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On forcing in bounded arithmetic

Domenico Zambella®

Abstract. We present a simple and completely model-theoretic proof of
a strengthening of a theorem of Ajtai’s: the independence of the pigeon-
hole principle from IAy(R). We illustrate a method for internalizing the
notion of forcing that is both of methodological interest and technically
convenient. Qua strength, the theorem proved here corresponds to the
complexity /proof-theoretical results of [8] and [12] but a different com-
binatorics is used. Techniques inspired by Razborov [9] replace those
derived from Hastad [6]. The switching lemma formalism is replaced
with an approach that is in line with a model-theoretical framework.

1 Introduction

The (Ao-)pigeonhole principle is the assertion that there is no A¢-definable injective
map from [n+1) to [r). Its provability in IA is one of the most famous open prob-
lems of bounded arithmetic. There is a second-order version of the same question.
Can the pigeonhole principle be falsified in a second-order model of ¥§-comp? (A
theory that is, for IAy, what AC Ag is for PA.) This corresponds to asking whether
the pigeonhole principle is provable in IAg(R), where IAg(R) is the theory obtained
from IAy by adding a relation symbol R and allowing it in the induction schema
(in this form the question has been posed by Paris and Wilkie in [10]). The second-
order formulation of the question is interesting not only because of its similarity with
the first-order problem but also because X5-comp is the bottom level of a hierarchy
whose union is BA (i.e., IA¢g+y).

The second question appears to be more tractable then the original problem. A
solution has been given by Ajtai [2]. Subsequently, Krajicek, Pudldk and Woods
[8] and, independently, Pitassi, Beame and Impagliazzo [12] improved Ajtai’s result.
In Ajtai’s proof the model constructed contained only standard powers of n, while,
using the results in [8] and [12], one can construct a model where the numbers exp n°
exist for every infinitesimal rational € while it still falsifies the pigeonhole principle
between n and n+1 (notation: “expn” and “2"” are interchangeable). This is an
optimal result since the principle follows from the existence of exp n'/k where k is
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any standard number [11]. This result implies also that assuming the totality of
any Ag-definable function g(z) such that all finite iterations of g(z) are eventually
majorized by 2% does not help in proving the principle. In particular this holds for
the the functions wo(z) : = 22 and wy11(z) : = expwn(|z|) where |z| is [log(z+1)].

Our proof differs from those of [2], [8] and [12] in many respects. We prove the
result directly, dealing exclusively with formulas and with models of arithmetic. The
proof in [2] makes a detour via Boolean circuits while in [8] and [12] the problem
is translated in a purely complexity/proof-theoretical formalism. (The connection
between bounded arithmetic and propositional proof systems has been first pointed
out in [10]. See, e.g., Krajiek’s monograph [7] for a complete account.) Another
difference involve the combinatorial methods used: [8] and [12] apply a variation of
Hastad switching lemma that is proved with the probabilistic techniques developed
in [6]. In place of these, we apply lighter methods inspired by some recent work
of Razborov [9]. Finally, we base the argument of forcing on the notion of locally
internal set introduced in Section 4. This allows a more direct formalization of
forcing.

2 Preliminaries

The language L is that of second-order arithmetic. It consists of two constants:
0, 1, two binary functions: +, -, and two binary relations: <, €. Variables are
of two sorts: first-order, z,v, z,... and second-order, X,Y, Z,... that are meant to
range over numbers and, respectively, finite sets of numbers. The semantics of this
language is the usual one but for the following interpretations: X <y holds when all
elements of X are less than y. Note that terms are just polynomial on first-order
variables.

