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1 Exploring Logical Dynamics: The Main Lines

"Exploring Logical Dynamics" consists of three, not tightly connected parts: a gurvey
of current trends in dynamic semantics (ch's 1-2), a process theory in extendefd modal

logic (ch's 4-9), a bunch of illustrations of these phenomena in various fields (ch's

>10).This introduction sums up what | see as the main points of the ELD monograph.

1 The proposed paradigm: modal logics of process graphs
The core of the book are Chapters 4-9, which propose a mathematical paradigm for the
Dynamic Turn. Process theories can be designetbdsl logics of process grapmot via one

unique system, but as a family varying in expressive strength and deductive power. Thus,
between the lines, the book also presents 'modal logic in a new key' — with its repercussions for
standard parts of logic. In other wortlse book basically proposegjaneral methodologfor

the analysis and design of dynamic systems, with theorems backing up its viability and interest.

2 Three main methods: bisimulation, guards, and correspondence

Now, the question arises at once how one avoids a steaming jungle of new systems. What
provides uniformity in the theory? The answer lies in two general viewpoints and techniques,
which form an independent contribution of ELD, beyond 'dynamics'. The main innovations are
(1) systematic use dfisimulations(in a broad sense), which allows for a model theory on
classical lines, (2) syntactguarded quantifieanalysis, as a 'thermometer' for expressive

power and computational complexity. A third red thread through the book are (3) fnandl
correspondencegf. my 1985 monograph "Modal Logic and Classical Logic"), which identify

the computational import of special axioms on top of the minimal logic for dynamic languages.

3 The tandem approach: both modal and classical

Typical for ELD is a duality between 'modal' and 'standard’ viewpoints. These are two sides of
the same coin, modulo effective translation. (In particular, there is no neethdosing
between the two, as some puritans think.) This style of working again has more general import.
It allows us to use insights from standard logic in the new dynamic logic, instead of setting up
the cottage industries that make so much of computer science disconnected. It also suggests
new process logics that would not easily come up otherwise. A typical example are the new
logics for parallellism in LICS 98 (Section 2) — not discussed in ELD, which concentrates on
sequential actions. First, one finds more delicate simulations involved with operations for 'joint
action'. Next, guarded analysis shows how matching languages skirt the edge of undecidability.



4 The propositional core logic of dynamics: main themes, and repercussions
The ELD framework is an abstract 'propositional logic' of dynamics. This level is very poor.
All the greater the success if one finds significant questions here! By my count, these are four.

(1) General theory of semantic simulations and matching syntactic expressive wittvéhe

1976 bisimulation invariance theorem as a point of departure (Ci2)4Anélysis of 'natural’

process operation&h. 5). Practising dynamic semanticists find this concern abstruse (some

computer scientist find it the outstanding question of their field). Noone knows how to address
this well. It is akin to the vexed question what are 'logical constants'. The ELD proposal reads:
'safety for (bi-)simulation’, strengthening Tarski's '‘permutation invariance'. The key result is the
1993 safety theorem, which cuts down the first-order operations to essentially obvious
dynamic readings of negation, conjunction and disjunction — and thus identifies a natural
'propositional core' for dynamics. In ELD methodology, this is not the end: as we seek
generality across many kinds of simulation. It is a pilot for a type of expressive completeness
result which | would like to put on the agendd&) (nterplay between expressive

power/computational complexity for dynamic logiddere the picture reverses. We use a

dynamic perspective to take a new look at standard logic, finding large decidable fragments.
Main result: decidability of the Guarded Fragment, as a pilot for other systems in Chapters 4,

9. (4) Modal/dynamic reinterpretation of standard lofhapters 8, 9). The general issue how

is identification of 'hidden parameters' in standard modeling: '‘dependence’ is a prime example.
The outcome is a new perspective on standard logic, which might change its teaching. Frame
correspondences determine surprising computational content for formerly '‘anonymous’
standard laws of first-order logic. Over our generalized modal semantics, various dynamic
extensions for the classical language emerge.

5 Striking omissions
(1) No systematic analysis ebmplexityfor decidable dynamic logics: deeper fine-structure

remains unexplored2) No fixed-point version®f systems, so that we miss operations crucial

to real computation.3) No systematic exploration afdditional axiom®n top of the minimal

logics, as in standard modal logid) (No analysis oparallel or 'joint' actionOf course, these
are all obvious next agenda items — and we know more now, two years after ELD's appearance.

6 Relating other dynamic approaches

ELD proposes and develops a modal paradigm. It does not sagttitextapproaches to
dynamics are wrong (linear logic, game theory, process algebra, &c). Wioatd claim, two

years later, is an additional virtue. One can often profitablglyzeother approaches in the
ELD style. A good example is the modally inspired analysis of Chu Spaces (Section 6), and
another the modal analysisgdme logics- which will be the subject of a later ILLC report.



