q

In intuitionistic theories even subsets of the singleton set are not decidable. We take how-
ever the finite sets that we are using, e.g. in the construction of the Henkin model, to be

coded as numbers and hence provably finite and decidable.

3.7 Lemma HA proves “it is decidable whether a finite set is X-saturated”, it proves
statements 3.3-3.5 (and, hence, it proves e.g. the disjunction property for IPC).

Proof: Straightforward using the convention about finite sets and lemma 3.6, the latter
e.g. to show the reductio reasoning in theorem 3.4 to be harmless. a

We assume infinite r.e. sets of formulas A to be given by a recursive increasing sequence
A; of finite approximations A; with Ay=@. Such a sequence is presented by a (provably
functional) A -formula 3(i, x) in such a way that A € A, iff a € b (where a codes A) for the
(unique) b such that 3(i,b). We also assume the sequence to be provably increasing:
HARV1,j,X,y,2(i<jAXx €yAd(1,y¥) Ad(j,z) > x €z). We will reason informally and will
have no need to refer to the formulas 8(i, x) explicitly. We fix an increasing sequence U;
of adequate sets such that for every A we can effectively find an i such that Sub(A)EU;.

3.8 Theorem Let A be a prime, r.e. set of IPC-formulas, closed under IPC-conse-
quence, represented by a sequence A;. Then we can find a presentation A; of A such that
HA proves that UA; is prime.

Proof: We reason informally in HA. Assume A to be a prime, r.e. set of IPC-formulas,
closed under IPC-consequence (for short: “A is prime, etc.”) represented by A;. We
construct two sequences A; and X; in parallel where:

i) A=UA,

(i1) Ai and X are functional and increasing,

14



(1) X, is adequate,

(iv) Ajis X;-saturated.

Before proving the theorem, we prove two claims. Define:

* Sat(n,m,k) & forall BvCeU, (if A,+BvC, then A B or A -C).

Note that, by our lemmas, HA proves that Sat is decidable.

ClaimI: HAF“A is prime, etc.” — Vn,m3k Sat(n, m, k).

ClaimII: HA“A is prime, etc.” — Vn,m3k (k>m A Sat(n, k,k)).

Proof of claim I: Since U, is finite, we can exhaustively enumerate the U-disjunctions
EVF proved by A,. Since A is prime, we can find for any such EVF an i such that A;-E
or A;+F. By the collection principle (which is provable in HA), we can find an upper
bound k to these i’s.

Proof of claim II: Define F(p) as the smallest q=p such that Sat(n,p,q). By claim L, F is
recursive. Let N:=|U,|. Consider the sequence (m,F(m),...,FN+2(m)). If this sequence
were strictly increasing, there would be N+1 different disjunctions in U,. This is im-
possible by the Pigeon Hole Principle for recursive injections and decidable finite sets,
which is verifiable in HA. Since everything in sight is decidable, we may conclude that
there is a k with 0<k<N+2 and Sat(n, k, k).

We define weakly monotonic functions f, g:®w —w and take X;:=Uyg) and
A= {BeX;lAgu B}

*  {(0):=0, g(0):=0
*  Consider Ugg)y;. In case {B € Ugp)yq|Apy B} is Uggpy,-saturated

(i.o.w. if Sat(f(n)+1,n+1,n+1)), put f(n+1):=f(n)+1, g(n+1) :=n+1.

Otherwise f(n+1):= f(n), g(n+1) := g(n).

The functions f and g are recursive, since, by lemma 3.6, IPC-provability is decidable.
Moreover, it is clear that (ii)-(iv) are satisfied. Therefore, by the formalization of theorem
3.4, every A, is prime (in the case i=0, this uses the fact that IPC is prime), and hence
UA; is prime.

We will show that both f and g tend to infinity, and hence (i), A =UA'i. Consider
any n. Let k be the smallest number such that Sat(f(n)+1,k,k) and k=n+1. Then,
evidently, the first clause of the recursion step of the definitions of f and g will be
activated at k. So, for every n, there is a k>n such that f and g increase at k. By a simple
induction it follows that f and g tend to infinity.

Surveying the proof, one sees that, actually, “A is prime,etc.”— A=UA; has been
proved in HA. a
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4 What is HA*?

