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Abstract

Quantifier-free propositional linear affine logic (i.e. linear logic with weakening) is decidable [Kop,
Laf2]. Recently, Lafont and Scedrov proved that the multiplicative fragment of second-order linear
logic is undecidable [LS]. In this paper we show that second order linear affine logic is undecidable as
well. At the same time it turns out that even its multiplicative fragment is undecidable. Moreover,
we obtain a whide class of undecidabile second order logics which lie between the Lambek calculus
(LC) and linear affine logic. The proof is based on an encoding of two-counter Minsky machines in
second order linear affine logic. The faithfulness of the encoding is proved by means of the phase
semantics.

1 Introduction and summary

Our notation. Linear logic has been introduced by Girard [Gir]. The inference rules of second order
linear logic are represented in Table 1. Linear affine logic is linear logic with the weakening rule (see
Table 2) [T]. Non-commutative linear logic is linear logic without the permutation rule [Abr91]. Note
than non-commutative linear logic has two implications: the right one and the left one (—o and o—). We
shall abbreviate second order linear logic and linear affine logic as LL2 and LLW2 correspondingly, and
the non-commutative versions of these logics as N-LL2 and N-LLW2. We shall use the abbreviations
LL, LLW, N-LL, N-LLW for the quantifier-free fragments of the corresponding logics.

There are also intuitionistic versions of all the logics mentioned above. As usual an intuitionis-
tic derivation is a derivation containing only sequents which have no more than one formula in the
consequent. The letter I stands for intuitionistic logics (e.g. ILL, ILLW and so on).

Connectives and constants of LL are divided into three groups: the multiplicatives (®, g, —o, 1 and
1), the additives (@, &, 0 and T) and the exponentials (! and ?).

In referring to linear logic fragments,

M stands for the multiplicative fragment (i.e. the fragment containing only multiplicatives),
A stands for the additive fragment (i.e. the fragment containing only additives),
E stands for the exponential fragment, (i.e. the fragment containing only exponentials).

*The research described in this publication was made possible in part by Grant No. NFQ300 from the International
Science Foundation



For example, MLL abbreviates the mult1phcat1ve fragment of LL, MALLW denotes multiplicative-
additive fragment of LLW, and so on.:

Also we shall consider the Lambek calculus (LC). In contrast to the'traditional notations for con-
nectives of LC: \, /, -, we shall use the following notations: —o and o— stands for the left and right
implications, and ® for the tensor product (see Table 3 for the inference rules). It is clear that LC C
N-ILL C ILL C LL CLLW‘ Pk B e
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Main results. Lincoln, Scedrov iand Shankar showed the undecrdablhty of IMLL2 and IMALL2 by
an embedding of LJ2 [LSS]. Lafont proved ‘the undecidability’ of MALL2 '[Lafl]. Then Lafont and
Scedrov proved that MLL2 is undecidable too [LS]. Emms showed an emlleddrng of LJ2 into N-IMLL2.
Kanovich demonstrated in [Kan2], the undecidability of N-MLL2, ¢yclic LL and second order Lambek
Calculus (LC2). On the other hand, quantifier-free linear affine log1c is decidable [Kop, Laf2]. The
decidability problem for secOnd order linear ‘affine logic remamed open :

In the current paper we. prove the undec1dab1hty of LLW2 Also we proVe that for any logic L if
LC2 C L C LLW2, then L is undecidable. In part1cular, all second-order logics mentioned above are
undecidable as well as MLLW2, MALLW2, LIW2, IMLLW2, N- MLLW2 ‘etc. The main ideas of the
proof are similar to the ideas of [LS]. Namely, we encode two-counter machines (Minsky machines) in
LC2 and LLW2. This encoding is similar to 'the encodings from [Kanl Lafl, ‘LS. In order to obtain the
faithfulness of the encoding we ‘usé (as in [Lafl, LS]) the phase;semantics, but here we need the phase
semantics for linear affine logic. . o L
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Let us recall some definitions concermng phase semant1cs [Gir, ”Laf‘2] Phase space is the triple (M, 1, K),
where M is a commutative monoid, 1 C M ahd K is a submionoid of the submonoid J (M) = {a: €
14|z € {z?}++}). For instance, K may be {1}.

Let X,Y C M, then, by deﬁmtlon

XY ={zylze X,yeY} X—OY {zeMIVmeX‘:czEY}, Xt=X-ol.