2 Process Operations in Extended Dynamic Logic

This is an extended abstract for a tutorial at "Logic in Computer Science", LICS 98, Indiapapolis,
which was delivered eventually by Maarten de Rijke(whose slides with additional material|can be
obtained via emaiindr@wins.uva.fl The text outlines the main program of guarded first-qrder

analysis for process theories. Further clarifications of definitions and results are in Section|3.

Abstract _ , . . . .
Again, this system is decidable, its propositions are

Modallogic becomes action logic by addinginvariant for bisimulation, while its programs are

programs as in propositional dynamic logic or the what may be called 'safe for bisimulation'. (Roughly

calculus. Modal languages can &eenas decidable speaking, transition relations for all programs enjoy

fragments of first-order logic that admit a naturaf@utomatic zig-zag over any existing bisimulation).

bisimulation, and hence enjoy a good model theory. 10 obtain the full power of fixed-point

Recently, much stronger ‘guarded fragments’ of-firspPerations over all syntactically positive predicate

order logic have been identified that enjoy the sanfi@nsformers, however, one must move to the modal

pleasant features. The latteanserveasricher action H-calculus. Again, the latter system is decidable, and

languagesas well. We will develop the logic Ofit consists of all bisimulation-invariant statements in a

guarded fragments as a form of process theory. ffSt-order logic with fixed-point operators over

particular, moving from sequential to parallel proces®T0c€ss graphs. (This convenient paraphrase of a

operations correlates with moving to first-ordef€cent semantic characterization is equivalent to the

fragments that are close to, or perhaps just over tgsion involving monadic second-order logic.)

decidable—undecidable fence. This line of logics runs into clear limitations, as

it does not handle joint or parallel action. But read on.
1 The modal dynamics of actions
2 From modal to guarded logics

We will start by reviewing the basics. Standard poly

modal logic is a decidable fragment of the first-orddfiodal logic behaves much like a miniature of first

logic of process graphs (labeled transition systenf§d€r logic in its main system properties (effective

Kripke models). It can be characterized Semamica@(iomatizabiIity, interpolation, preservation results).

as consisting, up to logical equivalence, of those first® mechanism that drives this strong similarity is

order formulas which are invariant foisimulation ~ €ssentially the following meta-equation:

Propositional dynamic logic turns this into an - . - .
P y g ML : FOL = bisimulation: potential isomorphism

explicit action language by treating propositions and

programs on a par, adding a syntactic component\We will unpack this terse, but meaning-laden

regular programs, including tests for all propositionstatement somewhat in the tutorial. Of course, modal



logic achieves all this while staying decidableundecidable languages. Guards provide a new take on
Recently, it has become clear these virtues are shadegidable fragments of FOL, different from the usual
by much larger decidable parts of first-order logidivisions (arities, prenex forms, finite variable sets).
A typical example is th&uarded Fragmen{GF), They are rather related to general algebraic techniques
allowing all existential quantifications of the form  of 'relativization' for various undecidable logics.
Another way of pushing the threshold moves
(G & Yy) &0 (xy)

beyond first-order logic tdixed-point extensionsf

Here x,y are finite sequences of variables, and tfbarded fragments. For instance, while transitivity of

‘guard’ G X, y) is an atom in which these variables alielations is non-guarded (and bad for decidability...),

occur, in any order or multiplicity of occurrencehe well-known decidability of modal S4 on transitive

(Rxy, Ryx, Rxyx, etc.). Also, GF has no restriction tgnodels may be explained by translation into a fixed

specifically designated predicates for guards — like tR@INt €xtension of GF, generalizing thecalculus in

special relational guard 'R’ found in modal logic. Th@N obvious way. Decidability of these (modestly non

matrix statementpis again a guarded formula. GHirst-order) systems remains a conjecture at present.

admits of a natural bisimulation analysis, and it is 1he tutorial will cover the basic theory of these

decidable (complete for doubly-exponential time). 9uarded fragments, as compared with full FOL.

With designated guard predicates, one gets tge Connection with process logics

weaker but usefudction-guarded fragmenf-GF,

which makes a principled distinction between stat®uarded languages evidently provide richer process

predicates and action predicates. A-GF enjoys thepresentations than standard modal ones. They allow

same properties as GF (its natural decidability pro@dr complex states (through the use of tuples), and

is even somewhat more 'constructive’). Moreovethereby to more complex transitions between these.

both GF and A-GF have a standard model theory. Our main theme in this tutorial is loosely described by
First-order translation from modal languages the following general 'meta-equation':

into GFexplaingnany known scattered decidability PDL : 2 = ML : GE

results (minimal modal and tense logic, additional

frame conditions). A current focus are decidablghat is, how can we strengthen PDL to achieve the

extensions, explaining even more. For instancBenefits that the guarded language offers over

decidability of Since/Until temporal logic reduces t&tandard modal logic? Read in another way, of

decidability of GF extended with guards that argourse, we have

atomic conjunctions whichre 'pairwise guarded': that GF :? = ML: PDL

is, any two variables fronx, y occur together in at

. . . 5
least one guard atom. What is a good action view of guarded languages~

The location of the 'undecidability threshold" for full/V€ ¢an extend both questions to include fixed points.

predicate logic is a subtle matter here. Allowing (1) The main aim of the tutorial is to demonstrate

matrix statements introducing new free variables, B'IOW one can usefully think of process languages and

(2) arbitrary conjunctions in guards, leads tgecidable fragments of standard logics in tandem. For



instance, the action-guarded fragment A-GF tall&ssertions State atoms R all Boolean operations,
about transitions between complex states where t@stential modal operators <Ry (takingy-state
only evaluations that we make concern those statégrmulas tox-state formulas) and 'lifters' @] T];
(My complaining about the noise changes the stafieom x-state formulag to x+z-state ones).

from one with a defective fan to one with a good fan.)