In this section we describe the theory HA*. This theory was introduced in Visser{82].
The natural way to define HA™ is by a fixed point construction as HA plus the Complete-
ness Principle for HA * (Here it is essential that the construction is verifiable in HA, see
below.) The Completeness Principle can be viewed as an arithmetically interpreted modal
principle. The Completeness Principle viewed modally is:

C +FA—-DOA

The Completeness Principle for a specific theory T is:

C[T] -+ A—>DOrA

Here O stands for the formalization of provability in T. In the statement of the principle
the syntactical variable ‘A’ ranges over formulas. Free occurrences of variables inside the
box are interpreted according to the convention that CpA means Provp(t(x)), where t(X)
is the term ‘the Godelnumber of the result of substituting the Gédelnumbers of the nu-
merals of the x's for the variables in A’.

We have HA*=HA +C[HA™]. Many results on HA* and using HA™ have been obtained
by Visser[82]. We just state the one fact that we will use.

4.1 Fact Let o be the smallest class closed under atoms and all connectives,and quanti-
fiers except implication, and satisfying that, if A€ X; and Be &, then A— B e «. Note that,
modulo provable equivalence in HA, all formulas of the classical arithmetical hierarchy
(in standard form) are in . Then HA* is conservative w.r.t. § over HA.

Consider the Lob conditions.

L1 If ~A, then FOA

L2 ~0O(A—B)—>(OA—>OB)

L3 FOA—-OOA

4 FOOA—>A)>DOA

The logic i-K is given by IPC+L1, L2; i-L is i-K+L3,L4. We write i-K{P} for the ex-
tension of i-K with some principle P. Note that i-L{C} is valid for provability interpreta-
tions in HA™.

A principle closely connected to C is the Strong Lob Principle:

SL H({OA—>A)—>A

We allow free variables in SL. Note that, as a special case, we have -—-—0.L1.
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4.2 Lemma The logics i-L{C}and i-K{SL} are the same.

Proof: L4 is immediate from SL. To prove C from SL, first note that in i-K,

FA—(O(AADA)— AAOA). Applying SL to the succedent one obtains that A — AATA
and, hence, HFA—>0OA.

To prove SL from C, apply L4 to -(OA—A)—>O(OA —A) to obtain -H(OA—A)—DOA.
Since also H(OA—>A)—(JA—A), H(OA— A)— A follows. a

5 A Shavrukov Style Embedding result for HA™

Shavrukov proved that every r.e. Magari algebra satisfying an appropriate Disjunction
Property is embeddable in the Magari algebra of Peano Arithmetic. Is an analogous result
possible for HA and prime Heyting algebras? The answer must clearly be negative, since
HA is closed under non-trivial admissible rules. This closure is inherited by €y, and its
Heyting subalgebras. However, in this section we show that an analogue of Shavrukov’s
theorem can be obtained for the theory HA*, and even in such a way that the interpreta-
tion of all propositional formulas is ;. We give a number of applications, first to Fya*
of course, but in a surprising manner applications to #y can be given too. Both s *
and €y 5 are proved to be non-recursive. Before proving the theorem we briefly look at
an illustrative example to give the reader some feeling of how it is possible that an em-

bedded algebra can exclusively consist of equivalence classes of %;-sentences.

5.1 Example Consider the algebra ¥, IPC-axiomatized by ——p—p. To be precise,
H=H1pC4(——p—p)(£1)- We have that ¥ can be embedded into ypc, by e.g. [p := —p]
and that ¢ can be embedded into #ya, by e.g. [p := ~Oga L ]. On the other hand, %
cannot be embedded into ¥y by sending p to a X;-sentence, since for any X;-sentence
B, we have that HA+—--B — B implies that HA+B or HA+-B.
(For a proof of this: Let HA-——B — B with B:=3xCx, C in 4. By the independence of
premise rule for 3 in HA, HAF3x (-—B —Cx), and by the existence property for HA,
HAF—--B —Cn for some n. Depending on the truth of Cn, either HA+ Cn, or HA+—-Chn.
In the first case, HAdx Cx and hence, HAB. In the second case, HA+-B.)
We turn to HA™. Let R be the ordinary X; Rosser sentence for HA*, and S its dual, i.e.,
HA*FR ¢ Oga+~R<Oga+R
HA*FS & OgasR<Ogas—R.
Here < and < are the witness comparison relations, which are defined between formulas

having an outer existential quantifier in the following manner:
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e JxDx<3dyEy) := Ix(DxA Vy<x—Ey),

e JxDx<3dyEy) := Ix(DxAVy <x—-Ey).