A formula is in X} if all of its quantifiers are first-order and bounded, that is, they
appear in the context: (Qz€X)p or (Qr<t)e where Q is either V or 3 and ¢ is
a term in which z does not occur. In this paper we concentrate on the class Xf.
This class is the ground level of a hierarchy of formulas, ¥¥, II? that is obtained by
counting the alternations of second-order bounded quantifiers: (QX <t)p. For i>0
this hierarchy coincides with the polynomial time hierarchy. In complexity theory

> corresponds to (a uniform version of) ACy. The theory X§-comp is axiomatized
by



o the axioms of Robinson arithmetic,

o extensionality: A=B ¢ Vz (z€A <> z€B)

o the definition of “<”: A<a > (Vz€A)(z<a), :

o the least number principle: A# 0 — (3z€A)(Vy<z)(y¢A),

o the axiom of finiteness: Jz (A<z),

o comprehension for all Y5-formulas: (3X <a)(Vz<a) [z€X < o(z)]

This theory is the ground level of a hierarchy of theories that is obtained extending
the schema of comprehension to X¢ formulas. We will not consider higher levels
of this hierarchy here but we refer the reader to [15]. Observe that Xf-comp is a
conservative extension of IAy. In fact every model of A, or of IA¢(R) can be
expanded to a model of XE-comp (the expansion is canonical: add all finite Ao,
respectively Ag(R), definable sets). So, there is no essential difference if we present
results in terms of ¥f-comp or of IAq(R).

The set of natural numbers together with the set of its finite subsets is the standard
model. Our construction is based on a countable elementary extension M of the
standard model. This model M will be our ground model and it will stay fixed
throughout this notes, the truth value of a formula is always evaluated in M (unless
we specify differently). We shall expand an initial segment of M to a model N that
contains the graph of a bijection

G : N—- M

between N, M € M that have cardinality n and respectively n+n° (e is an arbitrary
infinitesimal rational number of M).

Unless we explicitly assert differently, the language L is expanded to include a name
for every element of M. We call these new constants parameters. The class of
YPh-formulas is naturally extended to include formulas with parameters. A set of
numbers is called internal when it belongs to M. Otherwise, we will call it ezternal.
The (graph of the) bijection G that we intend to add to M is, clearly, an external
object.



3 Antipasto

This section is added for expository reasons, the self-confident reader can skip di-
rectly to the next section. Here we aim to present the combinatorial structure of
the method in its simplest form. For this reason we will not construct any model
and we use only a trivial notion of forcing (i.e., X, as anything else, ranges over
the internal sets). Still, the theorem proved here is of major importance because it
implies a famous result on the undefinability of parity.

Fix for the rest of this section a set N of non standard cardinality n. In this section
X will range over the (graphs of the) total maps from N into {0,1} (i.e., over the
characteristic functions of the subsets of N). A condition is a partial map P from
the set N into {0,1}. We call || P|| (the cardinality of P), the length of the condition.
We denote by R, the set of conditions of length p. If @ (or X) extends P as partial
function we write Q<P (respectively X<P). If P and @ are compatible, i.e., they
have a common extension, we denote by QP the set-theoretical union of ) and P.
We write Pl-¢(X), when ¢(X) holds for all X<P. In words we say that P forces
©(X). Given a condition P, a set ACN is called a P-support of ¢(X) if

P I+ [p(X) = o(PU X))

i.e., if X<P, the truth of ¢(X) depends only on the restriction of X to A. Alter-
natively we say that P forces ¢ to have support A. We often say simply “support”
in place of “P-support” or when the context clearly suggests a particular condi-
tion P. Note also that if Q extends P to the P-support of ¢ (i.e., if Q<P and
dom(Q) contains the P-support of ¢) then Q decides p(X), i.e., either QI ¢(X) or

QI+ —p(X).

A quantifier free formula ¢(Z, X) can be forced to have a finite support A; (depend-
ing, of course, on Z). In fact, take a condition P of finite length that forces X to
be different from every second-order constant occurring in ¢(X). Also, in order to
decide all atomic formulas of the form X <#(z), let P map the largest element of N
to 1 (we assume the standard coding of pairs). Then, the truth of ¢(X) for X <P
depends only on the terms t(Z) appearing in the subformulas of the form t(z)€X. In
the theorem below we generalize this fact to more complex formulas. We isolate in
the following lemma the most relevant step in the proof of the theorem. The lemma
shows how the support increases with the complexity of the formula. The counting
part of the lemma is essential to prove the theorem: we need to show that some P
works simultaneously for all possible parameters. But in N there is no space for



diagonalization, so some counting is necessary.