) Programs.Action atoms Ry, relation composition
GF allows also comparisons across these states. (My '

ith arity fit), i ith arity fit), test 2
complaining made me happier now than | was then(}S“. arity fit), union (with arity fit), tests ¢)

) . projectionsly y (from a largex to a subsey).
In parallel action, we would also wish to decompose '

what happens to components of the state, and NeRggqeis and a truth definition for this language are

have non-atomic, conjunctive guards. (You complaify s in many-dimensional modal languages. In

about the pump, and I'll deal with the fan - and WhQ, tic lar, the lifter holds at anrz-tuple if @ holds

knows, I'll be happier now than you were then.) The jis «_subtuple. That the above is a natural set of

pairwise guarded fragment urges us to state all €rogderators shows, amongst others, in the later 'safety

comparisons between effects from input to output. analysis'.

Actually, in this interplay, the difference between  1heoreexists a straightforward effective

special ‘modal’ or ‘dynamic’ formalisms and theirirsg.angjation from this system taking both assertions

order guarded counterparts becomes slight. So therg,jg programs to formulas of the action-guarded

a real issue (familiar from other areas of app”eﬁagment A-GF. (This extends the usual modal

logic) why we could not use suitable fragments qfansiations.) So, we can either think of a modal

first-order logic directly, rather than go for NeW%ormalism, or of a piece of first-order logic,

language design. whichever seems more convenient. Let us call this
4 Sequential action on multi-states language GSAL (Guarded Sequential Action Logic),

viewed either way. It is weaker than A-GF in that we

4.1 Joint Action over State Tuples . . . .
have fixed action predicates<[: no permutation or

Collective states may have many components. Thciaplication of arguments allowed. One deviant

can be represented by moving from binary tr"’mSiticfréature on the first-order side is its distinction

relations to generdinitary relations Ry between between two sorts of predicate on tuples: state versus

finite sequences of individual states. One language ft%msition assertions. This distinction might seem

this is a many-dimensional modal one, with tW%mpty in standard logic, but we'll give a principled

componentssiate predicates, and action predlcatesa‘ccount in terms of different semantic roles. One

This requires a two-level syntax, as for PDL, pIui?)ther point. We assume that GSAL has identity, but

some book-keeping of arities for both levels (positiophiS is for convenience - and one can do without.

numbers, or with variables themselves as 'positions’).

We will discuss this use of variables in the tutoria#-2 Bisimulation, Invariance and Safety

We outline the main notions and results, skipping tf&isimulations for GSAL are variations on 'potential
technicalities of formal notations or proofs. isomorphisms' for the full first-order language.

Guarded bisimulationsire non-empty families E of



finite partial isomorphisms between two modeéNs, A more laborious argument, again following a modal
N with respect to the atomic state predicates, that aealogue, captures the safe operations. This amounts
closed under domain restriction to sub-isomorphism®, expressive completeness for our key operations.

and which satisfy zig-zag clauses along the atomic

: . . . Safety Theorem The safe operations are precisel
action predicate€.g., using straightforward y P P y

. - _ those definable using (1) atomic action predicates, (2)
sequence notation to denote partial isomorphisms, one

. . . . tests for arbitrary state formulas, (3) projections, (4
requires 'guarded choices' for any atomic action y (3) proj “)

predicate R : relation composition, (5) union.

. . . We can vary a bit on this. Instead of all tests, atomic
If aEb, and M a', ¢ witha' contained ima, y

then there existd such that, for the' contained ones will do, if one adds an 'impossibility negation' ~

in b which matches'. both RN b', d andcEd. on actions. Safe programs describe unions (OR-trees)

. . . of finite sequences of multi-states linked by action
And vice versa with guarded choice frdiio M. g y

steps or projections, with test assertions interspersed.