We have by the ordinary Rosser property that HA* I R and HA*+ S. On the other hand,
we have that HA* - =R S and HA*I- —-S &R.

We prove the first equivalence. “«” Trivially HA*F S——R. “—” Reason in HA*. Sup-
pose —R. To prove S, by SL we may assume Oa+S. From the latter it follows that
Oga*—R and hence that RvS. Combining RvS with =R we get S.

T

0L

1

Using the above facts it is easy to see that the subalgebra of # s+ generated by R is
given by the non-equivalent X -sentences: L, R, S, OgaxL, T. This algebra is clearly
isomorphic to ¥.

The surprising fact that the particular X;-sentences occurring in the interpretations in this
example are closed under Boolean operations, i.e. under negation, will reappear in the
next theorem. We will show however in lemma 5.9 that it does not generalize to all X;-
sentences. The proof of Theorem 5.2 is a Solovay like proof (stemming from Solo-
vay[76]). It combines the proof strategy from Zambella[94] with an idea from Visser[85]
(on how to handle implication using the SL). In fact, it follows Zambella’s quite closely

modulo some inessential stylistic differences (like our use of a kind of Henkin model).

5.2 Theorem Every r.e. prime Ha ¥ can be embedded in ¥y« Moreover, each of the
equivalence classes in the range of the embedding contains a X;-sentence.

Proof: Let O stand for Ogp* and Proof for Proofyys«. Consider the following Kripke
model H, which is a variant of the big model of lemma 3.5. Its nodes are of the form
(i,U,V), where i€ {0, 1}, V is an adequate set of formulas, USV and U is V-saturated.



Define < and F as follows:

(1,U,V)<(j,W,T) :=i<j, USW, VCT and, ifi=1 then V=T,

(i,U,V)Ep:=pel.

Using lemmas 3.3 and 3.5, it is easy to see (in HA) that, for any formula A, (0,U,V)FA
iff UFA, and for AeV, (1,U,V)E=A iff U A. It follows that the relation k = A is decid-
able.

Let A; with X; enumerate a propositional theory presenting ¥, satisfying the proper-
ties promised in theorem 3.8 for A;, X;. We define a Solovay function 4 from  to the
nodes of H. A function s with s(x) called the state of h at x, is defined as (hx), with s(0)
set at 0. Until a certain Catastrophic Event happens, the state will remain O and 4 will run
upwards through nodes (0,A;,X;). As soon as (and if) the Event happens, the state will
definitively move to 1 and our function runs upwards through nodes of the form
(1,U,V). Define by the Recursion Theorem # as follows:

o [A]l:¢e Ixh(x)EA
*  h0):=(0,A,Xp)
e h(n+l):=kif

Proof(n,[A]), h(n)¥# A, k is a 1-node, hA(n)<Kk, k maximal such that k# A (%)
*  h(n+l1) :=(0,A 41, Xp41) if case (x) does not obtain and s(n)=0
*  h(n+l1) := h(n) if case (*) does not obtain and s(n)=1.
Since F is (provably in HA) decidable, it follows that 4 is a well defined recursive func-
tion.
Note that the Catastrophic Event is the first time that («) obtains. Before the Event the
function enumerates nodes representing better and better approximations of J€. After the
event it behaves like an ordinary Solovay function traveling upwards through a converse
well-founded (w.r.t. <) part of the model. We can now prove the usual lemmas of a
Solovay like proof.

5.3 Lemma
HAFx<y— h(x)<h(y)
HAF x<yAW(X)EA — h(y)EA
Proof: Obvious. Q

5.4 Lemma HAFs(x)=1— O3y h(X)<h(y).

Proof: Reason in HA. Suppose s(x)=1. The function # must have arrived at A(x) by
case (*). So, for some A and p<x, Proofga«(p,[A]), h(p+1)=h(x)¥ A. By Z-complete-
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ness we have O A(x)# A. Combining this with O3y (h(y) FA), we obtain, using lemma
5.3, the desired result. a

5.5 Lemma s(n)=0 for any n.

Proof: Suppose s(n)#0. By lemma 5.4, O3y (h(n)<h(y)). Remember that HA™ is II,-
conservative over HA. Thus, HA* will certainly satisfy Z-reflection. It follows that, for
some m, A(n)<h(m). Repeating the argument, we can construct an infinite strictly ascend-

ing chain above h(n). This contradicts s(n)#0. a

5.6 Lemma [.] commutes, modulo HA*-provability, with the propositional connec-
tives.

Proof: Reason in HA™. Clearly [L]¢<> L and [T]<> T.