We say that X is a fact, when there is a set Y such that X = YiL It is easy to see that X is a fact
if and only if X = X “‘ it X is any subset of M then X1Lis the smallest fact containing X. By
definition, -
‘ x ®'Y‘ = (XY) , Xp¥ =(X'® Yl)
X&Y =XNY, X@Y=(Xt&yh)t
=14 T=M, 0=T%

If all atoms p are interpreted by facts p°, then for any form.ula A we can naturally define a fact A°.
Namely, * commutes with all connectwes and (Vo A[a]) is deﬁned as

can X5 a fact

where A[X]® is an ihterpretatiorl of A[oz]",i where a* = X. By ‘:def‘lnitidhi,;a formula A is satisfied, if
1€ A®. A sequent Ay,...,A, F By,..., By is satisfied, if the formula (4i'® ... ® A,) — (Bip...pBx)
is satisfied. This is equivalent to (A; ® ... ® A,)® C (Bip:..pB)".

Theorem 1 ([Gir]) If a sequent ® is derivable in MALL, then any phase space (M, 1) satisfies .
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* (pg—1) if7(:) = (-,2,5,k) and g > 0 (decrement the second counter),_

v e (kypyq) if7(i) = (—,2,5,k) and ¢ = 0 (test for zero the second counter). " Y !l‘

. /Iniother words a Minsky machine has transitions of the following types: e A e
r .
* (i,p,q) = (i,p+1,9), |

A e (ip,q) = (4,p = L'g) if p> 0
;4’,(. a0, ,, A
e (igp,g) (5P, g + 1)y B e e
e ipad) = Guprg — 1) ifa>0, - D . G e
b & b Py Q) — (k, P;0). N R o e o

The machine stops when ¢ = 0. A configuration (7,p, q) is actepted by the 'rriacflihe'if:,-' starting from
(z,p,9q), it eventually stops on (0,0, 0).

Theorem 3 (M, Lk]) There is a Mznsky machme for wzch the set of accepted conﬁgumtzons is not
¢ iecursive. \ G | bon
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~ 4 Encoding two-counter Mmsky machines g
We can _encode Minsky machines in-the following way. Let us consider two formulas:

pla] = (@ —o f) —o h,
S e [a] (a—og) —-o.€.

1
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: “'W_'e ‘constrgp’t the following infinite sets of formulas:

i ‘PAl:‘a’; Yn =1 [‘Pn I]‘ n €N,
1!) 1=0b, Yn = Plpn_1], n €N

LT AL S P o . )

Any machine configuration (z, p, q) is encoded by the followmg formula:

C; ®‘Pp ®¢q-

N \

Here a, b Cis € f, g, h are hterals An 1ncrement transmon (z p, q) — (j,p + 1,q) is encoded by the

: formura v EEEERE SRR
gt - vainle ol @5 ¢, 6 vlglal & ).
"l') i o M i
A decrement tran31t10n (z P, q) (,p ~1 q) if p > O is encoded by the formula

Va, B(ei:® plpla]] ® B +o ¢;-® plo] ® B).

And a test-for-zero transition (7,0, q) — (k;0, q) is encoded by the formula- .
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'iProof Note that the following sequents are easily derivable: A%, C F A% S1 @ AQ Sy, W + A ana
AW F A The derivation of the rule (C) is the foliowing:

AL, CH A5 T,A° C°T+Z

(cUT)
I, A*,C,C°,T F Z
(L®)
(C)4,C + (C2)° M, 44, CY,T + Z
(cuT)
SRR I,A*C®,C,T+2Z
o (L®)
B I,A*C° T+ Z
And here is the derivations of the ruies (W) and (W'):
S ®ARS,WHEA IATFHZ AT WEA ILATFZ
(CUT) (cUT)
IS AR S, W, T'F Z LAY, W T'FZ u

Lemma 4.3 For ary transition (i,p,q) —> (¢',p',7), if Tx is a formula ercoding this transition then
the sequent c; @ @, @ g, Tk - ¢y ® p @ g is derivable in LC2.

