institute for logic, language and computation

S@REN Riis
Count(g) versus the Pigeon-Hole Principle

ML-96-05, received: February 1996

ILLC Research Report and Technical Notes Series
Series editor: Dick de Jongh

Mathematical Logic and Foundations (ML) Series, ISSN: 0928-3315

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam
Plantage Muidergracht 24
NL-1018 TV Amsterdam

The Netherlands
e-mail: illc@fwi.uva.nl







Count(q) versus the Pigeon-Hole Principle

Sgren Riis*

June 1994
Revised February 1996

Abstract

For each p > 2 there exists a model M* of IAg(a) which satisfies
the Count(p) principle. Furthermore, if p contains all prime factors of
q there exist n,7 € M* and a bijective map f € dom(M*) mapping
{1,2,...,n} onto {1,2,...,n+ ¢"}.

A corollary is a complete classification of the Count(g) versus
Count(p) problem. Another corollary shows that the pigeon-hole prin-
ciple for injective maps does not follow from any of the Count(q) prin-
ciples. This solves an open question raised by M. Ajtai.

1 Introduction

The most fundamental questions in the theory of the complexity of calcu-
lations are concerned with complexity classes in which ‘counting’ is only
possible in a quite restricted sense. Thus it is not surprising that many
elementary counting principles are unprovable in systems of Bounded Arith-
metic. These are axiom systems where the induction axiom schema is re-
stricted to predicates of low syntactic complexity. For a good basic reference
see [Krajicek 95].

The status of the elementary counting principles (which normally all are
proved by some explicit or implicit reference to cardinality) is in a non-trivial
way linked to questions in complexity theory. Let me give a few examples:
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(1)  If there is a model of S; in which the Godel sentence Con(S;) holds,
but where the elementary pigeon-hole principle fails, then there is a model
of S, in which NP # co-NP [PW 87], [Krajicek 95]. In general, there is a
model of S5 in which NP # co-NP if and only if there is a model of S; in
which P # NP [Krajicek 95].

(2)  If there are models of A, where the pigeon-hole principle fails in
the sense that for some n there exists a bijection from {1,2,...,n} —
{1,2,...,n%}, then IAq is not finitely axiomatizable. And by a similar ar-
gument it can be shown that if there exist models of S where this version
of the pigeon-hole principle fails, then there are models of 57 in which NP #
co-NP.

(3) If S} proves a version of the pigeon-hole principle, then S3 actually
proves Sylvester’s prime number theorem (there is always a prime between
n and 2n). According to S.Buss’s theorem [Buss 85] there would be a poly-
nomial time algorithm which produces a prime number of a given number of
bits. This is only known to be the case under strong conditional assumptions
like Riemann’s Hypothesis or P=NP.

Open problems like P # NP have been acknowledged by prominent mathe-
maticians (see for example [Smale 92A]) to be one of our times’ most out-
standing problems. According to S. Smale the P # NP problem is creat-
ing a whole different way of thinking about every subject in mathematics
([Smale 92B]). Almost certainly, progress concerning any of the statements
in (1)-(3) above goes together with progress in the P # NP problem and
other related questions from complexity theory. It is generally believed by
researchers in Bounded Arithmetic that the status of the elementary count-
ing principles in models of Bounded Arithmetic has fundamental importance.
Unfortunately the most fundamental versions of the problems are beyond the
current techniques.

It is possible to soften up most of these fundamental problems. One way to
do this is to add a new function symbol to the underlying language. An-
other essentially equivalent approach is to replace the underlying first order
logic with second order logic with a restricted comprehension axiom schema
[Riis 93A], [Riis 93C].

In [PW 85] A.Wilkie and J.Paris showed that the non-provability of the
pigeon-hole principle (expressed by adding a new function symbol to the
underlying language) would follow if it could be shown that the pigeon-hole
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principle does not have bounded depth polynomial size Frege proofs. And
later M.Ajtai showed the validity of the converse implication. Actually Ajtai
settled this issue. Ajtai’s independence proof used forcing. However in order
for this technique to work in models of arithmetic he had to use another
ingredient. To this end Ajtai used the fact that first-order properties of cer-
tain types of ‘random’ objects with very high probability can be expressed
by a purely existential property [Ajtai 88]. By estimating these probabili-
ties Ajtai showed that it was possible to collapse sufficiently many formulas
simultaneously.

Later in [Ajtai 90] Ajtai considered the g-matching principle (in the case
q = 2) which is in some sense is stronger than any version of the pigeon-
hole principle. More specially he showed that there are models of TAq(R)
in which the Count(2) principle fails while any Ag-version of the ordinary
pigeon-hole principles holds. Ajtai combined forcing and the probabilistic
techniques (already mentioned) with some results from the representation
theory of the symmetrical group (in the case where the underlying field has
characteristic 0).

In [BIKPPW 92] and [KPW 95], Ajtai’s result from [Ajtai 88] was improved.
By introducing a new type of switching lemma it was shown that the pigeon-
hole principle does not have sub-exponential size bounded depth Frege proofs.
In terms of Bounded Arithmetic S3(f) (or even stronger versions) does not
prove the pigeon-hole principle. It is possible to use the same ideas to gen-
eralize the result to any ¢ > 2.

It was clear for researchers that Ajtai’s techniques from representation theory
could not in any obvious way be combined with the new switching lemma.
This seemed to be what was needed to extend Ajtai’s result in [Ajtai 90] to
stronger theories (for example S. Buss’s theory S, [Buss 85]). Firstly Ajtai’s
switching lemma was in a certain respect more convenient because it allowed
us to collapse formulas to a form where the atoms left were ‘covered’ by finite
sets. This luxury of having covered atoms is not available in Krajicek, Pudlak
and Woods’s switching lemma (lemma 2D in [KPW 95]). Secondly, there
is no chance of the disjunctions of being finite. In [BP 93] and [Riis 93C]
it was shown that Count(g) does not follow from any of the pigeon-hole
principles. This holds as long as the underlying language has all its terms of
sub-exponential growth-rate. The key to the proof in [Riis 93C] was to show
that certain ‘generic’ objects are definable. Then to use this to show that if



there existed a violation of the pigeon-hole principle then there would exist
a definable object with properties contradicting its definability. In [BP 93]
the result was shown in terms of the length of propositional proofs. Beame
and Pitassi’s method made it possible to obtain very precise lower bounds
(for the proof length) almost matching the best known upper bounds.

The status of the Count(q) and Count(p) principle (in the basic case of
IA,) was raised by Ajtai in the late 80s. He conjectured (in connection with
[Ajtai 88]) that for different primes g, p the principles Count(q) and Count(p)
are independent principles.

In [Riis 93B] (from June 1993) and [Riis 93C] the Count(q) versus Count(p)
problem (also allowing composite numbers g, p) was reduced to a purely com-
binatorial conjecture. I showed that the existence of ‘exceptional forests’, and
the existence of implications between Count(q) and Count(p) go together. An
exceptional forest F is a collection Ty,T5,...,T, of specially labelled trees
where each label appears 0 modulo ¢ times and where ¢ does not divide .
The existence of such forests depends on three parameters (g,p,n). Dur-
ing my doctoral work (in 1992) I discovered that there exist (non-trivial)
exceptional forests. As an example when ¢ = 2 and p = 4, there are excep-
tional forests for n > 9 if and only if n not is divisible by 4. The smallest
non-trivial examples appear when n = 10. The forests (for this parame-
ter choice) are relatively easy to describe and the trees can be brought on
a special normal form. The smallest example of this normal form contains
625 trees. I also found exceptional forests for ¢ = 3. In [Riis 94A] it was
shown that the smallest non-trivial examples for ¢ = 3 appear when p = 9
and n = 30. The forests have an easy decription when they are brought to
a special normal form. The smallest exceptional forest of this normal form
contains 16821302548060 trees. In order to understand these exceptional
forests I also considered another type of labeling (which is will be considered
in this paper). The smallest non-trivial exceptional forest with this labeling
contains 175 trees (I will come back to this example later in this paper). I
conjectured that all exceptional forest can be brought to the normal form
(by use of a suitable stock of transformation rules). In [Riis 93B] I set out to
prove this. The idea was to let a collection of propertly chosen group actions
F — F9, g € G operate on the exceptional forest F. By a proper choice of
G 1 was able to show that Uyeq F? remains an exceptional forest but in a
well-defined sense gets ‘closer’ to the desired normal form. Undesirable trees



cancelled neatly out by an average argument. However the 64-page proof
([Riis 93B]) was very involved and admittedly somewhat unclear at various
points. At particularly one point there was a serious problem which I soon
realized would require some more work to complete. The problem appeared
in certain degenerate cases when ¢ divides the height of the forest.

Shortly after P. Beame, R. Impagliazzo, J. Krajicek T. Pitassi, and P. Pud-
lak ([BIKPP 94]) were able to solve a sufficiently strong special case of my
conjecture thus obtaining the complete classification of the Count(q) versus
Count(p) problem in the base case (i.e. over IAo). Furthermore, they showed
that the problem is related to that of finding lower bounds on the degrees of
the witnessing polynomials in Hilbert’s Nullstellensatz. They obtained such
lower bounds on Hilbert’s Nullstellensatz by a very careful repeated use of
Ramsey’s Theorem.

Independently in [Riis 94A] I managed to complete my original line of argu-
ment. Like [BIKPP 94] the proof in [Riis 94A] also involved a very compli-
cated and technical use of Ramsey’s Theorem. This approach was suggested
by P. Pudlak back in 1993.

Independently of these developments, M. Ajtai proved that Count(q) and
Count(p) are independent for different primes g, p (manuscript was available
already in October 93). Ajtai’s proof is highly interesting and contains many
new ideas. The proof uses a list of deep results in the modular representa-
tion theory of the symmetrical group. This is a fascinating field which still
contains many open problems. Ajtai had to work out most of the classical
theory from a suitable first order perspective. This was necessary to ensure
the definability of various submodules etc. Ajtai’s proof depends strongly on
q being a prime number.

Our aim in this paper is to prove the following theorem

Theorem 1 Let ¢ > 2 and assume that r is an increasing function such
that r(n) € w(1) N o(log(rn)). For any countable language L of arithmetic in
which all terms have polynomial growth rate, and for any sound extension T
of IA(L) (which leaves at least one function symbol f undefined) there is a
model M |= T such that:

(i)  The Ao(L)-Count(q) aziom scheme is valid in M

(ii) There ezists n € M such that the function f defines a bijection from
{1,2,...,n} onto {1,2,...,n+ q" ™M},



A A¢(L)-Count(q) axiom scheme is a scheme (for Ag(L)-formulas) which
formalizes the elementary matching principle stating that if {1,2,...,n} is
divided into disjoint p-element subsets, then p divides n.