Suppose [A AB]. Then for some x, h(x)= A AB. It follows that A(x)= A and h(x)=B, and
hence, [A]A[B]. Conversely, suppose [A]JA[B]. Say A(y)=A and h(z)EB. Let u be
max(y,z). Then, by lemma 5.3, A(u) A and A(u) =B and thus h(u)EA AB. We may
conclude that [AAB].

Suppose [AVvB]. Then for some x, A(x) = A vB. It follows that A(x)= A or A(x)EB, and
hence, [A]Vv[B]. Conversely, suppose [A]v[B]. Suppose e.g., h(y)EA. It is immediate
that also A(y)=AvB, and so, [A vB]. Similarly, in case h(z)B.

Suppose [A—B] and [A]. Then, for some x and y, #(x)FA —B and A(y) = A. Take u to
bemax(x,y). Clearly, #(u)=A—B and h(u)= A. Ergo, h(u)=B, and thus [B].
Conversely, suppose [A]—[B]. We show [A—B] using SL. So, we may also assume
O[A —B]. Suppose Proof(p,[A —B]). In case h(p)=A — B, we have [A —B]. Suppose
h(p)# A—B. In this case A(p+1) is a maximal k > A(p) such that ki#* A — B. It follows that
kA and k¥ B. From A(p+1)=kkE A, we have [A], and hence, by assumption, [B]. But
[B] immediately implies [A — B]. So, in both cases we find [A — B]. a

We finish the proof of theorem 5.2 by showing that A€ A if and only if HA*[A].
Suppose A€ A. Then, for some n, A€ A,. By lemma 5.5, s(n)=0, and hence,
h(n)=(0,A,,X,). Ergo, h(n)E A, and so, HA*F (h(n)EA), and thus, HA*-[A].
Conversely, suppose HA*-[A]. Say, m codes a proof of [A]. Suppose A i A.
Since A(m)=(0,A,,X,), it follows that A(m)# A. So, clause (x) would become active
and the Catastrophic Event would take place. But lemma 5.5 tells us this cannot happen at
a standard stage. Q
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An attractive alternative formulation of the proof of theorem 5.2 is to take, on the one
hand, as nodes of the Henkin model the more traditional pairs (U, V), but to work, on the
other hand, with two accessibility relations:
e (U, V)5o(W,T) & USWand VET
(U, V)x{(W,T) &= U&Wand V=T
Corresponding to these different accessibility relations we have forcing relations = and
. We define a suitably adapted Solovay function simultaneously with an auxiliary state
function. Which accessibility relation and which forcing relation is relevant, will depend
on the state. We leave it to the reader to work out more details.

Using the notation of 1.4.8, we have that the admissible rules for HA* are precisely
the trivial ones.

5.7 Corollary AE=ya*B if and only if IPCHA —B.

Proof: ‘<’ is trivial. ‘=’ Suppose IPCI+ A — B. Then there is a finite rooted Kripke
model K such that KA and K¥B. Let ¥ be the Ha of the upwards closed sets of [K.
Obviously, ¥ is finite and hence recursively enumerable. Embedding € into Jga* gives
us an interpretation f such that HA* - A[f] and HA* ¥ B[f]. a

Before giving more applications we first have two comments on the proof. The first
comment is that the proof cannot be extended in any obvious way to give a completeness
theorem for the provability logic of HA*, since nodes of our Henkin model where we
have O L (i.e. the end nodes) also satisfy the Excluded Third. But HA* does not prove
the Excluded Third from Oy «-L. We sketch a proof of this fact. First we prove a lemma
that we will need again in our second comment. It is a simple adaptation of Kripke’s re-

sult on flexible sentences to the constructive case.

5.8 Lemma Let T be any consistent extension of HA. Then there is a X;-sentence 2
such that, for no X;-sentence S, TH=(Q«>S).

Proof: Let T be a consistent extension of HA. Take €2 such that:

HA FQ < Trues(€S. O (Q2 > S)).