Proof It is easy to see that the following sequents are derivable in LC2:

¢i ® ¢pp ® pg, Vo, B(ci @ pla] @ B o 2; R plp[a]] @ B) F ¢; @ ppi1 @ g,
i ® pp ® g, Yo, Blei @ plpla]] ® B o c; R ple] ®B) F ¢; ®pp1 ® ¢y,
i ® o ® g, VB(ci ® pla] ® B o ck @ pla] ®B) F ¢ ® o ® g,
¢ ® Yp ® yg, Yo, Ble; @ a @ Y[B] ~o c; ® a @ Y[Y[B]]) F ¢j ® Pp ® g1,
¢ ® Yp ® 9hg, Vo, Blc; @ a @ Y[Y[B]] o c; @ a®@YP[B]) F cj ® Py ® g1,
¢ ®Pp @ o, Vol @ a®@Y[b] o ® a@Pb]) F  cx ® 1p ® o

| |

We prove the implication (i)—(ii) by induction on the length of the computation. The base of
induction holds because of the rule (W'):

co ® po ® o F co @ o ® o

(W)
co ® po @ e, (U ®T® U@,W)‘lacng-l Fco® o ® Yo

Now let us verify the induction step. If the computation has the following form:
(i,p,q) = (¢',p',4') = ... = (0,0,0)

then one can constact the following derivation:

Lemma 4.3 - induction hypothesis
ci®%®n\/}q,Tk}—ci,®%,®¢q, cir @ Qpr ®¢q,(U®T®U®W) Noi! W' co ® o ® 1o cum)
i ® 0, @y, Ti, UST QU @ W)*,C*, W'k ¢o ® o @ tho )

i ®pp @Y, URTQU,W,(URT QU QW)*,C? W' o ® o ® o )
i ®pp @Yy, URT QU @W)®,C% W' ¢y ® o @ tho (I_@)
i ®pp @Y, URTRU W), C° W'k cp ® po ® e e

u



Proof of 5.1 and 5.2 Using lemma 2.1, we can calculate ¢[a], ¢[p[a]], (cipla])t, (Cj(p[(p[a]] )+ for
any setja C M, where a = &/ U Mj;; and o/ C M; (see Table 4). ‘

*=~We prove that ¢, = {fn}UM> by induction on n. For n = —1 we have that 9%, = a® = {f_l} UM,
by de’ﬁmtlon The induction step holds because of gp[a] = {fa} UMy, for o ={fn1}U M2 The second
a,ss'ertlon of lemma 5.1 can be proved slmllarly

- Otie can see from Table 4 that (cople))t = (c cjelpla a]])* for any o # {fn 1} U Mo, Moreovér if
the increment transition (i,p,q) — (5,p + 1,q) is accepted, then (cip[e])t 2 (cJ(p[ [+ for a =

{ fn-1} U M3. Hence, the formula :

. Voo Bles ® 9lo] 8 80 ; @ iplel] 0. ,._3;

is satisfied. ‘By analogy, if the decrement transition (z,p,q) — (4,p —1,q) is accepted ‘then (cJ <p[ ])-L C
(cip[p[a]])t for @ = {fn_1} U Ma. So, the formula

Va, B(¢ ® plpla]] ® B —o ¢; @ pla] @ B)

is satisfied. Finally, if the test-for-zero transition (i,0,q) — (k,0,q) is accepted; then (crpla®])t: C
(c go[a ] )*. So the formula

ettt V(e ®plal@f o @ ld @ p)

s sat1sﬁed Clearly, all formulas encodmg transmons for the second counter are satlsﬁed as well .

Lemma 5.3 M satisfies the formula C.

\

Proof Let X be a fact! If 1 € X then X = M and X* = X°. Otherwise, XXXX C My C L, and
= (XXXX)tL = 1, because L is the least fact. In the same way X° = L. In both' cases we have
X = X5. Therefore, C is satisfied. ‘ "

Lemma 5.4 M satisfies the formula'é W, Whand U.

Proof The formulas W, W’ and U are derivable in LLW2. Hence, they are satisfied. L]

Now let us prove (1v)—>(i); It follows from (iv) and lemmas 5.2, 5.3 and 5.4 that M satisfies the
1mphcat10n o ) :

base

i ® pp ® g —0 co ® (o ® Y.

By definition cyfogo € L. Hence, (co"®-<p0 ® 1p)® = {cofogo}ll = 1, because L is the least iact.
Therefore, we have
Cifp9q.€ €(® ‘PP ®¢Q) (co ® o ® $0)* = L.

So, (i) holds. "
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