In [Riis 94C] I showed how the theorem follows from a minor modification
of [Riis 94A]. In this paper I have eleminated the involved and tricky use
of Ramseys Theorem from [BIKPP 94] and [Riis 94A]. Instead I use an
argument more in the style of my original approach from [Riis 93B]. The
idea is to use an average type of argument to make the undesirable trees in
the forest cancel out. In [Riis 93B] the critical case was to make this work
when ¢ could be a divisor in the hight of the forest. In November 95 J.
Krajicek and P. Pudlak showed me a two page manuscript [BKPPRS 95| in
which S. Buss, R. Impagliazzo, J. Krajicek, P. Pudlak, A. Razborov, and J.
Sgall introduce a very clever idea which makes it possible to let undesirable
monomials in the witnessing polynomial in Hilbert’s Nullstellensatz cancel
out. It became gradually clear to me how this idea could be modified and
used to give a simplified proof of theorem 1. This appoach avoids the tricky
use of Ramsey’s theorem and makes it possible to generalize the results to
theories which are stonger than IAq(a).

Besides introducing various other simplifications and improvements the paper
at hand gives a reasonable self-contained presentation.

2 Applications

The Count(g) principle implies many versions of the pigeon-hole principle,
so the theorem shows that the matching principle Count(g) so to speak has
an interesting blind spot.

In the future we’ll let PHP]  (bij) denote the elementary principle stat-
ing that there does not exist n and a bijective map from {1,2,...,n} onto
{1,2,...,n + s}. This principle can also be stated for all A¢(L)-formulas as
a Ag scheme.

Corollary 2 (Settling conjecture by Ajtai)
For different primes ¢,p Count(g) I/ Count(p)

[Ajtai 94]



Corollary 3 (Obtaining the complete classification)
For fized q,p > 2 the following ts equivalent

(a) p divides a power of ¢
(b)  Count(q) F Count(p).
[BIKPP 94], [Riis 94A]

Proof: The implication (a) = (b) was shown in [BIKPP 94] or [Riis 93C].
The implication (b) = (a) follows from Theorem 1. According to this theo-
rem Count(p) i PHP]_ .(.)(bij). If p contain a prime factor which does not

appear in ¢ then Count(p) b PHP] .(.)(bij) and thus Count(g) F Count(p).
O

Corollary 4 (Solving the Count versus PHP problem)
Let r(n) € w(1) N o(log(n)). For each ¢q,p > 2

Count(p) ¥/ PHP:_l_q,(.)(bij) if and only if p divides a power of q
( if and only if Count(q) F Count(p))

Let PHP:*?(inj) be the the statement that there is no n and no injective map
from {1,2,....,n+p} into {1,2,....,n} and let PHP}, (sur) be the statement
that there is no n and no surjective map from {1,2,..,n} onto {1,2,...,n+p}.

Corollary 5 (Answering an open question by Ajtai) [Ajtai 94]
() PHPZ,,(bij) Y/ PHP:*(inj).

(b) PHP;*!(inj) 4+ PHP},(sur).

(c) Count(q) I/ PHP;*!(inj).

Proof: (a) follows from (c), because Count(q) - PHP}_,(bij). To show
(c) notice that PHP;*!(inj) + PHP:_I_q,(,,)(bij) for any r. But according to
Theorem 1 Count(q) i PHP, .., when r € w(1)No(log). The bi-implication
in (b) is a simple exercise. O
This shows that the pigeon-hole principle for injective maps are efficiently
stronger than the pigeon-hole principle for bijective maps. Actually it shows

that:

Corollary 6 There ezists a model M* of IA¢(c) in which Count(p) holds
for each p € N \ {1}. Yet, there exists n € M* and an injective map
f € dom(M?*) mapping {1,2,...,n+ 1} into {1,2,...,n}.
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Proof: By the completeness theorem it suffices to show that for each finite
set p1, P2, .., o of integers, the conjunction Count(p;) A ....A Count(p;) does
not imply PHP}*!(inj). This follows by an argument similar to the one given
for (c) in corollary 5. O

Corollary 7 Let I' denote any collection of Count(q) principles, ¢ € N.
Then Tt/ PHP:*'(inj). If T is any collection of Count(q) principles where
each g is a prime # p, then I' I/ Count(p).

According to corollary 2, Count(7) neither proves Count(5) or Count(2).

Does Count(7) prove Count(5) V Count(2)? None of the methods in [Ajtai 94],
[BIKPP 94] and [Riis 93C] which deals directly with the Count(q) versus

Count(p) principle are sufficient to answer this question. However it follows

directly from Theorem 1 that

Corollary 8 Suppose p1,p2,...,pr all contain a prime-factor which does not
appear in q. Then Count(q) I/ Count(p;) V Count(pz) V ... V Count(ps).

Proof: Notice that Count(p;) V Count(p;) V ... V Count(px) imply
PHP;} .. for any r. But according to Theorem 1 Count(g) i/ PHP} . for
certain functions r(x). O

There is a natural way of translating a first order relational formula ¥ into a
Boolean propositional formula 1, of a universe with n elements. If, for exam-
ple, ¥ = Vi33Vk R(%,7)AS(3, 5, k) then ¢, can be written as AV Ag T jAY; j k-
For any relational formula ¢ we consider the propositional formulas %,. No-
tice that ¢ holds in all finite models if and only if ¢, is a tautology for each
n. The substitution aziom schema based on 1 consists of the formulas ¥,
where each variable in 1,, can be replaced by any propositional formula. The
natural first-order formulations of the Count(g)-principles and the pigeon-
hole principles can be translated into a substitution axiom schema. The
boolean version of the Count(g)-principle becomes (after having introduced
a variable y, for each g-element subset A C J for some |J| # 0 modulo gq)
the substitution schema V;c; Aas; ~¥a V VaVpia Braze (¥4 Ays). A
first order deduction rule 9_1,045;& where 6;, 1 = 1,2,...,k and 0 are re-
lational first order formulas can naturally (for each n) be translated into a
deduction rule for propositional logic. A first order proposition proof system
P consists of a finite number of substitution axiom schemas together with
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a finite number of first order deduction rules. A P-proof (in Hilbert style)

of a proposition 7 is a sequence 71,72, ...,7, = n of Boolean formulas, such
that each 7;, j = 1,2,...,u is either a substitution instance of a substitu-
tion axiom scheme, or there are i;,%2,...,2x < j such that Lf];mi is a

substitution instance of a deduction rule.

Absolute tautologies 1), are tautologies for which ¢ besides being valid in all
finite models also holds in all infinite models. Similarly an absolute deduction
rule w& is a rule for which 6; Af;... A 0y = 6 is an absolute tautology.
An absolute proof system is first order propositional proof system where all
axiom schemes and all deduction rules are absolute.

A Frege propositional proof system is a propositional proof system which
consists of: (i) a finite number of substitution schemas, i.e. Boolean formulas

6 with special substitution variables y1,¥2,...,¥%. (ii) A finite number of
deduction rules 0—1'225;’9& where 6;, © = 1,2,...,k and 6 are substitutions

schemes. We only consider propositional systems which are consistent and
sound (i.e. prove the usual tautologies).

Notice that Frege’s propositional proof systems are absolute proof systems
where the underlying first-order formulas are quantifier-free. The pigeon-hole
principle PHP,, is not an absolute tautology because it fails for infinite sets.
Elementary tautologies like 6; A8, — 6, are absolute. Modus Ponens Ql’eg—_'ez
is an absolute deduction rule. It is well known [Ajtai 88|, [BIKPP 94], and
[PW 85] that there are close links between results concerning provability
in systems of Bounded Arithmetic and the length of bounded depth Frege
Proofs. Our method of non-standard models (introduced by Ajtai [Ajtai 88])
allows us in a very straight forward way to generalize these results to absolute
proof systems.

We can express theorem 1 in terms of absolute proof systems.

Theorem 9 Let P be a propositional proof system which besides a finite
number of absolute aziom schemas and absolute deduction rules contains
the Count(q) substitution aziom scheme. Then there are no polynomial size

bounded depth P-proofs of PHP] ua(bij).

From this theorem it is easy to obtain variants of corollaries 1,2,...7 where
provability in IAo(a) has been replaced by provability by ‘polynomial size,



bounded depth, absolute proofs’. Furthermore, Theorem 1 follows by stan-
dard arguments from Theorem 9 which thus can be considered as the main
result of the paper.

The theorem 9 is strongest possible in the sense that:

Theorem 10 The implication Count(q) - PHP}, «(bij) is absolute for any
fized k.

Thus in a non-standard model M of first order arithmetic there exists a
substitution instance Counts(q) of Count(q) such that the tautology
Counts(q) — PHP}, «(bij) remains valid even if we allow arbitrary (i.e. not
only M-definable) truth-table evaluations.

3 Proofs based on equations

Consider the identity

o ()50

Assume naively that there exists a bijection f : {1,2,..,n} — {1,2,..,n+3}.
This would induce a bijection g from the 3-element subsets of {1,2,...,n}
onto the 3-element subsets of {1,2,...,n+ 3}, as well as induce a bijection A
from the pairs of {1,2,...,n+ 3} onto the pairs of {1,2,...,n}. In the case
of n is even patch together % copies of & together with g to obtain a bijection

from {1,2,..., (g) +%(";’3)} onto {1,2,..., (”':';3) +%<’2‘)} In the case of n is
odd just extend f to a bijection f: {1,2,...,n+1} — {1,2,...,(n+1)+1}
and precede with n := n + 1. We have just proved (in a very roundabout
way and by reference to the ordinary pigeon-hole principle) that there can
be no bijection from {1,2,...,n} onto {1,2,...,n+ 3}.

This argument can (unlike the traditional cardinality arguments) be trans-
lated into a bounded depth polynomial size Frege proof, which uses a sub-
stitution schema for the pigeon-hole principle. And for essentially the same
reason it can be translated into a proof in Bounded Arithmetic. The (more
trivial) implication PHP}_ ;(bij) - PHP}_,(bij) follows by taking 3 copies of
a supposed counter example to PHP}_,(bij). Thus
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Proposition: The pigeon-hole principles PHP} 4(bij) and PHP},(bij) hold
in the same models of Bounded Arithmetic.

Before we go into a deeper analysis of the pigeon-hole principle let us try
to understand which of such implications can be proved by the use of these
ideas. The positive results in this direction were first obtained in [Riis 93C].
What about the negative results (i.e. the classification of the implications
which not are supported by any binomial equation)?