A first-order formula @ (x) is invariant for guarded

. S 4.3 Basic Model Theory
bisimulationsif, whenevera Eb , then M |= @ (a)

iff N |=(b). We call a first-order formulat (x, y) Guarded bisimulation is like standard bisimulation,

. L . though technically a bit more difficult to visualize.
safefor guarded bisimulationsif, whenever E is a g y

. . . . . . Bisimulations now match finite sequences of states.
guarded bisimulation (zigzagging for the basic action

. . There is a modifiedinravelingconstruction creating
predicates of the language), the above zigzag clauses

hold automatically for the new relation defined by tree models — by marking of objects via paths <atom

) . Ra, b, selected object jh atom %', c, etcetera>.
in the modelsM, N. Thus, safe formulas define

. . . L . ._This can be used for various purposes, amongst others
transition relations that 'stay inside' our simulation

L . for interpolation and preservation properties. Here is a
semantics, i.e. our process realm. The basic property

. . . . | din th f of the Safety Th .
of GSAL is proved by a simultaneous induction. sample case used In the proot of the Satety Theorem
A formula @(Q) istotally distributivein the displayed
Proposition (1) All GSAL formulas are invariant for state predicate if its truth for the union of any family
guarded bisimulations. (2) All GSAL programs ar¢Qj | iJl} is equivalent to that for somej@eparately.

safe for guarded bisimulations.
Distribution Theorem A GSAL formula is totally

An adaptation of a known model-theoretic argumenistributive in the state predicatexQff it can be
for modal logic shows a converse result as well.  defined in the form #>Qx, where mis a safe
program as described above whose test conditions on
Invariance Theorem For all first-order formulas, . . . .
intermediate states do not involve the predicate Q.
the following two assertions are equivalent:
(1) @ is invariant for guarded bisimulations The dual nature of GSAL invites comparison with
(2) @ is definable in GSAL. action predicates. A characterization for their total
distributivity looks rather different. The tutorial will

highlight such state-action differences occasionally.



4.4 Decidability and Axiomatization Finite distribution for action predicates is still open.
GSAL is decidable, and it even has an effective Finitéotice that defining state assertions by fixed points is
Model Property, because the action-guarded fragmertdt the same as defining new programs or actions by
has(via a direct Reduction Lemma for validfixed points. (E.g.p-calculus only has the former.)
sequents). We have a proof on probation to the effect that
Valid principles are much as in *-free PDL. FOIGSAL extended with fixed-point operators for state
completeness several proofs exist (many-dimensionakdicateslefinedby theaboveoperationss decidable.
modal logic, other representation methods, prooflt generalizes the standard Fisher-Ladner filtration

theoretic modification of GF decidability arguments)argument for PDL.) This is one instance of a general

4.5 Iteration and Fixed Points Conjecture GSAL with fixed-points is decidable.

Computation has a special interest in fixed points thafyeeq, a similar conjecture is around for the full GF.

can be reached iw steps. In our first-order analysis,Fina”y' Lyndon-style preservation theorems for

PDL-style operators suffice for atb—fixed points ,nqtonic operations also generalize to GSAL, as do

HQ-¢(Q) that can be computed with a mat®Q) \arious Craig-style interpolation properties.

involving one suitable occurrence of the atonx.Q

Semantically, generab-stability follows from Finite 4-6 Moving to the full guarded fragment

Distribution (i.e.,¢ holds of Q iff it holds of some The tutorial so far has developed the basic model

finite subpredicateQg). The latter allows more theory of action-guarded first-order logic with the
general forms of definition with a finite number ofadditional restrictions on guards imposed by GSAL.

suitable occurrences of Q. Full first-order logic has @ne can do the same analysis, first for the extension
simple syntactic normal form for finite-distributive®f GSAL which allows permutation and duplication

operators: of arguments in action predicates. Then, new 'safe’

operations will appear, reflecting such permutations.

HQ* Q) where the occurrences of Q-atomspin Next, one moves to the full Guarded Fragment,

lie only in the scope of logical operator§ [ [J whose quantification patteffy (G (x, y) & @ (x, Y))

. . . . allows assertions linking up input and output states. In
For GSAL, a similar syntactic classification exists. It gupinp P

. . this case, partial isomorphisms will ‘accumulate' in
involves the existence of an AND-tree whose steps P P

. the zig-zag conditions for bisimulation. This will
are safe actions, and whose nodes may now carry

both Q-free test conditions and atomic tests involvinsghOW In new ‘safe" operations lieim(R) (x, yz)

Q. defined by 'Rx, y & z=x'. But the main structure of
the preceding notions and results remains the same.

Finite Distribution Theorem For GSAL state 5 pgrallel action, polyadic modality

formulas ¢, the following are equivalent: (1 is

finitely distributive in Q, (2)p states there exists one2-1 Polyadic Modalities

out of some set of finite action trees as just describefin® languages GSAL and GF were still sequential.
To describe parallel action, one needs conjunctions of

guard atoms, which are known to skirt the decidable
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undecidable boundary. Using conjunctions, one can

describe genuinely parallel actions, such as productg:onJecture The action-guarded fragment with

separate action and state predicates, but extended
RxS takesabtocd when (1)aRc, (2) bSd with arbitrary conjunctive guards is decidable.