Here Truey is the usual truth predicate for ;-sentences and €S.Op—(Q<>S) is the first S
such that O1—(Q«>S) that we find if we run through the T-proofs. Clearly, Qe X;. Sup-
pose for some S'e X, T-—-(QS"). Let S" be the first such S' that we encounter, when
running through the T-proofs. We have HAFS"=€S'.O1—-(2<S"), and hence,
HAFQ ¢ Trueg(S"). We may conclude that HA- Q< S". But, since HACT, this implies
that T is inconsistent. Quod non. a
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5.9 Theorem For the X;-sentence Q of lemma 5.7, HA™ i Opjp« L — Qv -Q.
Proof: Take for T, in lemma 5.8, HA+ Oy L and find the corresponding Q. Note that,
by fact 4.2, HAFOgp+L <> Oy L and that HAFOga L — Qv—-Q if and only if
HA*FOgp L — Qv-Q, since Ogp L > Qv-Q e d. So, it is sufficient to show that
HA i+ Oyp L — Qv Q. Suppose, to get a contradiction, that HAF Oy L — Qv-Q. So
HA proves, for some index e, that it g-realizes this formula, HA Feq(Ogp L — Qv—Q).
Also HA proves, by the fact that Oya L is in Xy, that Oy L is is equivalent to its own r-
realizability and g-realizability and that there is a specific (Kleene-bracket) term W, , |
that realizes it, if it is realizable at all (see Troelstra & van Dalen[88a] or Troelstra[92]):

HAFOgAL > Vo 1 405A L.
This implies:

HA+0Oga L {e}(Wopa I A {e}(Wog, 1) (v —€2),

HA+Opa L F (e} (Woya 1)o = 0> D A (e} (Wi Do # 0>,

HA+Oyp L r——1£2<—>({e}(\|JDHAl))O #0.
Ergo, HA+ Oy L F—(Q¢> ({e} (W 4 1))0#0). Hence, since ({e} (W, 1)) #0 is 2y,
lemma 5.8 leads to HA+ Oy L+ L, but this contradicts the second incompleteness the-

orem. )

The [A]’s in the proof of theorem 5.2 are X;. So, our embedding is into the X-formulas
modulo HA *-provable equivalence. The surprising property of the [A]’s is that they are
closed under negation and implication (modulo HA*-provable equivalence). Our second
comment is that it is not true in general that the 2-sentences of HA™ are closed under

negation.

5.10 Corollary The Z-sentences of HA™ are not closed under negation.
Proof: This is immediate from lemma 5.7. For, take T:= HA™®. Then, for no S, we have
HA*F Q& S, since HA*F —Q > S implies HA* - —=(Q < S). o

For other applications it is necessary to find a finitely axiomatizable extension of HA to
replace HA*. Looking back one finds that the only place in the proof of theorem 5.2
where HA™ is used in an essential way is the application of SL to handle the case of im-
plication in the proof of lemma 5.5. These applications all have the form
(Oga*S—S)—S for SeX,. Let Try be the X,-truth predicate. Clearly, all applications of
SL that we need follow from the single sentence:

SLy  VxeZ((Ogpas*Trs(x)— Trg(x)) — Try(X)).
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In its turn, SL, follows from SL, since SL is a scheme in which we allow free variables.
A pleasant lazy notation for SL is VS ((Oga*S —S)—S) where the variable ‘S’ ranges
over X;-sentences. Since HA proves II,-conservativity of HA* over HA (fact 4.2), SL,
is HA-provably equivalent to VS ((OgaS—S)—S). The complexity of SL, is
V((Z;—>Z;)—Z), which is a subclass of both V(Il, »%,) and VBZ,. By the preceding
considerations we find:

5.11 Corollary Every r.e. and prime Ha can be embedded in the Ha of HA +SL,
Corollary 5.11 is the source of the applications of theorem 5.2 to HA.

5.12 Corollary The infinitary derived rule of 2.2 is not admissible for HA.

Proof: Consider the Ha ¥ obtained by adding a new top to the Rieger-Nishimura Lat-
tice (see also 2.2). This algebra ¥ is finitely generated. The generatoré are, say, the gen-
erator p of the Rieger-Nishimura lattice and the old top g. It is not difficult to see that 7€ is
recursive. We can embed # in %HA+SL0 by assigning, say, A to p and B to q. It is easy
to see that the element SLj— B is situated between the F,(A) and T in €. This is
enough for our result, but in fact it is not difficult to see that the subalgebra of #y gen-
erated by A and SLy— B is precisely . a

To get the other applications we have to get an old result into the right form.