To answer this we must consider identities over Z, (in the case of Count(q))
as well as Zo, := Z (in the case of the PHP). We must also be prepared to
consider identities which contain polynomial expressions in nested binomial

coefficients like:
(O (@)= (C20))

The theory we develop below (and which goes far beyond just considering
arguments based on binomial equations) allows us to prove the following
identity:

Theorem 11

(Eq 2) (2) (;) = j:mg,m} (k 4 rJn - j) (2j J——kn—z m) (Z)

The point (and usefulness) of this equation is that it allows us to replace a

5 3

product (Z) (;) with a linear expression in (;) J < k+m. Thus for example
((TE?))S = (;1-!(’217)(("';17) -1)... ((7?7) —6))® can first be expressed as a

polynomial in (H;” (of degree 35). The theorem allows us to express this

polynomial as a linear expression in (Tt.N) where j = 15,16,...,104,105. It
turns out that (Eq 2) actually can be proved (when r is only non-specified
number) in Bounded Arithmetic. Furthermore, the (elementary) identity

(T+:+b) — ("ta) = iea (ij>((Tj.'b) — (;)) is also provable in systems of
Bounded Arithmetic (when a, b and c are fixed numbers). Thus to understand
which proofs can be based on binomial equations (in a similar fashion to the

argument based on (Eq 1)), it suffices to consider equations of the form:

(Eq 3) > cj((r + k) - (’f)) £ 0 modulo g
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where ¢;; 7 =0,1,...,u € Z,. In the case ¢ = o0, ¢1, ¢z, . .., ¢, might depend
on r. If the Count(q) principle is available we can consider such equations
modulo ¢q. Thus we also need to consider binomial equations over Z,. In the
case we work over Z the argument only has a chance to take place in models
of Bounded Arithmetic if ¢, co, ..., c, are integers bound by a term in the
underlying language. This follows by Parikh’s theorem [Parikh 71].

In general both u := u(r) and k := k(r) can be functions of ». Constraint
on their growth-rate is closely linked to the systems of Bounded Arithmetic
we have fixed. For instance the argument has only a chance to take place in
systems where that (2) is bound by a term t(r) in the underlying language
(again because of Parikhs theorem [Parikh 71]). So in the case of IAq(a)
where all terms are polynomials, we need only to consider arguments where
u € O(1). Summarizing we only consider the question whether ¢;,cs,..., ¢y
can be chosen bounded by a fixed polynomial in r such that equation

(Eq 3) has solutions for infinitely many r. Now (’+q;'(l)) — (;) = 0 modulo g,
so for any j € O(1) (Eq 3) has infinitely many solutions. On the other hand
there exists integers, which actually can be expressed as rational functions
(like the function n — % in (Eq 1)), such that (Eq 3) has infinitely many
solutions when k(r) € O(1). Thus

Corollary 12

For any p there exists a binomial equation which together with IAo(c) +
PHP},(bij) supports a proof of PHP} o) (bij).

For any p there ezists a binomial equation which together with IAo(c) +
Count(p) supports a proof of PHP, o((bij).

There is no binomial equation which together with IAq(a) + PHP; ,(bij)
supports a proof of PHP} _.a)(bij).

There is no binomial equation which together with I Ag(a)+Count(p) supports
a proof of PHP} _.q)(bij).

To obtain our general result we have to consider all proofs (not just proofs
based on binomial equations).
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4 Exceptional forests

4.1 Stratification of the notion of existence

It has been said that existence does not come in degrees. The poor has as
much existence as the queen. Many independence proofs in logic can be
viewed as tampering with the notion of existence. In this section I present a
method by which the existence of finitistic objects can be stratified.

In [PB 94] P.Pudlak and S.Buss considered a game G = G(%) played between
a prover and an adversary. In the game the adversary tries to persuade the
prover that a certain propositional formula % is false. The prover can ask
questions (of a type specified as part of the rules of the game). The adversary
(who claims —¢) can make up the answers. However if the adversary is
caught in an elementary contradiction (like claiming both 7 and -n) the
prover wins. P. Pudlak and S. Buss [PB 94] have shown that there is a close
link between this game and the length of propositional proofs. For instance
any Frege proof system has a canonical translation to a prover-adversary
game. Actually Pudlak and Buss showed that the minimal number u(G) of
rounds in the game G(v) needed to trap the adversary is proportional to the
logarithm of the length (counted as the number of steps) of the shortest Frege
propositional proof of .

We now show that any prover-adversary game has some other complexity
measures which relate to x(G) in a non-trivial fashion.

A strategy for the prover can be represented as a decision tree: At the root
the first question is assigned. For each possible answer (by the adversary)
we have an edge. Each answer leads to a new situation in which the prover
might (or might not) ask another question. At the end of each leaf I the
prover has gathered a specific piece of information. Later we will refer to
this piece of information as a (forcing) condition. Normally we only focus
on trees where the prover stops long before the adversary is trapped in an
elementary contradiction.

In other words, we consider trees where each leaf is assigned a condition which
represents some partial knowledge concerning the adversary’s assignment.
At the root of the tree we have no knowledge. Each node corresponds to
a concrete question ) while the various edges from a node represent the
possible answers. All conditions in the leafs are clearly incompatible because
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different leafs contain conflicting pieces of information. We always assume
(mostly for cosmetic reasons) that a question is relevant (i.e. its answer
cannot be deduced from the previous questions).

Now given q,n € N where ¢ > 2. Let F be a forests of labeled trees in which
all trees have hight < h. Suppose that each condition appears 0 modulo ¢
times in F. Does the forest contain 0 modulo g trees? If not, we say F s
an exceptional forest. The question whether there exist exceptional forests
depends on the proposition 1, the class of allowed questions and how an
elementary contradiction is defined.

4.2 Exceptional forests are proofs

Proposition 13 If there is an q-ezceptional forest (based on the game G(3)),
then v is valid.

Proof: Suppose that 1 is invalid so the adversary can avoid any contra-
diction even if presented with the collection of all possible questions. Let
the adversary chose a fixed strategy S. Now each tree contains exactly one
branch which represents the adversary’s answers (according to S). Thus if
each branch appears 0 modulo g times, then |F| = 0 modulo g. O

The proposition shows that we can consider g-ezceptional forests as proofs.
Like most syntactical correct strings not are proofs, so are most forests not
g-exceptional forests. The relationship between the shortest proof (in a fixed
proof system), the minimum number of rounds x(G) in interactive proofs and
the complexity (number of trees/hight of trees etc) in g-exceptional forests
is related in an interesting and non-trivial fashion. As a by-product of our
analysis we will show that for certain classes of propositions % and proof
systems the length of the shortest proof of ¢ and the minimal hight of the
trees in q-exceptional forests (based on G(v)) correspond to each other in a
well defined one to one fashion.

The fact that a ¢g-exceptional forests based on a prover-adversary game G(¢)
can be viewed as a ‘proof’ of 1 is reflected in various other ways. For example,
all the basic properties of logical deductions also hold for g-exceptionalness.
As an example, if there exists an g-exceptional forest for G(¢ A ¢') (of hight
< h) there exists g-exceptional forests for both G(¢) and G(%') (of hights
< h).
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In this section we briefly indicate how exceptional forests can be translated
into bounded depth polynomial size Frege propositional proofs. This is an-
other reason we can view g-exceptional forests as proofs. We consider a
adversary-prover game G(p,g) where the adversary claims that there exists
a bijection f from D onto R. The prover is allowed to ask questions of the
form f(d) =? or f~'(r) =?. In this game we always think of D and R as
being two big finite sets where |R| > |D|. In the following section we only
focus on the games G(p,r) even though many of the results and ideas hold
for most prover-adversary games.

Example: Consider a forest Fp gy of (D, R)-labeled trees (all of hight 1)
which contain the trees with root questions r?; r € R together with (¢ —
1) copies of the trees with root questions d?; d € D. Each branch can be
represented as a pair (d,r); d € D, r € R. If |D| # |R| modulo g, this forest
1s g-exceptional.

These type of forests are so trivial that we like in [Riis 93C] and [Riis 94A]
in some contexts will ignore them and only reserve the term exceptional to
less trivial examples.

Assume that for some » # 0 modulo ¢ there exists n and a bijection f :
{1,2,...,n} = {1,2,...,n + r}. The existence of F{12,..n}{1,2,...n+r}) C2D
be expressed as Boolean tautology. Each substitution instance of these tau-
tologies have bounded depth polynomial size general proofs. Now we can
prove that a bijection f : {1,2,...,n} — {1,2,...,n + r}, defines a parti-
tioning of the trees in F(({1,2,.,n}.{1,2,..n+r}) into disjoint g-element subsets.
This violates the Count(q) principle. The general case where r is a fixed
power of q is treated in an essentially similar fashion even though (as it turns
out) we have to consider forests of hight > 2= + 1.

4.3 Some basic results

Proposition: If |D| = |R|, there are no g-exceptional forests.

Proof: The adversary’s proposition ‘there is a bijection from D onto R’ is
valid. i

Proposition: Suppose that the prover is only allowed to ask questions of the
form f(d) =?. Then there are no q-exceptional forests.
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Proof: Let f : D — R be any injective map. The adversary can in a
global way answer any collection of questions consistent according to this
map. Thus there can be no exceptional forest. a

A homogeneous tree [dy,dz, . ..,di;T1,72,. .., m) is a tree which consists of the
conditions « for which each d € Dom(«), has d € {dy,ds,...,di} or a(d) €
{ri,72,---,m}. Let F[[k,m]] denote the forest which consists of the trees
[di,d2,...,dk;T1,72, ..., 7] Where d; < dy < ... < drandr <73 <...<
Tm. It turns out that arguments based on a binomial equations are in some
sense isomorphic to arguments based on forest of the form Uy Akm F[[k, m]],
where ), denotes the multiplicity of the forest F[[k,m]|.

We have already seen that theorem 11 allows us to reduce arguments based
on binomial equations to a special normal form. Here is the analogous result
for homogeneous forests of homogeneous trees:

Lemma 14 The forest F|[[k,m]| contains the same conditions as the for-
est which contains (k+1iz-—j) (2j;_l°;m), copies of F|[4,0]]. The forest F[[7,0]]
contains ezactly the conditions of length ;.

Proof: The condition {{di,r1},{d2,m2},...,{d;,r;}} appears
(k+7{z—j) (2j;_’°;m) times in the forest F[[k, m]] when j = max{k,m},
max{k,m}+1,...,k+ m. It appear once in F[[3,0]]. O

Proof of Theorem 11: Let |D| = |R|. It suffices to show that for d =r

0= 2, lenm)557)0)

The left hand side denotes the number of trees in F[[k, m]]. The right hand

side denotes the number of trees in F' := Uj=max{k,m} (k . _J.) (2jj.__'°;m)f [l4,0]]-
According to lemma 14 each condition appears the same number of times in
F[[I,m]] and F'. Now choose a bijection p : D — R. This bijection se-
lect exactly one condition from each tree in both F[[l,m]] and F’. Thus

[FIlLm]]| = |77 O

Two conditions (branches) a and 8 are incompatible (o L ) if there exists
d € D : a(d) # B(d) or there ezists 7 € R : a™'(r) # B7!(r). Two condi-
tions (branches) a and (3 are compatible (a||3) if they not are incompatible.
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Suppose that T' is a (D, R)-labeled tree, and suppose p : D — R. Then T
denotes the tree which is obtained by first removing all edges representing
answers incompatible to p and, second by contracting all edges < d,r >
where p(d) = 7.