Many variations are possible here (including mergésnatural proof strategy is the usual modal unraveling
as in Process Algebra). To describe such compouvia finite tree models. In its wake, PGAL with
transitions, GSAL must be extended at least to whatlyadic modalities using any conjunctions of action
maybecalled GPAL (Guarded Polyadic Action guards would be decidable. Next, what happens if we
Logic) with polyadic modalities<R, S>. GSAL can add fixed point operators to this parallel action logic,
express a local version viewing the two outcomesn state or action predicates. Do we keep
separately: decidability? And, is there a difference between the

<R, S> (A, B) =[zu (Rxz 0 Syu OA(Z) OB(u)) two versions?

This reduces to a conjunction of GSAL formulas. Bu?'s Parallel Bisimulation

we want to combine compound action with assertion%uarded bisimulations for GSAL can be extended to

that describe the total result achieved, i.e. the strongsépcter bisimulations for the richer language PGAL.

This requires additional zig-zags for joint actions.

<R, S> Q =[kzu (Rxz O0Syu 0Qzu) Eg

Th|.s forn'wat is n(?t guarded, 'or e'ven pairwise gu§1rded. If aEb, and R'C’, Sa"c" , there must bel’, d
(It is an interesting generalization of modal logic aUvith Ro'd', Sb'd" such that'c” E d'd"
the same.) General decidability results do not apply.

We will present a simple example showing that This combines the results of two actions undertaken

from a single collective state. We will discuss the fate

Proposition Allowing arbitrary conjunctions of . . . .
of the earlier key results on invariance and safety in

guards makes the guarded fragment GF undecidableh. . . . .
this setting. In particular, can we find expressively

Thus, at least in principle, parallel action is connect&@MPlete sets of operations for parallel actions?

with the decidability-undecidability frontier. Some Relevant References

; [1] H. Andréka, J.van Benthem, & I. Németi, 1998,
5.2 Complexity Thresholds 'Modal Languages and Bounded Fragments of

Closer analysis of the dangerous examples shows tRegdicate Logicy. of Phil. Logic27, 217 — 274.
their syntactic forms mix state predicates with actig] J. van Benthem, 199&xploring Logical
predicates. But this intuitive distinction seems equaIR/ynamlcs CSLI Publications, Stanford.

justified for parallel action. Hence, we must backtradg] E- Gréadel, 1997, 'On the Complexity of the
Guarded Fragment', preprint, Dept. of Informatics

from the current front-line in pushing decidabilityand Mathematics, RWTH Aachen.

upward from GF. Instead, retreating to the actiofs) marco Hollenberg, 1998,0gic and Bisimulation
guarded fragment A-GF, another way of striking c)Lﬁh.D. Thesis, Philosophical Institute, Utrecht.

from there is to keep the separation into two predicdfd M. Marx & Y. Venema, 1996Multi-Dimensional
) ] ) Modal Logic Kluwer, Dordrecht.
roles, but then, allovarbitrary guard conjunctions.
M. de Rijke, 1993Extending Modal LogigsPh.D.

- initions. ) [6!
(See Section 3 for sharpenedup syntax definitions.) Thesis, ILLC, University of Amsterdam.
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3 Guarded Quantifiers: Questions and Variations

The Guarded Fragment is a large modally inspired decidable part of first-ordef logic,
whose 'instrument of variation' is bounding of the range of quantifiers by atgms.

We consider some natural variations on the original Guarded Fragment

and present a number of new observations plus open questions.

3.1 Decidable fragments: extending GF
The Guarded Fragmeimif first-order logic allows only the bounded quantifier pattern

Oy (R, y) & @lx, y))

where the 'guard atom' G may have occurrences of the variables in the finite sequences
X,y in any order and multiplicity. GF is decidable (Andréka, van Benthem & Németi
1998), indeed complete for doubly exponential time (Gradel 1997). This generalizes
many standard modal logics. But, in order to translate, e.g., Since/Until temporal logic,
or pair-arrow logic, one needs the larger Loosely-Guarded fragment (LGF) ef first
order logic, which allows

conjunctions of atomic guards the above position R(y), provided
each pair of distinct variables fromyy occur together in some guard.

(Pairs taken from the parametexs may have their co-occurrence outside of the scope
of the existential quantification, as this may be imported up to equivalence.) LGF is
decidable as well, by an extension of the original quasi-model argument for GF (van
Benthem 1997A). Given its description, a better name for LGF might Heatineise
Guarded Fragmen(Maarten Marx has suggestedcked Fragmeras a better name.)

With pairwise guarded conjunctions, we seem to reach a clear complexity threshold.
Not admissible, on pain of undecidability, ambitrary conjunctions of guards:

Proposition GF extended with arbitrary conjunctions of guards is undecidable.