Lemma 1 Fix some numbers ¢, s, [ such that t<s<I<n. Suppose that ¢(z, X) has
support of cardinality <t for all z. Choose a P in R,_; at random with uniform
distribution. The probability that Vze(z, X') has no P-support of cardinality < s is

at most
2t1\°
n

Proof. We construct a partial injection from R, _; to pairs consisting of: an
extension of P of length n—I+s and a subset of cardinality s of [s)x[t) (that is
{(s',#') : s'<s, t'<t}). All the conditions that do not force Vzyp(z, X) to have a
support of cardinality < s are in the domain of this injection. So, the (normalized)
cardinality of the codomain (that is immediate to count) yields the upper bound
that we are looking for. The map is defined below. To prove injectivity we check its
(partial) invertibility. The whole procedure may be thought as the construction of
a unambiguous coding of the conditions in R,_; by means of pears like those above.

For every a let A, be the minimal support of ¢(a, X). Define inductively a; and R;
as follows. Let a; be the minimal a such that —¢(a, X) is forced by some condition
Q that extends P to A, and such that

(*) A, \ dom(PTR;.."Ri-1) # 0,

let R; be the condition of @ to (*). If possible, continue until the first m such that s
< |Rg.." Ry—1||. If we cannot reach this m, we say that we succeed on P and leave
the injection undefined. We claim that if the procedure succeeds at stage 4, then
dom(Ry.."R;_,) is a P-support of Vzp(z,X). Let D stand for dom(Ry..” R;_1).
Suppose first that —=Vzy(z, X) holds for some X<P. Then —¢(a,X) for some a
and, consequently, —p(a, P U X[4,). Since A,CD, (otherwise we could take a @
that extends X4,), we have —¢(a, P U X[p4,). Finally, using the property of
the support, we get —¢(a, P U X[p) and hence ~Vzp(z, P U X[p). The converse
implication is proved by reversing the implications just shown. So, D is a support
of Vzp(z, X).

We stipulate that on unsuccessful conditions our function outputs the condition
P™Ry.."R,,_; and the set B C [s)x[t) defined below. With B we want to code
dom(Ry>..” R,,_1). We use the following injection of U;<,, Aq; into [s)x[t): the k-th
element of A,, that does not belong to U;; Aq;, maps it into the pair (4, k). So, we
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let B be the image of U;; As; N dom(Ry..” R,,_1) under this injection. Note that
having ay, .., a; and a pair (3, k) we can invert this map.

The map just defined does not output conditions of length exactly n—I+s. To
enlighten the exposition of the following argument let us neglect this detail. (It is
immediate how to adjust it: in fact, there is no loss of information if we truncate
R,,_1 to the required length and act consequently with the set B. The reader
can work out the details.) Now, to prove the injectivity of the function, we show
that it is possible to invert it. Namely, that given the condition PT Ry ..” Rpy
and the set B we can decode P uniquely. It suffices to reconstruct the sequence
ao, .., 4m because from B we can obtain the dom(Ry..”R,-1) and, finally, P by
subtraction. So, suppose that we have found a; for all j<:. Using B and ay,..,a;_; we
can compute the set dom(Rg ..~ R;_1) and determine the condition PTR".. " Rp,_;.
Look for the minimal a such that —¢(a, X) is forced by some condition that extends
P™R>.."R,,_1 to A,. Clearly, this a must coincide with a;.

We conclude that conditions in R,_; that do not force a support of cardinality
< s cannot exceed the number of unsuccessful conditions and, so, the number of
conditions of length n—I+s times the number of subsets of cardinality s of [s)x[t).

That is
n gn—tts st
l—s s

To obtain a probability we divide by the cardinality of R,,_;,

)y
sty

l

This yields the lemma. O

We abbreviate with “<n® the sentence “ < n!/* for every standard k”. Similarly,
for all the other inequalities involving e.