Lemma 15 Let T be a (D, R)-labeled tree of hight h, let p: D — R, and let
D' := D\ dom(p) and let R' := R\ ran(p). Suppose that |D'|,|R'| > h+ 1,
then T* is a (D', R')-labeled tree. The tree T? might have hight 0, but it is
never empty. It have hight at most h

Proof: Induction after |p|. As the induction is downwards starting from on
arbitary point it suffices to show the first step in the induction. So assume
that |p| = 1, and that |[D|—1,|R|—1 > h+1. We can write p = {< d,7 >}.
For any question d'?, d' # d (r'? v’ # r) in T remove the edge and the subtree
above the edge < d',r > (< d,7" >). The number of leafs in T is at least
2 because |D|,|R| > h + 1. Thus each question in this new tree has at least
one legitimate answer and will be non-empty after this procedure. For any
question d? (r7) keep intact the edge < d,r > while removing all other edges
and there subtrees on top of these. Contract the edge < d,r >. This way we
get a tree which still has hight A or in certain special cases A — 1. In the case
T :=(d) or T := (r) the tree T* becomes the (unique) tree of hight 0. O

Corollary 16 Let F be an g-ezception forest of (D, R)-labeled trees of hight
< h. Let p : D — R be a partial map. Let D' := D \ dom(p) and let
R’ := R\ran(p). Suppose that |D'|,|R| > h+1. Then F* is an q-exceptional
forest of (D', R')-labeled trees.

Proof: Suppose that F = {T},T5,...,T.} is an g-exceptional forest. We
have to show that F? := {I{,T5,...,T?) is a g-exceptional forest. We al-
ready know (lemma 15) that all restricted trees are non-empty, so F* contains
the same number as trees as . We have to show that each condition appears
0 modulo g times in F”? and that the number of trees of hight 0 (=trees which
contain only the empty condition) is 0 modulo ¢. It suffices to consider the
case |p| = 1. Consider a branch {< dy,r1 >, < d2,72 >,...,< dj,r; >} with
elements in D', R'. Its total number of appearances is exactly the same as
the number of appearances of the conditions {< dy,r1 >,< d2,72 >,...,<
dj,r; >} and {< d,r >, < dy,r1 >, < da,72 >,...,<dj,r; >}. This number
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is 0 modulo ¢q. The number of trees of hight 0 is the same as the number
of trees which contain the empty condition. This number is the same as the
number appearances of the condition {< d,r >} in F i.e. 0 moduloq. O

Lemma 17 Letq > 2 and let 1 > 1. Let D, R be finite sets with |R| — |D| =
q'. Then there exists an exceptional forest F of (D, R)-labeled trees of hight
at most ql.

Proof: Let D,R be finite sets with |R| — |D| = ¢'. First suppose that
d :=|D| is a power (at least [+1) of g. Consider the forest F; which consists
of F|[h,0]] together with ¢ — 1 copies of F[[0,]]. Each branch of hight A
appears exactly ¢ times, while branches of all other lengths appears 0 times.
The number of trees in F}, is (¢ — 1)(,:) (“H'q “) If b > ¢’ this is 1 modulo ¢,

and F}, is an exceptional forest. In general (when there is no restriction on d)
chose d’ = ¢* a big power of ¢ such that d’ < d. Construct an g-exceptional

forest of (D', R')-labeled trees where |D'| = d’ and |R'| = d + ¢'. Now apply
corollary 16 to obtain an g-exceptional forest of (D, R)-labeled trees. a

At first sight many questions concerning specially labeled trees might seem
hopeless. However in general we can break down trees and put them into a
nice normal form. To see this let T' be a (D, R)-labeled tree. Consider the
following equation which holds modulo ¢

C B_g__/Wc
VV \VANS

NN/ W

\/
Omodq

Notice that both sides of the equation contain 1 modulo g trees. Also that
each condition appears the same number of times (modulo ¢) on each side of
the equation.

/
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Suppose that F := {Ti,..., T} is any forest. Repeated application of the
identity allows us to break down the trees in F. Eventually each tree is
brought on a normal form where at each level all but at most one node is a
leaf. We call such trees perfectly unbalanced (=PU). Thus we have proved,

Lemma 18 Fiz ¢ > 2, ¢ € N. Let F := {T1,...,T.,} be any forest. There
exists a forest F' := {T{,Ty,....,Tu} in which each condition counted modulo
q appears the same number of times as in F. Each tree in F' is a PU-tree
and furthermore v’ = u (modulo q).

Notice that the PU-trees have a very simple representation. Each PU-tree
can in a canonical fashion be represented by expressions of the form,

(s117, 812)(8217,82,2), -+ (85117, $j-1,2)(s;7), where s;; € D if and only if
8i2 € R. Similar s;; € R if and only if 5;, € D.

It turns out that there are various useful identities between collections of
PU-trees. For example (1p?,1r)(2p7,2r)(3r?) — (10?,1r)(2r7,2p)(3R?) =
(1p7,1r)(20?) — (107, 1Rr)(2RY).

And (1D?, ].R)(2D?,2R)(3R?) — (2D?,2R)(1D?, 1R)(3R?) = (1D?, 13)(21)?) -
(2p7,2r)(1p?). The identities illustrate that the difference between two trees
which agree for all branches of length > | can be ezpressed as the difference be-
tween two trees of hight [—1. These considerations show that we have a lot of
flexibility below the top-level. From now we assume (without loss of general-
ity) that we have brought all PU-trees to the form (d;?,71)... (di1?,rim1)(u?)
where u either belongs to D or to R.

Repeated use of the equations gives the following lemma.

Lemma 19 (Normal form) Let F be an g-ezceptional forest of (D, R)-
labeled trees of hight < h. Then there ezists a g-ezceptional forest of (D, R)-
labeled PU-trees of hight < h. Furthermore, it is possible to ensure each tree
is of the form:

(d1?,71)(d2,72) ... (di—1?,71-1)(u?) where dy < d2 < ... < dj_1, whereu € D
oru € R, and where [ < h.

Here is the first class of (non-trivial) 2-exceptional forests I discovered. This
happened during my doctoral work [Riis 93C]:

Example Consider a forest F(z7 which consists of the trees which contain
all PU-trees of the form:

(1) (d?,7r1)(r2?) where d € {1,2,...,d}, ri,r2 € {1,2,...,7}, r1 >y and
ry — 1o 1s odd.
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(2)  (d?,7r1)(r;?) where d € {1,2,...,d}, r,m2 € {1,2,...,7}, 1 <rj and
re — 71 is even.

(3)  (d1?,7)(d;?) where di,d; € {1,2,...,d},and r € {1,2,...,7}.

Notice that |Fgn| = d (z) —i—F(f). The forest Fg ) is 2-exceptional when dis
odd and # — d = 2 modulo 4. Each branch appears an even number of times

yet the forest contains an odd number of trees. The forest F(s ) contains 175
PU-trees. In all cases the forest (g5 has hight 2. &

4.4 Classification of the g-exceptional forests

For any property P of conditions we can define an equivalence relation ‘ =/
by a =p B if and only if Vp: P(p) = (a||p < B||p). The relation is clearly
reflexive and symmetrical. For «,(3,~, for which a =p 3, B =p v for any
p with P(p) we have a||p & Bllp & v||p- Thus the relation =p is also
transitive.

A property P of conditions is transitive if P(a) = P(B) when § C a. Let T
be a (D, R)-labeled tree. For a transitive property P of conditions we define
T(P) as the collection {a € T : P(a)}. A decision tree is proper if each
question has at least one legitimate answer.

A condition « is k-extendable, if P(c) and for each d? € D (and each r? € R)
each r € R (d € D) with P((d,r) — ) the condition (d,r) — a is (k — 1)-
extendable. A condition « is 1-extendable, if P(a) and for each d? € D (and
each r? € R) there exists r € R (d € D) such that P((d,7) — ). A transitive
property P is k-extendable if () is k-extendable.

Lemma 20 For any transitive property T(P) can be organized into a deci-
sion tree. If, furthermore, P is h-extendable then T(P) is a proper decision
tree.

Proof: First remove the conditions (branches) which do not satisfy P from
T. The transitivity ensures that this is a tree. This tree 7' might have top
nodes in which a question where no legitimate answers can be produced.
However if 0 is h-extendable, a question on level 7 < h must lead to an
answer which is > (h — j)-extendable. o

Assume that T is a (D, R)-labeled tree of hight < h. Let P be a transitive
h-extendable property. Let T7 denote the tree which appears by contracting
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the edges with a single forced answer. We can (and will) view the tree T'”
as being labeled by the equivalence classes defined by =p.

A decition tree of (D, R, P)-condition is a decision tree for the game G(7 (=:
G(D, R, P) where ¢ = ”p defines a bijection D — R and P(p)” and where a
forced answer can be used in getting an elementary contradiction. From the
definitions we get

Lemma 21 Let P be a transitive h-extendable property. Then for any (D, R)-
labeled decision tree T, the tree T” is a decision tree for the game G(D, R, P).
If F is a q-exceptional forest of (D, R)-labeled trees of hight < h, then F7 is
a q-exceptional forest of (D, R, P)-labeled trees.

Our analysis towards the classification of exceptional forests is going to use
various transitive properties.

(i)  For po: D — R let P,, be the property that p||po. This is a transitive
property which is (|D| — |po|)-extendable. Notice that (D, R, P,, )-conditions
are isomorphic to (D', R')-conditions where D' := D\ dom(po) and where
R':= R\ ran(po).

(i)  Let Pp,,p,R;,r) be the property that p maps D; into R; and maps
D\ D into R\ R;. Notice that Pp, p,r, r) is a transitive property and that
it is min({|D1|, |R1|, |D| — |D1l|, |R| — |R1|})-extendable.

(iii) Let I’ be a (consistent) collection of constrains of the form p(d) = r &
p(d') = r'. Let Pr be the property that p satisfies all the constraints in T'.
Notice that Pr is transitive and is min({|D|, |R|}) — |T'|-extendable.

(iv) Let D;;, j € J; (and R;j, j € J}) be partitions of D (and R) into disjoint
sets. Assume that the sizes |D;;| = |R;;| = ¢(2) only depend on i. Let P be
the property that for each ¢ and each j there exists k such that p(D;;) = Ri.
Notice that P is a transitive property which is min;({|J|, |J/|})-extendable.
(v) Let D;; and R;; be given as in (iv). Assume that each D;; and R;; are
ordered. Let P’ be the property that p besides satsifying P is order preserv-
ing. We notice that the property P’ is transitive and is min;({|J;|,|J}|})-
extendable.