Proof (van Benthem 1997B) The 3-variable fragment of first-order logic is undecidable.
Here is an effective reduction. Any 3-variable formwais satisfiable iff its guarded
relativization (Y to some new ternary predicate U is satisfiablefirlaCartesian
product U = DxDxD. The latter can be expressed as the satisfiability of a formula
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(@Y & CART(U)

where CART(U) gef () [Xyz Uxyz & (ii) Oxyz (Uxyz —» & U-followed-by "all
permutations and identifications among {x, y, z}") & (iiDxyzuvw ((Uxyz & Uuvw)
- & U-followed-by "all selections of three variables from among {x, y, z, u, v, w}").
Note that the latter formula is in GF with added conjunctions of guards. ]

3.2 Decidable parallel action fragments: backtracking from GF

As we saw in Section 2, process logics may suggest other useful decidable fragments,
which backtrack from GF, so to speak. Basic modal logic has a distinction between
what may be called 'action predicates’ Rxy that jump across accessibility links (from x
to y), and 'state predicates’ Px making some static assertion about the current state x.
This distinction is obliterated in GF, whose predicates may be viewed indifferently as
describing moves between states, or as descriptions of fixed states. Now, our idea is
that by maintaining such a distinction, we can be more liberal with quantifier bounds —
and in the limit, allow any conjunction at all. The motivation for making this extension

in Section 2 was the study of parallel processes over tuples of local states. In this
setting, we can interpret the negative result in Section 3.1 as sayinmtoattrained
parallellism leads to undecidabilitydut what if we design things more delicately?

Thus, we distinguish between state atoms &hd action atoms Xy from the start.

The comma in action atoms serves to separgiat stateson the left fromoutput
stateson the right. The total language will have both 'action formulas' and 'state
formulas’, whose syntax can be manipulated independently. Here are some options.

GSAL1 Action formulas Rx,y
State formulas Qx, Booleans,lyy (Rx, y & @(y))

This 'guarded state-action language' describes transitions from an old state to a new one,
without cross-comparison between old states and new ones (as in a GFgpatyy.

The input-output distinction has various effects. E.g., action atoms Rx, y are very
different from their converses Ry, x. Moreover, the above restriction to only action
guarded quantifiers has the effect of making every formula depend on some initial
tuple of free variables. Thus, all formulas in GSAdre 'local’: one cannot form closed
sentences. As in ordinary modal logic, the natural definition of 'satisfiability’ then refers
to local truth at some tuple of states in a model. 'Global satisfiability', in the sense of
truth at all tuples in a model, will turn out to be a much more powerful notion.
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If some input states are to persist as output, we need further atoms like Rx, yx, while
guantifiersCly only range over theew components of the output state. Naturally, a
matrix statement may now refer to these neplus the persistent. Allowing all this

turns GSAL1 into GSAL2. Both languages are effective parts of GF, and thus inherit
its decidability. Note that their syntax has no explicit operations on action predicates.
Section 2 shows whickafeoperations can be added, however — mainly suitable 'choice’
and ‘composition' — without increasing the expressive resources of these fragments.

This is all 'sequential’ action. Genuing@lgrallel versions enrich the action formulas by
(unsafe!)conjunctions while imposing various constraints on quantifier patterns.
Quantifiers then collect all output states mentioned in conjunctions of afdrxs y .
Moreover, to emphasize that the new objects form a coherent state, one may require the
occurrnce of an atomic guard, either over the nygvor over the new plus the
persistenik. We list some options. But before proceeding, a warning may be in order.
The purpose of all this variation is not to create a boring catalogue of formal languages
— but rather, to demonstrate the effect of various expressive resources on decidability.

P-GSAL1 Action formulas Rx,y, conjunctions
State formulas Qx, Booleans,[y (& Rx, y & @y))

P-GSAL1*  Action formulas Rx,y, conjunctions
State formulas Qx, Booleans,[y (& Rx,y & Qy & ¢(y))

As before, both languages allow only 'local' formulas, describing some tuple of states.
The second fragment is obviously a part of the filsStGSAL2 and P-GSAL2" are
defined analogously, but now allowing input states fsota reappear as output states.
None of these languages lies inside GF (even though P-&3#lds strong guards):

Oy1y2 (Rx1, Y1 & RX2, Y2 & Qyiy») is in P-GSAL", but not in GF
Cy1y2 (RX1, Y1 & Sxo, Xoy2 & Qxoy1y2) is in P-GSAE", but not in GF

Now we make some observations about decidability.
Proposition Satisfiability in P-GSAlL" is decidable.

Proof We start from the original quasi-model decidability proof for GF (cf. Andréka,
van Benthem & Németi 1998, van Benthem 1997A), with a universe of 'types' (sets
taken from the finite family of relevant formulas) satisfying suitable closure conditions.
From this, we constructed paths of types recording which formulas are true at any stage.
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We modify this idea slightly, allowing types that describe desired behaviour on only
some subset of the variables. Transitions extending a path are triggered explicitly by
existential formulaslly (& Rx,y & @(y)) occurring in the last type so far, with the
‘changing their values' — while the new end-type only has fornnitadree variables
among they . As a result, the 'life-time' of the input variables ends at such a step.