Theorem 2 Let N and n be as above and assume that N <2™. Let ¢(z, X) be a
¥p formula of with parameters < exp n. There is a condition P of length < n—nl=¢
and a family Az of sets of cardinality < n¢ such that for all Z < expn® the formula
©(z, X) has P-support A;.



Proof. The theorem is obvious when ¢ is open. The inductive step for negation
is trivial, so, it suffices to prove inductive step for the universal quantifier. Note
that all universal quantifiers may be assumed to be of the form (Vz<a) where a is
some constant < exp nf. (Indeed, the hypothesis N < exp n¢ is essential to deal with
quantifiers like VzeX.)

So, let ¢ have the form (Vy<a)¥(y,Z, X). As induction hypothesis we assume the
existence of a definable support A, ; of ¥ that has cardinality <n¢. There is no loss
of generality if we assume that the condition @ forcing this support is §. Otherwise,
we can take N' : = N\ dom(Q) as new N and ¥'(y,Z,X) : = ¢(y, &, QU X) as new
. The support of 9’ will be A; ; : = A,z N N'. Since N’ has cardinality n/" for
some standard h, A, ; has cardinality <n’. Also, if we find a P’ (with domain C N')
of length n'—n/Y/* forcing (Vy<a)y'(y,Z, X) to have support < n’¢, the condition P
: = QU P’ of length n—n'/ (%) will forces ¢ to have a support of cardinality < n¢.

Now, apply the lemma. For every fixed Z < 2" there are at least 1 — 2™ condi-
tions of length n—n!/* that forces ¢(Z, X) to have support of cardinality <n¢. By
counting there is a condition that forces all formulas ¢(z, X) (simultaneously for all
T <expn) to have a support of cardinality < n®. ]

This theorem has a famous corollary. There is no X5-formula that defines the parity
of X, that is a formula that holds iff the set X has an odd number of elements. In
fact for obvious reason parity cannot have a P-support smaller than N \ dom(P).
This theorem has been proved by Ajtai [1] and independently by Furst, Saxe and
Sipser [5] for formulas with parameters <n. Subsequently, the result has been
extended by Yao [14] to formulas as in the theorem above. The setting in these
articles in not quite the same as ours: in [1], the formalism used is that of finite
model theory, while [5] and [14] prove a theorem on Boolean circuits complexity.
In Boolean circuits complexity jargon Yao’s theorem is called “exponential lower
bound for parity”. The proofs that appear in the most recent expositions make use
of a so-called “switching lemma” and use probabilistic techniques developed in [6].
The switching lemma corresponds (in spirit) to the induction lemma proved above.

One of the interesting facts about the proof of the theorem above is that it formally
remains the same if we allow X to range over external objects that are locally
internal. That is, X4 is standard for all A€ M that have cardinality <n® or, less
precise but more suggestively: for those A in M that are codable by first-order
numbers < expnf. This trick becomes essential in following section.



4 Pigeonhole principle

The construction of a model falsifying the pigeonhole principle is divided in two
parts. The second part is a standard model theoretical argument of compactness.
We shall consider an initial segment of M, (those elements that are <expn® for
some infinitesimal €), add to it a new second-order object (the graph of a bijection
falsifying the pigeonhole principle) and, finally, take the closure under £ definability.
A forcing-like argument is used to ensure that the least number principle holds in
the new model.

The first part is of combinatorial nature. It is similar to the proof presented in the
previous section. Here X will be a bijection, again, we want to prove that the truth
of ¢(X) does not depend on the whole of X. We claim that it depends only on
the image of some small set A and the inverse image of some small set B. There
would not be much new if we considered X to be a bijection between sets of equal
cardinality. But this is not the case we are most interested in. Since there is no
internal bijection between sets of different cardinality, a definition of forcing similar
to that of the previous section would quantify on the empty set. So, we have to allow
X to be an external object. Fortunately, to have the proof working it is sufficient
to require that X is locally internal.