Lemma 22 Let ¢ > 2,1 > 1 be fized integers. For any pair of sets (D, R)
with |D| + ¢" + 2¢" = 0 modulo 3¢ + 2 and |R| = |D| + ¢!, there ezists a
partitioning Pp of D into d' := @% disjoint (q + 1)-element subsets
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(forming a collection Ph) and d' — ¢'~! disjoint (2q + 1)-element subsets
(forming a collection P} := Pp \ Pp).

Furthermore, there ezists a partitioning Pr of R into d' disjoint (2¢ + 1)-
element subsets (forming a collection P%) and d'—g¢'~! disjoint (q+1)-element
subsets (forming a collection P} := Pr\ P3).

Proof: Notice that d'(g+1)+(d'—¢""*)(2¢+1) = (3¢+2)(d'—¢'"*—2¢") = | D|
and that d'(2¢ + 1) + (&' — ¢ (g +1) = B3¢+ 2)(d — ¢ —2¢" )+ ¢ =
|D| +4¢' = |R]. =
Now fix a pairing P which: (i) pairs the members in P}, (i.e. the selected
¢+ 1-element subsets of D) with the members of P2 (i.e. the selected 2¢ + 1-
element subsets of R) (ii) pairs the membersin P2 (i.e. the selected 2¢ + 1-

element subsets of D) with the members of P} (i.e. the selected g+ 1-element
subsets of R).

Fix a cyclic order on the elements in each selected g+ 1-element set (i.e. each
member in P} UPE). Also fix a cyclic order on the elements in each selected
2g + l-element set (i.e. each member in P} U P3).

In addition to these fixed choices we consider a selection S which chooses
an emphasized point in each selected subset. Later we will run through all
possible S. Notice that there are 1 modulo ¢ possible selections S. Each em-
phasized point induces an order among the ¢ (or 2¢) non-emphasized points
in the same selected subset (by letting the selected point be the smallest
point in the ordering).

Let pls : D — R be a map which maps the emphasized point in a (¢ + 1)-
element ((2¢g +1)-element subset) to the emphasized point in the correspond-
ing (wrt. P) (2q + 1)-element subset ((g + 1)-element subset). According to
(1) this property (which we denote Pgl)) is transitive and (|D| — 2d' + ¢'1)-
extendable.

Let ”sza) be the property that p maps the non-emphasized points in a given
(g + 1)-element subset (€ P}) onto the non-emphasized points in a (g + 1)-
element subset (€ PL). As noticed in (iv) this property is transitive and
d'-extendable.

Let ’Péz) be the property that p besides satisfying sza)’ also maps the jt®
element (after the emphasized point) to the j** element (after the emphasized
point) 7 = 1,2,...q. As noticed in (v) this property is transitive and d'-
extendable.
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Let 7>§3“) be the property that p maps the non-emphasized points in a given
(2¢+ 1)-element subset (€ P3) onto the non-emphasized points in a (2¢+1)-
element subset (€ P3). This property is transitive and d’-extendable.

Let 73§3) be the property that p besides satisfying Pgs“), also maps the j*®
element to the j** element j = 1,2,...2q.

Let ’Pg**) = PS) A sz) A 7>§3). This is a transitive property which is d'-
extendable. We can also describe the (D, R, ”Pg**))-labeling as arising from
the game Gg,), R) which is a modification of G(p,g). More specifically in G’E%), R)
the adversary has to ensure that the map defines a partial bijection from D
into R. Furthermore, the adversary has to insure that the map:

(i) maps the emphasized point in a g + 1-element subset (2¢ + 1-element
subset) to the emphasized point in corresponding (wrt. 75) 2q + 1-subset
(g + 1-element subset).

(ii) maps (in an order preserving fashion) the non-emphasized points in
any given q + 1-element subset (€ P}) onto the non-emphasized points in a
q + 1-element subset (€ PL).

(iii) maps (in an order preserving fashion) the non-emphasized points in
any given 2q + 1-element subset (€ P2) onto the non-emphasized points in
a 2q + l-element subset (€ P}).

Now let D' := PL, R := P% and let D" := P3, R" := Pg.

The partition P induces an identification i; of elements in D’ and R” as
well as an identification i, of elements in R’ and D” (actually any pair
of identifications 71,2, will do). Let Pgs be the property that p (besides
satisfying Pg**)) induces maps D' — R’ and D" — R’ such that for all
d € D' p~(i2(p(d))) = t1(d). The property Pg is transitive and (d' — gl — 1)-
extendable.

Thus for each selection S we have defined a property Ps. The property Ps
is designed such that

Lemma 23 (D, R, Ps)-conditions are isomorphic to (D', R')-conditions where
D =& — ¢t = P2 ot gnd where |R| = |D'| + ',

Suppose that T' = (d1,71)(d2,72) - . . (dh—1,7h—1)(u) where d; € D, r; € R and
u € DUR s a PU-tree. Then T() := TPs is a (D', R')-labeled PU-tree. For
each PU-tree T we define a forest F(T') by letting F(T') := Ugcz T®). As
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usual all sets are multi-sets. We now focus on the relationship between T" and
F(T). First we divide pairs (d,r) into 6 categories (which are independent
of §):

(1) d belongs to a (¢+1)-element subset A € P}, and r belongs to a (2¢+1)-
element subset B € P2 and P(A, B).

(2) d belongs to a (¢+1)-element subset A € P and r belongs to a (2¢+1)-
element subset B € P2 and —~P(A, B).

(3) d belongs to a (2¢+1)-element subset A € P} and 7 belongs to a (¢4 1)-
element subset B € P} and P(A, B).

(4) d belongs to a (2¢+1)-element subset A € P}, and r belongs to a (¢+1)-
element subset B € P4 and —P(A, B).

(5) Both d and r belong to (g + 1)-element subsets A and B (in respectively
P} and P}).

(6) Both d and r belong to (2¢ + 1)-element subsets A and B (in respectively
P% and P3).

We say two pairs (d,r) and (d',7') interact if at least one of the following
conditions is satisfied:

(1) Both d and d’' belong to A € P}, U P}

(i1) Both r and 7’ belong to B € P4 U P2

(iii) The element d belongs to A € Pj U P}, the element ' belongs to
B € PLUP} and P(A, B).

(iv) The element d' belongs to A € Ppj U Pj, the element r belongs to
B € PL U P} and P(A, B).

Lemma 24 Assume T = (di1,71)(d2,72) ... (dh-1,7a-1)(u,) is a PU-tree in
which (d1,71) s a pair of type 5 or 6 which are not interacting with any
other (d;j,r;), 7 > 1. Then F(T') can be divided into q identical sub-forests
Fi,Fa, ..., F, together with 1 modulo q trees of hight 1.

Proof: Assume (d;,71) is a pair of type 5 which does not interact with any
(d;,r;), 3 > 1. Now fix all emphasized points except the emphasized point
in A € P} and the emphasized point in B € P5. We now want to fix the
remaining emphasized points. There are (¢ + 1)? choices. Of these ¢ choices
produce emphasized point in A and B such that the property sz) is satisfied.
In the remaining (¢+1)%—g choices ’sz) is not valid. Thus no branch survives
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beoynd the first level so we get (¢ + 1) — ¢ = 1 modulo ¢ decision trees of
hight 1.

The case where (dq,71) is a pair of type 6 is treated similarly except that

instead of ¢ choices there are 2¢ choices (where Pgs) holds). And instead of
(g +1)% — q trees of hight 1 we get (2¢ 4+ 1)* — 2¢ = 1 modulo g trees. a

Lemma 25 Assume that T = (d1,71)(d2,72) ... (diy7:)(dig1,Tig1) - - - (un) s
a PU-tree where each (d;,r;) interacts with at least one other (dji,r;1) (7 #
7'y 3,7' <1). Assume that (d;,r;), 7 > ¢ are all of type 1,2,3 or 4 which do
not interact with any pair (di,71),(d2,72),...,(di,r:;). Then F(T) consists
of trees which all have hight < |:/2| + 1.

Proof: Assume that (dj,,7;),(ds,75,)s -+ (djx, T3 )y J1 < J2 < ... < Jk are
all pairwise interacting. Now all (D', R’)-labeled trees will only contain the
edge corresponding to (dj,,;,) because the edges (djL’TjL)’ 7' > 1 either
represent redundant information or incompatible information. In the first
case the edge gets contracted, while in the second case the edge and the part
of the tree which is above it get removed. Thus the maximal number of pairs
(d;,m;),7 < 1 which survives is |¢/2]. All pairs (d;,7;),j > ¢ get contracted
or removed. The top node (u) is the only part of T above level ¢ which
survives. )

Lemma 26 Assume that T = (di,71)(d2,72)...(dh=1,7h-1)(us) is a PU-
tree. Then there exzists a forest F(T') such that:

(i) F(T) and F(T) contain the same conditions (counted modulo q) as F(T').
(i) Both F(T') and F(T) contain 1 modulo q trees.

(iii) The Forrest F(T')' can be divided into disjoint parts F(T )1, F(T)z, ... F(T)p
and F(T )remainder Such that F(T')1,...F(T), are identical and all trees in
F(T)remainder have hight < |h/2] + 1.

Proof: We have already seen that there are trees 11,75, ..., T for some s = 1
modulo ¢ such that Ty, T5,..., T, contain the same conditions (modulo g) as
T. These trees contain pairs (dq,71),. .., (ds—1,7h—1) that can appear in any
order we might wish. So without loss of generality we can assume that each
tree T;, j < s is of a form so lemma 24 or lemma 25 is applicable. Let
F(T) := Ujcs F(T;). Thus with this notation we can assume that F(T')’
satisfies (iii). Now T' contains the same conditions as the forest Ty, T, ..., T
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so F(T) and F(T) also must contain the same conditions. Notice that the
forest F(T') contains |S| = 1 modulo g trees. Finally notice that the forest
F(T) contains s - |S| =1 modulo g trees. ]

Suppose F is a forest of (D, R)-labeled PU-trees. Then F* := Urer F(T),
where (of course) both F and the right hand side of the expression (as usual)
are treated as multi-sets.

Now the forest F* arises as a union of forests F(T')" which consists of trees
with (D, R, Pé**))-labelings. According to the identification in lemma 23 F~*
consists of (D', R')-labeled trees where |D'| = d' — ¢~ = Jﬂigql;l——ﬁqu — ¢!
and where |R'| = |D'| + ¢'~!. Thus we have shown:

Lemma 27 Letq > 2,1 > 1 be fized integers. Suppose that |D|+¢'~* +2¢' =
0 modulo 3¢ +2 and |R| = |D|+¢'. The procedure which transforms a forest
F of (D, R)-labeled PU-trees into a forest F of (D', R')-labeled PU-trees has
the following property:

If F is a q-exceptional forest of trees of hight < h then F can be divided into
two disjoint parts:

(i) a g-exceptional forest of hight < I_%J +1

(i1) @ part of trees each appearing 0 modulo ¢ times.