In the model construction, we use objects X) as before, where x is among the active
variables at the end of the path For the interpretation of predicates, we set

(@) a state atom @ is only true of a tuple of objects if these lie on the same path,
and were introducesimultaneouslyat the final transition, whose result-type
contains the atom with the variables of ttie(in the same order)

(b) an action atom @ e is only true if all its objects lie on the same path,
and the atom with the corresponding variables plugged in (as in (a))
occurred in the conjunctive action prefix of some transition.

Each path has an associated assignmgniesined on the variables in the last and-one
but-last types of the path, sending x to the objett X) , wheret is that subpath of

1t in which x was changed last. Clearly, action atoms will only hold between objects
in the one-but-last and last stages. The Truth Lemma then says that

a (relevantptate formula ¢ holds under the assignment
of a path iff @ literally occurs in the last type of that path

As in the original decidability argument for GF, there are two cases of major interest.
(1) First, consider statatoms Qx . If Qx is in the last type offt, then — by our
restriction on result-types of path transitions — its variables were among those affected
by the final change. So, we have the above condition for truth of the atom. Conversely,
if Qx is true under 1, this can only have happened by a simultaneous introduction
on 1T, with Qx explicitly present.Z) Now consideexistential quantifiersdy (& Rx, y

& Qy & @y)). If the latter occurs in the final type, then it is true — by an argument as
for GF: one looks at the obvious path extension triggered by the existential formula.
The crucial case is when such a formula is true ungerwhile it should occur in the

last type of rt. Let some tupled of objects satisfy the specified action predicates, plus
the state guard YQ and the matrix statemenj(y) . By the definition of true action
predicates, thed must have been introduced following the end of the current path.
Moreover, as the state atomy Qiolds, they were introduced together in one transition,
resulting in one final typeA (i.e., they do not lie on separate forks) containing. Q

Call this extended pathtt . Its s-assignment sends the variabjego the objectd .
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By the inductive hypothesis theigy) occurs inA, the last type oftt . But then, by
an obvious existential closure condition on quasi-models(&Rx,y & Qy & @(y))
occurred in the type before that, which was the final typa of [

We think that P-GSAL (without the guard condition on new state tuples) is decidable,
too. But the above proof method does not work, since there is no guarantee that the new
states introduced by a true existential quantifie(& Rx, y & form a 'simultaneous set'
introduced in one parallel action step. (Different y might come from different steps.)
On the other hand, various parts of the above argument seem to admit of generalisation.
As for the two stronger languages P-G2AInd P-GSAb*, we leave their decidability

as an open question. Finally, note that the above proof is about local satisfiability only.
It does not settle the decidability gibbal satisfiability. This issue will return below.

3.3 The danger zone: encoding tiling problems

Let us now approach these issues from a different angle, and see where undecidability
strikes for sure. Consider the embeddingilofg problems The undecidable task is to

put coloured tiles on the infinite grid NxN, with some finite set of colours, and tiles
having four coloured edges, subject to the constraint that adjacent tiles have the same
colour along their boundary. First-order formulas expressing the relevant constraints
have a definite P-GSAL flavour, with actions do(one step nor)h E (o one step

eas) and state predicates Cx for the colours. Here are some examples. Adjacency of
colours can be expressed by straightforward universal conditions of the form

Ox: Oy (Nx,y- (Cix - OCyy))
Ox: Oy (Ex,y- (Cix » LCyy))

where the unary predicates; @escribe the various possible kinds of tiles. General
behaviour of colours is expressed by conditions of the form

Ox: "atleast and at most one C holds of x"

Next, the cruciagrid patternseen from x is expressed by the assertions
Ux: Ly Nx,y Ux: Ly EXy

and more importantly,

Ox:  Oyz ((Nx,y & Ex, z)» [l (Ey, u & Nz, u))
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These assertions lie in P-GSALmodulo one unbounded universal quantifier in front.
Let us call their conjunction TILE. Now it is not hard to prove the following

Fact NxN has atiling iff TILE is satisfiable.

Proof Here is a sketch (for detailed arguments of this kind, cf. Spaan 1993, Blackburn,
de Rijke & Venema 1998). Clearly, if a tiling exists, NxiSelf, suitably expanded,
verifies TILE. Conversely, consider any model for TILE. It is easy to define a map f
from NxN, sending the origin to any point in the model, with the following property:

if y is anorthern (eastern) neighbour of x, then N f(x), f(y) (E f(x), f(y))

To see this, use the last three formulas above repeatedly to construct a grid of squares
X Ny E u, x EzN u, which provides all necessary f-values. Then, a colouring for
NXN meeting all constraints can be copied from the C-behaviour of the f-valulls.

3.4 Analysis: what causes undecidability?

What does this tell us? Firdhe expressive power of parallellism comes close to
encoding gridsand hence undecidable tiling problems may arise. But the undecidable
encoding does not quite lie in P-GSAIWe needne unbounded universal quantifier

in front to make TILE work — whose dangers are well-known. Spaan 1993 shows how
decidable modal logics can become undecidable with this simple addition. She states
this in terms of adding a 'universal modality' to the logic, but also observes that one
such modality in front, i.e., our earliglobal satisfiability would do the harm already.