5.13 Theorem There is an r.e., non-recursive, prime Ha on two generators.

Proof: It is sufficient to produce an infinite decidable set X of IPC-formulas in p,q such
that:

» forevery finite X, <X and every Ae X\X,,, X+ A,

* every finite X<X has the disjunction property.

The desired algebra is obtained by taking an r.e. and non-recursive subset Y of X as ax-
iomatization.

In de Jongh[80] infinite sequences are produced of finite rooted Kripke models L;, of
formulas A; (U} in de Jongh[80], p107) and of formulas B; ({; in de Jongh[80], p107)
such that:

* LiFAj e iz

* LirBjeisj

* Ajis of the form B;— C; for some C;

» Itis decidable whether a formula is of the form A;
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(This result is originally due to Jankov, see Jankov[68].)

We take X to be the set of A;. Consider a finite Xo<X and AeX\X,,. Suppose
A=A;. Then clearly L;=X, and L;# A;. Hence X+ A;.

To prove the disjunction property, consider any finite X, <X. Suppose Xy+EVF,
but Xo#E and X,# F. Let K=X, and K#E and M=X, and M#F. Let j be such that A;
is not in X,. We have, Lj=X, and L;#B;, for A;in X,. Consider Glue(I,M,L;).
Clearly, b#E and b#F. Consider any A;€X,,. Note that b#Bj, since L;# B;. Since A, is
of the form B;—C and K, M and L all force A, it follows that b= A;. We may conclude
that bE=X,, but b#E and b#F, a contradiction. a

We draw some obvious conclusions from the existence of this Ha.

5.14 Corollary There exist X;-sentences A and B such that the subalgebra of g«

generated by A and B is non-recursive.

In contrast, every finitely generated Ha embeddable in ¥ pc is decidable by corollary
2.4, and, in consequence, as we will see in theorem 6.5, every finitely generated Ha em-
beddable in Py as well.

5.15 Theorem There are X;-sentences A and B and a V((£; >X;) —>X;)-sentence C
such that the subalgebra of Jyy, generated by A,B and C is non-recursive. By 1.4.7 it
follows that #p 5 is non-recursive.

Proof: Let A and B be as in corollary 5.14, and take C:=SL,,. Let the algebra generated
by A and B in s+ be &, and let the algebra generated by A,B and C in ¥y be 4. For
all propositional D(p,q) we have that & =D(A,B) if and only if § =C—D(A,B). So, if ¢
were recursive, % would be. Quod non. a

5.16 Open Questions

(i) Are there sentences A and B, such that the subalgebra of ¥y, generated by A and B
is non-recursive?

(ii) Are there X;-sentences A and B and a sentence C of complexity less than
V((Z;—2%))—Z)) (e.g. 1), such that the subalgebra of ¥y generated by A, B and C is
non-recursive?

(iii) Is there a finitely presented Ha on finitely many generators, which is a subalgebra of
#Ha and not of Hypc? (In other words, is there a formula which is exact for HA, but not
for IPC.)
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In the next section we prove that the A and B in question (i) and the C in question (ii) can-
not be ;. The same holds for the generators in question (iii).

6 Results concerning 3;-sentences in HA

In section 5, we completely solved the question which algebras are embeddable in Fya «.
In final instance, we are, of course, more interested in embeddability in #p,. We have
not solved the embeddability question for that algebra. A partial result is given in this sec-
tion, where we restrict our attention to Brouwerian combinations of X;-sentences and
study Fyp :=Hya(BX). We show that #pc can be embedded in Fyp, and that the
same Ha’s on finitely many generators are embeddable in ¥4 and in Fppc.

6.1 Theorem J€p. is embeddable in Py 4.

Proof: Let [.] denote the embedding in theorem 5.2 of #pc into FHga+ that sends
propositional letters to X;-sentences. Let f be given by f(p) :=[p]. We show that IPC - A if
and only if HAFA[f]. From left to right is, of course, obvious. So, let us asume
HA R A[f]. This implies HA* A[f], which is nothing but HA*[A]. By theorem 5.2,
IPCHA. a

Note that theorem 6.1 is the uniform version of De Jongh’s Completeness Theorem for
IPC w.r.t. interpretations in HA, using theorem 5.2 to restrict the interpretation of the
propositional variables to Z;-sentences. We are now able to prove that embeddability in
PHA and in #pc comes down to the same thing by borrowing the following three facts
from Visser[85] (alternatively, see Visser[94], or, for 6.2 and 6.4, Visser et al[94]).