We now apply the property P,, defined in (i)

Lemma 28 Let D, R be finite sets with |D|,|R| > h + 3¢+ 2. Then there
exists po : D — R with |po| < 3¢+ 1 such that |D\ dom(po)| + ¢'! +
2¢' = 0 modulo 3q + 2. Furthermore, if we let P,, denote the property that
po is compatible to p then a (D, R, P, )-labeling is in a canonical fashion
isomorphic to a (D", R")-labeling where D" := D\ dom(po) and R" :=
R\ ran(po).

Theorem 29 (Classification of exceptional forests) Suppose that ¢ >
2,1 > 1 be fized integers. Let D, R be finite sets with |R| = |D| + ¢' and
suppose that |D| > 4'*1¢!. Then:

There is no g-exceptional forest of (D, R)-labeled trees of hight < 21,
There are g-exceptional forests of (D, R)-labeled trees of hight q'.
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Proof: The upper bound was already proved in lemma 17. The lower bound
follows by repeated use of lemma 26 and lemma 28. The first application of
lemma 28 let us pass from (D, R) to (D", R") where |D"| > |D|—3g—1. Now
|D'| > [D"I+g' 7 42gt |D'| > |D|/(3¢ +2). To ensure that we can repeat this

3g+2
process satisfactorily it suffice to ensure that |D| > 4+14%. O

4.5 Bases

In our lower bounds we first lead to another and more general concept than
that of a (D, R)-labeled decision tree. Let C be a collection of conditions
(branches). If these can be organized into a (D, R)-labeled decision tree the
conditions must be pairwise incompatible and further if p : D — R is a
partial bijection (with |p| < |D| — h) then at least one condition o must be
compatible to p.

A (1, D, R)-basis (or just I-basis when D and R are clear from the context) is
a collection C of pairwise incompatible conditions which for each p: D — R
with |dom(p)| < I contain at least one branch a which is compatible with
p- It is not hard to show that this notion is quite robust with respect to the
choice of I. More specifically, C is an [-basis for some value |D|—h(h+1)/2 >
[ > h(h + 1)/2 if and only if it is [-basis for any value |D| — h(h + 1)/2 >
[ > h(h+1)/2. So when we let | = |D|/2 we could really have chosen many
other values of [.

It is easy to show that the conditions in a (D, R)-labeled decision tree (of
hight < |D|/2 — 1) form a |D|/2-Basis. It would be convenient if the con-
ditions in a (I, D, R)-basis always could be organized into a (D, R)-labeled
tree. This is not (quite) the case:

Example (part 1): Let C consist of the conditions {< 1p,2g >},
{<2p,2r >},{< 1p,1r >,< 2p,rR >} where rg # 25 and

{< 1p,rr >,< dp,2r >} where dp # 2p (and rg # 2g). If |[D| > 6, C is an
|D|/2-basis. To see this let p: D — R be given. If necessary extend p such
that p(1p), p(2p) and p~'(2g) are defined. This is possible when |p|+3 < |D|
(e.g. when |ran(p)| < |D|/2 and |D| > 6). Now notice that there must be
exactly one condition in C which is extended by the map which extends p.
Notice also that the conditions in C are pairwise incompatible.
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Connection Components.

The conditions in the (D, R)-system C cannot be organized into a (D, R)-
labeled decision tree because none of the candidates for the question at the
root (1p?,2p? or 2r?) appears in all conditions. [ )

In [Riis 93C] and [Riis 94A] I showed (for a different but similar labeling)
that each (D, R)-system C can be ‘refined’ to a (D, R)-labeled tree. The
price for this a blow-up in the length of the branches. In this paper I show
a stronger result which avoids this. Consider again the example:

Example (part 2): If we make a dummy refinement of {< 2p,2R >} and
replace this condition by the conditions {< 1p,r >,< 2p,2r >}.er\{2x}
we get a collection C' of conditions which can be organized as a decision
tree. So the dummy refinement allowed us to glue the two connection
components together. Now notice that C' = C + (2p?,2r)(1p?) — (2p7)
so C = C' — (2p7,2r)(10?) + (2p?). Now we can actually write C’ as
[].D; 2R]—(1D?, 13)(23?)-{-(1[)?, lR)(zD?)- ThusC = [ID; 23]—(11)?, 1R)(2R)‘|‘
(1p7,1r)(2p?) — (2p7,2r)(1p?) + (2p?). To check this directly notice that
the condition {< 1p,2g >} appears in each tree in [1p;2g],(1p7,1r)(2r)
and (1p?,1r)(2p?). So counted with signs it appears 1 time. The condition
{< 2p,2r >} appears only in (2p?). The conditions {< 1p,1r >,< 2p,rr >
} rr # 2gr appears in (1p?,1g)(2p?) but in no other trees. The condition
{< 1p,7r >,< dp,2r >} dp # 2p, (dp # lp, Tr # lr,2R) appears only
in [1p;2g]. So all conditions in C appear 1 time in the linear combination.
The condition {< 1p,1r >,< dp,2r >} dp # 2p do not appear in C. It
appears in [1p;2g] and (1p?,1g)(2r) which appears with opposite sign. Fi-
nally notice (after having checked the remaining cases) that the right hand
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side contains a surplus of 1 tree. &

The example shows that a basis C need not consist of conditions which can
be collected as a tree. On the other hand the example also shows that
there is a linear combination %; (—1)"®T; of trees (with signs) such that
p3% (—1)”‘0 = 1, and such that C and ¥; (—I)T(i)Ti contain the same conditions
(counted with sign). It turns out that this holds in general so actually any
|D|/2-basis can be expressed as a linear combination of (D, R)-labeled trees.

Lemma 30 Assume that C is a |D|/2-basis of conditions of length < h.
Then there ezists a linear combination ; A\; T; (A; € Z) of trees Ty, T, ..., Ty,
such that

(i) ZA=1

(ii) The trees T; have all hight < h (< h?) .

(iii) F¢ and C contain the same conditions (when these are counted with
signs and multiplicity).

Robustness: The lemma shows that the choice of [ = |D|/2 is quite arbitrary.
What really matters is that [ do not get to close to 0 or | D| in terms of square
of hights of the trees.

A element d € D (r € R) is a semi-root for C if for each r € R (d € D) such
that (d,r) € a. Wesay d € D (r € R) is a root if it is a semi-root, and it
appears in all conditions in C. Notice that a root can always serve (though
it need not) as the root question in a decision tree.

Lemma 31 Any |D|/2-basis C has a semi-root. Actually if o = {< dy,71 >
yoooy, < diyre >} € C, then there are semi-roots uy,us,...,us, where u; €

{d, s}

Proof: Let a = {< dy,r; >,...,< di,r: >} € C. Assume that neither d;
or r; are semi-roots. Then there exist 7’ and d' such that {< d;,r’ >} and
{< d',r1 >} do not appear in any 8 € C. Let o consist of the pairs in «
which are compatible to {< dy, 7" >,< d',r1 >}. Let p := {< di,7 >,<
d',r;1 >}Ud/. Notice that if p is compatible to # € C, then 8 and o' must be
compatible. As B does not contain the pairs {< d;,r" >} and {< d',r; >}
none of the elements d;,d’,»; and ' belongs to pairs in 8. But then 5 must
be compatible to o which contradicts the assumption that all conditions in
C are pairwise incompatible. O
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In the example 1p was a semi-root (and so was 2p and 2g). The conditions
which did not contain 1p (i.e. {< 24,2g >}) formed a connection component.
We can view C to consist of 2 connection components. The dummy refinement
leading to T¢ ‘glued’ the two connection components together. In general a
basis C of conditions of length < h can contain arbitrarily many connection
components. However the fact that all conditions are pairwise incompatible
ensures that any sequence of dummy extensions (each of which reduces the
number of connection components by one) will never extend any condition
beyond a length of A2

First I show a weakened version of lemma 30. In this version the hight A
of the trees is only required to be bound by A%. This version is actually
sufficient to prove most of our general results.

Proof of weakened version of lemma 30: Notice that C =C + a — a.
Suppose that we obtain C’ from C by replacing a € C by ‘dummy’ extensions
in a point u. If we chose a suitable u we reduce the number of connection
components by one. If u = d for some d € D we have aU {< d,r >: 7 €
R\ran(a)}. If u = r for some r € R we have aU{< d,r >:d € D\dom(c)}.
In both cases we have the equation: C' = C + (di,r1)(d2,72) ... (dr,7n)(u) —
(di,71)(d2,72) ... (dh1,7h-1)(dn) Where o = {< dy,71 >, < da, 72 >,...,<
dp,rn, >}. If C' only contains one connection component it is a decision
tree and thus C can be written as a linear combination 7 — Ty + T3 of
decision trees (just let 77 := C', Ty := (d1,71)(d2,72) ... (dn,7s)(u) and T3 :=
(di,71)(d2,72) ... (dh-1,7h=1)(dn)).

Suppose that the conditions in C’' cannot be organized into a decision tree.
There must be 8 € C’' and a point d € D (or r € R) such that if we re-
place B by all dummy extensions o U {< d,r >} where r € R\ ran(f)
(or d € D\ dom(B)) then the resulting collection C” contain one less
connection component. Again by the same idea as before we can write
C" = C'+ Ts — Ty where Ts := (di,r})(dy,m5) ... (dy, 4 )(u), where Ty :=
(di,r)(dyry) ... (dj_1,7h_1)(d},) and where 8 = {< dj,r} >,< dy, vy >
yoe oy < dy,rh >} In the case C” is a decision tree T" we have C = T" — T +
Ty — Ts + Ty.

As I already pointed out, this procedure terminates before any condition gets
length A(h —1)/2 (or just h?). Thus eventually we construct a forest of trees
Ty, T3, ..., T, which (counted with sign) contains one tree and which contains
the same conditions as C. a
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For the sake of completeness and to make sure later results appear in their
full strength let me show the full version of lemma 30.

Example (part 3): Now consider C* which contains the same conditions
as C except that {< 2p,2r >} have been replaced by all conditions of the
form {< 2p,2r >,< 3p,rr >} where rg € R\ {2r}. Notice that C* is
a basis, and that the conditions in C* can not be organised as a decision
tree. If we follow the approach above and make dummy refinements trying
to make 1p into a root, we cannot keep all trees down below a hight of 3.

However it turns out that we can write C* = [1p;2g] + (2r?,2p)(3D?) —
(2r7,2p)(1p?) + (107?,18)(2r?) — (1p7,1Rr)(2p?). All trees have hight 2 so
our refinement method is not optimal. &

The idea to solve the general case is to avoid making any refinements! It
turns out that this can be achieved by repeately reorganising the tree during
the construction.