4.1 The forcing lemma

First of all some notation. We abbreviate with “<n¢” the sentence “<n!/* for all
standard k7. Similarly for “<expn®”. Fix a set N of non-standard cardinality n
and a set M of cardinality n+d. Conditions are graphs of partial injections of N
into M (but often we speak of them as functions). They are denoted by the letters
P and Q. We call ||P|| the length of the condition P and we denote by R, the set
of the condition of length p.

The variable X ranges over the bijections between N and M. We allow X to be an
external object but we require that X is locally internal. That is, for every ACN
and BC M both of cardinality < n¢, the two-sided restriction of X to A and B,

X[A,B = XN (AXM U NXB)

is internal. When we quantify for all X we always mean that X is ranging over
these set of locally internal bijections. No other object considered in the sequel



is external. Since X is an external object, the truth value of ¢(X), has to be
computed by expanding the language with a symbol for an unary predicate (on
first-order objects) and interpreting this symbol with the set X. In our notation we
confuse the new symbol and its interpretation.

We write Q<P (or X<P) if Q (respectively, X) extends P. We say that P and
Q are compatible if there is an injection extending both P and @), i.e., if their set
theoretical union is still a condition. Note that two conditions with disjoint domains
and disjoint ranges are always compatible. If P and ) are compatible we denote
their union by P~ Q. We say that P forces ¢(X) if ¢(X) holds for every X <P; we
use the notation Pl-¢. Let ACN and BCM, we say that a condition P forces A, B
to be a support of p(X) if

P Ik [o(X) = o(PU X1a5)],

i.e., when the truth of ¢(X) for X<P depends only on the image of A and the
inverse image of B. Equivalently, we say that A, B is a P-support of ¢(X). We say
simply “support” for @-support or when P is clear from the context. We say that
a support is < s if both of the two sets have cardinality <s. The following remark
is of fundamental importance. It motivates the use of locally internal sets in the
definition of forcing.

Remark. If the support of ¢(z, X) is definable (in terms of z) and is <n¢, then
QI+ ¢(z, X) is definable in terms of z and Q.

We say that Q covers A, B if AC dom(Q) and BC range(Q). Note that if ) covers
the support of ¢ then @ decides . The restriction of ) to A, B is denoted by Q4,5
and it is defined similarly as the restriction of X. We say that Q eztends P to A, B
if Q<P and @ covers A, B.

Lemma 3 Fix [, t and s such that t < s <n°<l<n. Suppose A,, B, is a definable
sequence of supports of ¢(z, X) that are <t for all z. There is a definable function
and a definable subset S of R,_; such that every P in S is mapped to some P-
support of Vzy(z, X) that is <s and such that the cardinality of R,_; \ S is at
most

4(1+d)t?\°
IRl (5525)

Moreover, if ¢(z, X) depends on some (hidden) parameters and A, B, are given
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uniformly, then the function above is also uniform.

Proof. We will define a function from R, _; to either a support < s of Vzp(z, X)
(this will give the set S) or to a triple consisting of: a condition of length n—I+s and
two subsets of cardinality s of [2s)%[t). To find an upper bound to the cardinality
of the complement of S we show that the function is one-to-one there. So the
conditions in R,_; \ S can not exceed the number of triples like those above (these
are immediate to count). The function is defined below. To prove injectivity we
shall show the (partial) invertibility. The whole procedure may be thought of as the
attempt of finding a support that is <s. We code our failures unambiguously with
triples like the above.

For every P in R,_; define inductively a; and R; as follows. Let a; be the minimal
a such that —p(a, X) is forced by some condition @ that extends P to A,, B, (see
the remark above) and such that A,, B, is not already covered by PTRy.."R;_;
(i.e., such that the sets in (*) below are not both empty). Let R; be the restriction
of Q to

(*) A, \ dom(PTR;.."R;_1), B,\range(P"Ry.. " R;_1).