6.2 Fact For each IPC-formula A there is a formula A* in NNIL such that:
(i) All propositional variables of A* occur in A,

(ii) For all Be NNIL, IPC B — A if and only if IPC -B—A*.

Note that 6.2(ii) tells us in terms of #pc that {BeNNIL|B<A} both has and contains a
supremum A*. Thus, A* may be called the greatest lower NNIL-approximant of A.

6.3 Fact Let f assign X,-sentences to the propositional variables. Then, for any proposi-
tional A, if HAF A[f], then HA-A*[f].
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6.4 Fact The number of NNIL-formulas in py,...,py, modulo IPC-provable equiva-

lence, is finite.

6.5 Theorem Let 9€ be a Ha on finitely many generators. Then ¥ is embeddable in
FHA iff ¥ is embeddable in #ypc.

Proof: Let € be a Ha on finitely many generators. The direction from right to left fol-
lows immediately from theorem 6.1, so suppose 7€ is embeddable in o and let us
prove that ¥ is embeddable in Fypc. Let the generators of ¥ be Ay,...,A,. These gen-
erators are in their turn Boolean combinations of X;-sentences, say, Si,...,Sy,. So,
A;=B(Sy,...,Sy,) for some propositional B;. Let I be the subalgebra of Fyj, generated
by Si,...,S. Since ¥ is embedded in K by assigning B, to p;, it is sufficient to show
that I is embeddable in #ypc. Let C* be the greatest lower NNIL-approximant of an
arbitrary formula C, as promised by fact 6.2. We find by fact 6.3, that, if
HAFC(Sy,...,S,), then HAI—C*(SI,...,Sm). So, if X=C, then X =C*. Since the set of
NNIL-formulas in py,...,py, is finite (modulo IPC-provable equivalence) by fact 6.4,
there are only finitely many possible C*. Let C* be the conjunction of the C*. We find
for D in py,...,pm» K =D iff IPCFC*—D. Clearly C* is a prime NNIL-formula. By
corollary 2.11, C* is exact. Ergo X is embeddable in #pc. Q

6.6 Corollary The IPC-admissible rules for IPC are the same as the IPC-admissible
rules for HA w.r.t. substitutions involving only BX,-sentences.

6.7 Open question Is Fy, isomorphic to #Hp? We conjecture that it is not.

Appendix
The density of Heyting algebras of arithmetical theories

We first sketch a proof of the density theorem for the classical case.

Theorem A.1 The ¥ of any consistent r.e. extension T of Q (Robinson’s arithmetic)
is dense, i.e. between every two points in the Boolean algebra there is a third one.

Sketch of proof: Assume THA —B, T#B —A. Take the Rosser sentence R of
T+B+-A, i.e., something like TR <> OB A=A —>-R)<0O(BA—A—R) holds. The
element between A and B will be Av(BAR). Q
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In constructive logic one cannot even conclude from the data that T+B+—A is consistent.
Nevertheless, the correct constructive proof is just a slight variation on the classical ar-
gument.

Theorem A.2 For any consistent r.e. extension T of i-Q (the constructive version of
Robinson’s arithmetic), # 1 is dense.

Proof: Under the same circumstances as in the previous proof, define by the fixed point
theorem a sentence R such that THFR < O(BAR —>A) <0O(B—>AVR) and let
S:=0B—>AVR)<OBAR—A)and C:= Av(BAR). Clearly, THFA—C and TFC—B.
Reason in T. Assume OO(C— A). Then O(B AR — A). By the properties of witness com-
parisons this implies Rv S, i.e. (O(BAR—A)AR)v(O(BAR—>A)AS). The first disjunct
implies, by Z-completeness, O(B AR — A) A OR, and hence, OB — A). The second dis-
junct implies O(BAR— A)A OB — A VvR) and hence, O(B— A) as well. As, by assump-
tion, T#B— A, we find THFC—A.

Next, assume 0O(B — C). Then, O(B — A vR). By the properties of witness compar-
isons this implies Rv S, i.e. (O(B—>AVR)AR) V(OB —>AVR)AS). The second disjunct
implies, by X-completeness, (B — A VvR) A OS, and hence, O(B — AVvR) A O-R, from
which O(B — A) follows. The first disjunct implies O(B—>AVR)A OB AR—A), from
which O(B — A) follows as well. As by assumption T#B — A, we find T#¥B —C. Q
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