Proof of lemma 30: First notice that any basis of hight 2 can be written as
a linear combination of trees T} of hight < 2 such that the linear combination
contains the surplus of exactly one tree. Assume (as part of the induction
assumption) that there exists a basis C of conditions of length < A which
cannot be written as a linear combination of trees of hight k. Clearly C must
contain some conditions of length > 3. We now embed C into a decition tree
which might get hight somewhat higher that A. Pick any semi-root d € D
(or 7 € R). For each r € R (or d € D) consider the collection C{<%7>}
of conditions in C which are compatible to {< d,r >}. Pich a semi-root
for C1<47>} At any stage we have constructed a tree where each node has
associated a condition «. If there exists 8 € C for which 8 € o we can
choose a new semi-root for C*. Notice that each condition a € C have one
pair < d’,7’ > assigned to an edge leading to a leaf. Now pick any é which
is assigned to a grandfather of a leaf. The basis C® consists of conditions
which have hight < 2. Thus we write C as a linear combination ¥; A;C;
with £; A; = 1 and where each C; have one more grandfather node (than
C) for which C° is a decition tree. Let T(C) denote the maximal number
of grandfather nodes for which C% is a decition tree. Assume as part of the
induction assumption that we chose our counter example C such that T'(C)
takes the largest possible value among the counter examples of hight < h.
If T(C) equals the number of ‘leaf-grandfathers’ we can get (by removing
the dummy questions at the top) a basis C’ of conditions of length < h —1
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which cannot can be written as a linear combination of decition trees of hight
< h — 1. This contradicts the induction assumption. a
A g-exceptional system Cy,Ca, . ..,C,y (of hight < h) is a collection of (D, R)-
labeled | D|/2-bases (of hights < k) in which each condition appears 0 modulo
q times while u # 0 modulo gq.

Corollary 32 There ezists a g-ezceptional system C1,Cs,...,Cy of (D, R)
labeled |D|/2-bases of hight < h if and only if there exists a q-exceptional
forests F of (D, R)-labeled trees of hight < h.

Proof: According to lemma 30, we can translate C into a forest F¢ which
contains 1 modulo g trees and which contains the same conditions (when the
multiplicity is counted modulo ¢) as C. All conditions in F¢ have length < h.

Let F :=U; fcj.
The converse implication follows trivially from the observation that the con-
ditions in a (D, R)-labeled tree T' form a (D, R)-labeled |D|/2-basis. ]

4.6 Generic systems

Fix an integer ¢ > 2. Let D, R and J be (big) finite sets. Assume that |J| # 0
modulo q. A (D, R, J,q)-generic system is an assignment A — C4 which to
each g-element subset A C J assign a collection C4 of (D, R)-conditions such
that Vj € J Uas; Ca is a |D|/2-basis.

During my Doctoral work in Oxford I realized that the next technical lemma
would ‘give me everything’. To my friends I always referred to this lemma
as “lemma 49”. Originally I had thought “lemma 49” would be relatively
easy to show (at least compared to the other parts of the proof), however the
lemma surprised me in resisting any formal proofs. Eventually I decided to
settle down for a smaller result for my thesis. But “lemma 49” still haunted
me in my sleep. I often recalled the Danish Philosopher Piet Hein’s wise
words: A problem worthy of attack bites back.

“Lemma 49”: If |R| — |D| = ¢*, then there are no (D, R, J,q)-generic
systems in which all conditions have length < k.

Proof: Assume that G is a (D, R, J,q)-generic system and assume that
|R| — |D| = ¢*. For each j € J let C; := Uas; Ca. As each A C J have [A| =
g the collections C;,Cs,...,Cjs must be a g-exceptional system. But then
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according to corollary 32 there must exist a g-exceptional forest of (D, R)-
labeled trees of hight < k. But according to Theorem 29 there are no ¢-
exceptional forests of hight k (< 2%71). o

We can actually improve “lemma 49” to the following equivalence!!

Theorem 33 The following are equivalent:

(a) There ezists J and a (D, R, J,q)-generic system of hight < h

(b) There exists a g-ezceptional (D, R)-system of hight < h

(c) There exists a q-exceptional forest of (D, R)-labeled trees of hight < h.

Proof: (a) = (b): For each j € J let C; := Uas; Ca. According to the
definition each C; is a |D|/2-basis. Thus if |J| # 0 modulo ¢ the collection
C1,Ca,...,C)g) is a g-exceptional system.

(b) = (¢): Corollary 32.

(c) = (b): Earlier observation.

(b) = (a):  Assume that C;, j € J is a g-exceptional (D, R)-system of
hight < h. Take all the conditions in C;,Cs,...,Cjs and put them into
disjoint classes each containing ¢ identical conditions. Let C4 (where A =
{J1,J2,--+,Jq}) consist of all the conditions o for which g-identical copies of
a was chosen from Cj,,Cj,,...,C;,. We need to show that the map A — C4
for each j has Uas; Ca is a |D|/2-basis. But each condition in C; appears
exactly once in Uas; Ca. Thus Uas; Ca = C;j is a |D|/2-basis. a

4.7 Other combinatorial preparations

In this section we consider quite a different problem related to the sets D
and R. We assume that |D| < |R| and that |R| — |D| € |D|°™). Let n := |D|
and let R, denote the collection of all partial bijections p : D — R with the
probability measure which arises through the following procedure:

(i) Choose a set D' in D by picking each point with probability p

(ii) Choose randomly a set R’ C R such that |D\ D’| = |R\ R'|.

(iii) Choose randomly a partial bijection p : D — R with dom(p) = D\ D’
and ran(p) = R\ R'.

We follow [KPW 95] and will say set S of conditions refines a set H of
conditions if for each o € S either there exists A € H such that a O h or

33



o is incompatible to all conditions in H. The following lemma is a minor

modification of lemma 2D in [KPW 95].

Lemma 34 Let H be a collection of conditions of length < t. Assume that
p < FI)B and pn > 40s. Then for random p € R, with probability at least
1 — e(16p*n3t)° — 279Wr the following proposition holds:

There exists a decision tree Ts of hight < 2s which refines all the conditions
in ‘HP. Furthermore, this remains true even if we add the requirement that
o] <n —jpn.

First a few comments. The above formulation of the lemma is slightly
strengthened compared to lemma 2D in [KPW 95]. First, the conditions in
the 2s-complete system S of lemma 2D were only chosen to be a basis, while
it was actually shown that S could be chosen as a decision tree. Second, the
requirement that |R| = |D| + 1 has been weakened to the requirement that
|R| — |D| < n°() where o(1) denotes an infinitesimal non-standard rational.
For our application let & > 5 and ¢ be finite numbers. Let p = n!/*~! and
notice that the probability is at least 1—e-(1/n)*1=%/%). We can get rid of all
negation by pushing these to the input gates (using the rules =A==V and
—=V= = A). And then using the fact the ~z4, can be ‘expressed’ as V,i4, g

Now by combining this with a standard switching lemma application we get

Lemma 35 Assume that 1, s, ..., 1, is a collection of at most n** circuits.
Assume they all have size s < n* and depth d < h. Then there ezists
s = s(ki, ko, d) and € = €(ky, k2, d) such that if p: D — R is chosen randomly
from R, with positive probability all circuits can simultaneously be ‘expressed’
as disjunction of s-conjunctions.

5 The model theoretical construction

5.1 Forcing setup

In this section we modify the construction in [Riis 93C] and [Riis 94A]. Let
M be a countable non-standard model of Th(IN) over a countable first order

language L which extends the language of arithmetic. We have fixed sets
D:={1,2,..,d},R:={1,2,...,7} CM, d,7 € M\ w. Let Ly denote the
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language L extended with a constant c,, for each m € M. Let Ly (f) be Ly
extended with an unspecified unary function symbol.

We say that p: D — R is a partial bijection if p maps its domain bijectively
onto its range.

For k € N let Px(D,R) := {p: D — R and (d — |dom(p)|)* > d}. We define
P(D,R) := Uken Pir(D,R). The elements in P(D, R) are ordered under
inclusion. An element p € P(D, R) is called a (forcing) condition. We use
letters A, B,C, ... to denote subsets of P(D, R). When (D, R) is clear from
the context we write Py, := Pk(D, R) and let P := P(D, R).

Notice that P, C P, C .... C P, C .... C P, for each r € w. The idea is to
use (P, C) as the set of forcing conditions.

We say that D C P is dense if Vg € PAh € D h D g.

We say that D is quasi-definable if there exists a formula 6(z) € Ly U {R,, }
such that D := {m € M : M kE 6(m)} (the relation R, is defined by
R,(a) < a € w). Notice as an example that P is dense and quasi-definable
(although P not is Ly-definable). We say that pg C P is a generic filter if
(1) Va € peVBEP B C a— B € pg, (ii) Va,B € pey € pay 2 ahy 2 B,
and (iii) For D C P dense and quasi-definable pg N D # 0.

We use the abbreviation pg 1= Ugepq @
Lemma 36 If pc C P is a generic filter, then pg : D — R is a bijection.

Proof: The only problem is to show dom(pg) = D and ran(pg) = R. For an
arbitrary d € D and r € R let Dy, :={a € P: d € dom(a) A7 € ran(a)}.
Notice that Dy, is dense and quasi-definable so D, N pg # 0. Thus for each
d € D and r € R there exists ag, € Dy, N pg, and thus d € dom(ps) and
r € ran(pg). O

Lemma 37 For each pg € P there exists a generic filter pg C P such that
Po € pG-

Proof: Recall that both M and L are assumed to be countable, so there
are only countably many quasi-definable dense sets. Let these be Dy, Dy, ....
According to the definition of denseness there exists a sequence of conditions
p1 Cp2C....e Pwithp; € D;, 7=1,2,... and p; D po. Clearly po € pg :=
{p: p C pi for some k € w} is a generic filter. O
For a sentence ¢ € Ly(P) we define the forcing relation | F by letting

plF ¥ iff (M, pg) | 9 for all generic filters pg 3 p.
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Lemma 38 If (M, jpg) = ¢ for a generic filter pg, then there exists po €
pc C P such that po| F 9.

Proof: By use of induction on the logical complexity of a general formula
¥(&), it is not hard to show that {(@,p) € M" x P : p| F %(cz)} is quasi-
definable. Continuing this argument for each Ly (P)-sentence ¢, we notice
that D:={p € P: p|F ¥ Vp|lF —9} is both quasi-definable and dense. For

the required po take any po € pc N D. |
Lemma 39 For each bounded ¢ € Ly (f), pl F o iff p| F (eg)F = 1.