If possible, continue until the first m is reached such that s < ||Ry™.."Rm_1||. If we
are forced to stop before, we say that the procedure succeed and we let the function
output

(**) dom(R;.."R;_1), range(Ry.."R;_1)

We claim that in case of success the output is a P-support of Vz(z, X). To prove the
claim, suppose that the procedure succeed at stage 7. That is, for all a if —¢(a, X) is
forced by some condition Q<P then A,, B, is covered by P"R;.."R;_;. Let D, R
stand for the pair displayed in (**). Suppose first that =Vzy(z, X) for some X <P.
Then —¢(a, X) for some a and, consequently, —¢(a, P U X[4,,8,). Since A,CD and
B,CR, (otherwise, since X[4, p, is internal, we could take a @ that extends it),
we have —¢(a, PU X[p r[4,,B,)- Finally, using the property of the support, we get
—¢(a, PUX[p,g) and hence =Vzp(z, PUX[p r). The converse implication is proved
by reversing the implications above. So, D, R is a support of Vzp(z, X). The set of
successful conditions is denoted by S.

On the unsuccessful condition the function outputs P™R;..” R,,—1 together with
two subsets C and D of [25)x[t) that are meant to encode dom(R7 ..” Rm—1) and/or
range(R;.. " Rm-1). The sets D and C' are constructed in the following way. Note
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that m < 2s, in fact, at each stage either dom(Ry.."R;_;) or range(R;..”R;_1)
gets a new elements. We inject both Ujc,, A, and Uscm Be; into [2s)x[t). The
k-th element of the A,; that does not belong to U;; As;, is mapped to the pair
(i, k). Similarly, for U;<,, Bs;. Let C be the image of the intersection of U;; Aq;
with dom(Ry>.. " R,,—1) and let D be the image of the intersection of U;,, Bs; With
range(R;.."R,,_1). Note that having ao, ..,a; and a pair (i,k) we can invert this
maps (whenever an inverse exists).

The function defined in the previous paragraph is not quite what we need. In fact, it
does not output conditions of length exactly n—Il+s. It is immediate how to adjust
this. In fact, there is no loss of information if we truncate R,,_; to the required
length and act consequently with the sets D and C. For legibility, we assume that
P™Ry.."R,,_1 has always length exactly n—I+s. The necessary changes to obtain
a general proof are left to the reader. To prove injectivity on the unsuccessful condi-
tions, we show that from the condition P R;"..” R,,_; and the sets C and D we can
decode P. Tt suffices to reconstruct the sequence ay, .., a,, because from C' and D we
can obtain the dom(Ry .. R,,—1) and, finally by subtraction, P. So, suppose that
we have found a; for all j<i. Using D and C and ay,..,a;_1 we can compute the set
dom(Ry..”R;_1) and determine the condition P"™R".."R,_;. Look for the mini-
mal a such that —¢(a, X) is forced by some condition that extends P" R .." Ry,
to A,, B,. Clearly, this a must coincide with a;.

Concluding, the conditions in R,_; \ S cannot exceed the number of conditions of
length n—I+s times the number of pairs of subsets of cardinality s of [2s)x[t). That

() (2 Yty (2jt)2.

Divide by the cardinality of R,_,

) (Y et gy
e )

This yields the first part of the lemma. The claim on uniformity is immediate. O

1S

Theorem 4 Let N, M, n and d be as above and assume that N, M <2™ and
d < n¢ for some standard h. Let ¢(Z, X) be a ¥f formula with parameters < exp n‘.
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For some standard k there is a condition P of length <n—n'/* and a definable
family Az, Bz of supports < n such that for all Z <expn® the formula ¢(Z, X) has
P-support Az, Bz.

Proof. The theorem is obvious when ¢ is open. In fact, in this case both
conditions and supports may be chosen to be finite. The inductive step for negation
is trivial, so, it suffices to prove inductive step for the universal quantifier. All
universal quantifiers may be assumed to be of the form Vz<a where a is some
constant <expnf. (Indeed, the hypothesis N, M <expn® is essential to deal with
quantifiers like VzeX.)