Proof: Induction on the number of logical constants in . a
Recall that two conditions o and 8 are incompatible (o L ) if there exists
d € D : o(d) # B(d) or there exists r € R : a™(r) # B7*(r). Two conditions
a and 8 are compatible (||B) if they not are incompatible. A subset B C
P is orthogonal if Vo, € B a # B — a L B and is complete if Vp €
Pla € B p|la. A basis is a collection B C P which satisfies both these
conditions (i.e. is both Orthogonal and Complete). Finally we let ||B]| :=
maxges(|dom(B)).

The next lemma allows us to repeat estimates in a scaled down version. More
specifically it allows us to assume that @| - 9 in cases where po| - 9 for some
po € P. This is because the lemma allows us to replace (D, R) by (D', R)
where d' := d—|dom(po)| and then smoothly pass from P(D, R) to P(D', R').

Lemma 40 Fiz p € P, let D' := D \ dom(p) and let d := |D’'|. Define
Pu(D',R') :={p: p isa partial bijection of D' and (d' — |dom(p)|)* > d'}.
Let P(D',R) := Ukey Pr(D',R'). Then P(D',R) = P?, where P* := {j:
p: D' — R 1is a partial bijection and pUp € P}.

Proof: First, we show P? C P(D’,R'). Suppose that p € P?. There exists
ko € w such that d < d < (d— |dom(gU p)|)* = (d — |dom(p)| — |dom(5)|)*
= (d' — |dom(p)|)*. So s € Py (D', R') C P(D', R).

Second, we show that P(D’, R') C P*. Suppose that j € P(D’', R'). There
exists k € w such that & < (d' — |dom(3)|)*. As p € P there exists | € w
such that (d — |dom(p)|) > d. Thus we must have (d — [dom(p U p)|)¥ =
(d—dom(p)] — |dom(3))¥ = (& — |dom())¥ = (@)} = (A~ |dom(p)} > n.
Thus pU p € P and p € P°. O
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Lemma 41 Suppose that B is a basts for P and H C B. Suppose also that
||B|| € w. Then

(a)  plF (Vaen h)F =1 iff p is incompatible with all conditions h' € B\ H.
(b)  p|F (= Vien R)Y =1 iff p is incompatible with all conditions h' € H.

Proof: (a) =: Suppose that p| - (Vaex )P = 1, but p is compatible with
k' € B\'H. Now p' := pUh’ € P and as B is a basis A’ must be incompatible
to all conditions in H. Clearly p’ O A’ so p’ is also incompatible with all
conditions in H. But then (Vaen h)Pe = 0 for each generic filter pg > p
(which exists by lemma 37). This contradicts p| - (Vaen h)F =1.

(a) <: Assume that p is incompatible with all 2’ € B\ H. Let pg > p be
any generic filter (which exists by lemma 37).

Let D:={p' € P: (I»' € H K'||p") or p' Lp}. Notice that D C P is dense
and quasi-definable. There exists a € D N pg, so there exists h € 'H with
hCacCpg.

(b) = / (b) <« are proved by proofs very similar to (a) = / (a) <. O

Lemma 42 Let ey, ¢€s,....,6, u € M, be an M-definable sequence of Boolean
circuits, each of the form €; := Vpen, h. Let By,...,B, be an M-definable
sequence and suppose that t € w such that:

(a) for each 3 =1,2,..u B; CP, is a basis for P,

(b) for each 3 =1,2,..,u ||Bj]| <t,

(c) for each j =1,2,...,u, H; C B;.

Then for every generic filter pg either

(a) forall j € {1,2,..,u}, efG =0, or

(b) there exists jo < u such that €;° =1 and €{° = 0 for each j < jo.

Proof: Let D :={p € P : (35036 € H;, Bl|pAVy € UjcjoH; p L y)or (Vy €
Uj<uM; p L 7)}. Clearly D is quasi-definable. For each po € P, if po is
compatible with some 8 € U;H;, then there must be a smallest jo such that
po is compatible with some B € H,,. Here we use the least number principle
which is valid in M. Now p := h U po € P, and thus p € D. So D is dense.
Thus there exists p € pg N D. This condition p is incompatible with all
h € H;, j < jo. As pc 2 p 2 h € Hj, clearly (Vhen,, h)’ = 1. 0
Recall that M is a countable non-standard model of Th(IN) over a countable
first order language L. As above we have fixed D, R C M with both |D| and
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|R| non-standard numbers. As above the set P of forcing conditions consists
of partial bijections p : D — R with |dom(p)| < d — dv for some k € w. Now
a direct application of lemma 35 gives

Lemma 43 (key lemma) Let 6;,6,,...,0, be an M-definable sequence of
depth < d € w circuits of size bounded by a fized polynomial in n.

Let po € P. There exists p D po, p € P and an M-definable sequence
€1, €2, ..., €, Of circuits together with an M-definable sequence By, B2, .., B, and
s € w such that

(a) for 3 =1,2,..,u each Bj, is a basis for P,

(b) for 3 =1,2,...u each ¢; is of the form Viey; h for some H; C B;,
(c) for each 3 =1,2,...,u, 8; and €; holds in the same generic exten-
sions of p.

(d) foreach j =1,2,..,u ||Bj]| <s.
If we combine the key lemma with lemma 42 we get:

Corollary 44 If 6,,6,,....0, is an M-definable sequence of depth d € w cir-
cuits of size bounded in a fized polynomial in n, then for any generic filter
pc C P either

(a) forallj <u GfG =1, or
(b) there exists jo < u, such that OfOG =1 and GfG =0 for all j < 70.

Corollary 45 If A — 04 is an M-definable map which maps every g-element
subset A C J into a depth d formula 04 which is bounded by some fized
polynomial in d. For each po € P there exists p D po, there exists s € w, and
a M-definable map A — C4 which maps every q-element subset A C J into
a collection of conditions C4 of length s such that 64 and Vpec, h holds in
the same generic extensions of p. In addition it is possible to ensure that the
conditions in each C4 are pairwise incompatible.

Proof: An elementary reformulation of lemma 43. O

Corollary 46 Suppose that there ezists an M-definable map A — 64 of
depth d circuits which are all bounded by some polynomial in d, such that
po| b “A — 04 defines a partitioning of J into disjoint g-element subsets and
|J| # 0 modulo q”. Then there exists a (D, R, q,J)-generic system.
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Proof: Suppose that there exists an M-definable map A — 64 of depth d
circuits of polynomial size. According to corollary 45 there exists s € w, and
a M-definable map A — C4 which maps every g-element subset A C J into a
collection C, of conditions of length s such that 84 and €4 := Vpec, h hold in
the same generic extensions of p. I claim that for each j € J Cy := Us; C4
is a |D|/2-basis. To prove this claim first notice that all conditions in C;
must be pairwise incompatible. If C; contained two (different) conditions
which were compatible, there would be sets A, B > j with A # B such
that some a € C4 are compatible to some 8 € Cg. But then a U B U po| F
“A — 0, defines a partitioning which contains both A and B” violating the
assumption that po forces the map A — 64 to define a partitoning of J into
disjount g-element subsets. Second notice that it suffices to show that C; is
a |D \ dom(po)|/2 basis, as this would imply that it is a |D \ dom(po)| — s?
basis (using the earlier robustness results). But suppose that there exists
p € P with |p| < |D \ dom(po)|/2 which is incompatible to all conditions
in C;. This is a contradiction because po U p € P and in no generic extension
of po U p would j belong to any A in the partitioning. o
Notice that we have the converse in the sense that:

Lemma 47 Assume that there ezist a (D, R, q,J)-generic system A — Cu
where all conditions have length bounded by some standard number s. Let
Counts(q) := Vjes Aas; €4V VaVarp anszo (€aN€B) where e := Viee, h.
Then any bijection f : D — R produces a truth-tabel evaluation violation
which makes Counts(q) false.

5.2 Proof of the main theorem

Proposition 48 Let P be an absolute propositional proof system. Then
there are no polynomial size bounded depth P-proofs of PHP} | ) (bij).

Proof: Assume that there exists d € w such that for arbitarily large n there
exists a sequence 91, %z, . . . , Py, of depth d formulas proving PHP7 | . (bij).
By the compactness theorem there would be a countable non-standard model
M of first order arithmetic which for some non-standard number n there
would be a sequence 1,3, . ..,%.,, of depth d formulas which proves

PHP.  .(n(bij) (viewed within M). But then according to corollary 44 we

must have jo < u such that ¢J’?0G =1 and zbfG = 0 for all 7 < jo. All axioms
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are absolute so v;, cannot be an axiom. All deduction rules are absolute so
¥, cannot be a consequence of any deduction. This is a contradiction. O

Theorem 49 Let M be a countable non-standard model of Th(IN) over a
countable language which extends the language of arithmetic. Let ¢ > 2 be
a standard integer. Let D := {1,2,...,d},R := {1,2,...,7} be fized initial
segments of non-standard length. Assume that 7 —d is a non-standard power
of ¢ and assume that 7 — d < n® for some non-standard infinitesimal §. Let
P the set of forcing conditions be defined as above, and let f be any generic
bijection f : D — R. There are no (D, R, q,J)-generic system if and only if
(M, f) satisfy the Count(q) principle.

Proof: Suppose that there exists a (D, R, g, J)-generic system i.e. suppose
that there exists a M-definable map A — C4 such that Uas; Ca is a |D|/2-
basis. Let {A: (M, f) | ‘f is compatible to some a € C);}. Now according
to lemma 47 this defines a partitioning of J into disjount g-element subsets
violating the Count(q) principle in (M, f).

Conversely suppose that there are no (D, R, g, J)-generic systems. But then
according to lemma 45 and lemma 46 for no d € w does there exists a M-
definable map A — 64 which assigns depth d circuits of size bounded by a
polynomial in |D| which can be forced to violate the Count(g)-principle. O

Proof of Theorem 9: It suffices to show that the Count(q)-axiom sceme are
always forced valid. The Count(q)-axiom sceme is not absolute so propostion
48 does not apply. However if Count(q) is forced false it follows from Theorem
49 that there exists a (D, R, J, ¢)-generic system where all the conditions have
length bounded by some fixed standard number k. Yet according to Theorem
33 this is possible if and only if there exists a g-exceptional forest of (D, R)-
labeled trees of hight < h. But according to Theorem 29 (our classification
of the g-exceptional forest) there are no g-exceptional forest of hight < 2!-!
when |R| — |D| = ¢'. Thus if (and only if) [ is a non-standard number each
instance of the Count(g) axiom scheme always get forced true. O

Proof of Theorem 10: There exist a g-exceptional forest of (D, R)-labeled
trees of hight ¢* (Theorem 29). Thus there exists of a (D, R, g, J)-generic
system (Theorem 33) where all conditions have length bounded by ¢*. This
gives us a substitution instance counts(g) which comes out false for any truth-
tabel evaluation induced by any bijection f: D — R (lemma 47). O
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