So, let ¢(z, X) have the form (Vy<a)y(y,z, X). As induction hypothesis we assume
the existence of a definable support A,; of ¢ that is <nf. There is no loss of
generality if we assume that the condition @ forcing this support is §. Otherwise,
we can take N' : = N \ dom(Q) as new domain, M’ : = M \ range(Q) as new
codomain and v¥'(y,%, X) : = ¥(y,Z,Q U X) as new 9. Check that, since N' has
cardinality n' : = n'/* for some standard h, the difference between the cardinalities
of N’ and M’ is still <n'¢. Also, the support of ¥'(y, Z, X), that is,

Ayz;NN', ByzN M

has cardinality <n'¢. Also, if we find a P’ (with domain N’ and codomain M’) of
length n'—n/Y/* forcing (Vy<a)y'(y, T, X) to have support < n'¢, the condition P : =
Q U P’ of length n—n!/(**) will force ¢ to have a support <nf.

So, assume the induction hypothesis holds for ¢ (y, z, X) with the empty condition.
Fix a tuple z. We apply the lemma with [ =n* to ¢(z, X) = (Vy<a)y(y,Z, X).
There is a definable set S; containing conditions of length n—n'/4 that force ¢ (7, X)
to have a support < nf. The cardinality of S; is at least

(1—2_n€)'||Rn_n1/4||.

Now, take the intersection of the S; for Z < 2"°. By elementary counting the inter-
section is not empty. By the uniformity of the function defined in the lemma, we
have that the supports A;, Bz of ¢(Z, X) are definable in terms of z. O
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4.2 The construction of the model

At this point the proof proceeds with a standard argument of compactness. We
state the main theorem.

Theorem 5 Fix N, M € M of cardinality n and n+d such that N, M <2™ and
d < nf. There is a model N of ¥§-comp that contains all (first- and second-order)
elements of M that are <expn® and contains the graph of a bijection between N

and M.

Proof. Let {¢;(z, X)}ic, enumerate all f-formulas and parameters < 2" with
at most the variables z and X free. We construct a chain {P;};c, of conditions
each of length n—n!/* for some standard k. Begin with Py : =0. At stage 2:+1
find a condition P<Ps; that is of length n—nl/* for some k standard and such that
¢i(z, X) has a (definable) P-support A;, B, of cardinality <n®. The theorem above
guarantees the existence of this support. Now, find the minimal z such that some
condition @ extending P to A,, B, forces ¢;(z, X) (this is legitimate by the remark
above the lemma). Let Ps; 41 be this Q. At even stages we prolong P, in order to
ensure that eventually all elements of M fall in the range of G : =U;¢, P; and that
G is locally internal.

We stipulate that the model A contains all and only the first-order elements of
M that are < 2" and exactly all the sets of the form {z<a : ¢;(z,G)} where a
is <expn® and ¢ is a X formula with parameters <expn. By construction, G
is a bijection between N and M. Evidently, N is a model of the schema of ¥j-
comprehension. Let us check that the least number principle is satisfied since all
other axioms are evident. Every set in A is definable by a formula ¢;(z, G). So, it
is sufficient that the least number principle holds for these formulas. At stage 2¢+1
we forced ¢;(%, X) true for the least of the possible Z. Since G is locally internal,
¢i(%,G) holds. Since the chain {P;};c,, will eventually decide all ¢(c, X) for c<z,
these are all eventually forced to be false. Again by the local definability of G, we
have that —¢(c, G) for all c<%. O

5 Note

We have presented a model-theoretical method that simplifies the forcing set up
in bounded arithmetic. A particular result has been chosen to serve our expository

13



purposes. More elaborated constructions (corresponding to those of [3], [4] and [13])
can be build on the same forcing set up.

When this paper was completed we obtained the note “A switching lemma primer”
by P.Beame. There, techniques inspired by [9] are used to shorten the proof of the
main lemma of [12] and [8]. A complexity/proof-theoretical approach is used there
while we proceed in a model-theoretical setting.

I am grateful to Michiel van Lambalgen for his interest. His questions and remarks
have contributed to a better presentation of this article.
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