An alternative would use only those points (in models for TILE) reachable from some
fixed origin by a finite number of E, N steps. This usaasitive closureof the relation

NCIE, which is again outside our fragments — and even more dangerous for decidability.
Spaan 1993 shows that the latter can embedtpdard problem of 'recurrent tiling'.

(For later use in Section 3.5, note that transitive closure is a fixed-point operator on
relations, not on propositions.) Thus, a mixture of encoding grids plus some weak form
of universal prefix quantification will make process logics undecidable.

Nevertheless, things are a bit delicate. For instance, adding one universal quantifier up
front to the non-conjunctively-boundé€sluarded Fragmentloes no harm! (Cf. van
Benthem 1997B for similar observations for 'Sofia fragments' in extended modal logic.)

Fact Satisfiability in the GF with one universal prefix quantifier is decidable.
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Proof Start with any type containing a few universally quantified guarded formulas x
0x @ (x) . Add all instances [u/g] (for the relevant variables u ) to the types in the
quasi-model. The original tree-model construction will still work as it stands — and it is
easy to show tha®p will hold for all tuples of ‘path objects' of the fornm, (1). |

Recall that minimal modal logic plus a 'universal modality' remains decidable. Thus, it
is the mixture of parallellism and universal quantification that generates undecidability.
As to extensions of our observation about GF, Marx 1997 presents undecidable modal
logics with characteristiziniversal Hornframe conditions. Therefore, allowing
universal prefix quantification over larger tuples seems problematic already.

Excursion  Maarten Marx has an interesting view of GF as a 'monadic language'
defining properties of 'generalized objects’', which may clarify the general situation
discussed in this Section. The P-GSAL family generalizes the admissible 'properties’
while trying to stay away from having genuine ‘'relations' between generalized objects.

Finally, there is another feature to our tiling argument. The formulas in TILE did not
satisfy the syntactic constraint of the langud®®SAlL* , that new objects in
guantification must come simultaneouglyardedby some state predicate Q. This
seems less serious. We can modify the definition of TILE by using a trivial unary
predicate P atll points, as well as a trivial binary predicate Q at all point pairs:

Ux:  Px
Oxy:  Qxy

Without the (double) universal prefix quantifiers allowing this trivial obedience, it is
unclear how to modify the necessary grid encoding, and get things right for proper
tiling within the syntactic constraint on outputs imposed by PGSAL

Clearly, adding parallel constructions (through conjunctive guards) comes close to
undecidability. On the other hand, it need not do so in general (withess the decidability
of PGSALL), and it seems harmful mainly in league with universal prefix quantifiers.
We leave the investigation of intermediate possibilities open. For the moment, we hope
the preceding has sufficiently illustrated our main concern: probing the effects of
expressive power on decidability in a sensitive manner, guided by guarded analysis.

Remark One can also investigate the above fragments for other nice logical properties.
Here we just recall a point abdoisimulation As stated in Section 2, the distinction
between state predicates and action predicates can be supported by assigning them two
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different roles in the definition of guarded bisimulations. Action predicates regulate the

picking of suitable tuples of objects in back-and-forth moves, while state predicates
determine what counts as a 'partial isomorphism'. This has all kinds of effects on further
model-theoretic properties. E.g., we have two kinds of monotonicity now.

Remark The notion of 'partial isomorphism' may have to change, too, because of the
special status aflentityin our fragments. Identity statements lik§ (Rxixo, y & ... &

y=x1 & ...) circumvent the distinction between input and output states, and their effect
is therefore hard to predict. But without identity, the characteristic bisimulation must be
adjusted, even for the guarded fragment GF itself. The basic building blocks will now
be binary relations between finite tuples of objects of the same length (which do not
necessarily decompose into functions, or even binary relations as sets of ordered pairs)
— or alternatively, binary relations between finite variable assignments.

3.5 Fixed-point extensions

Even strong guarded langauges like GF or LGF leave the decidability of several well
known decidable modal logics unaccounted for. The key example is rKddal
Transitivity of frames, expressed by the first-order formula

Oxyz ((Rxy & Ryz) - Rxz))

is not pairwise guarded, as the variable combination xz is not guarded anywhere. Also,
results like the decidability of the two-variable first-order fragment do not apply:
transitivity needs essentially three variables. Then why is K4 (even easily) decidable?
There are two possible lines of attack here. One extends the syntactic scope of GF and
its ilk, to find still broader decidability results. We doubt this is feasible. Transitivity is
dangerous: it is known to make first-order fragments undecidable (Borger, Gradel &
Gurevich 1996). But there is a way-out, by an alternative diagnosis of K4's decidability,
transcending first-order logic, while retaining the key role of bisimulation invariance.
Recall that propositional dynamic logic (or tipe-calculus) is decidable. Now it is easy

to see that K4 is precisely the logic of any iteration modalify} ,[an which we do

not impose any special frame restrictions at all. This is a genuinely different strategy.
For, the PDL-language does not define transitivity! Like the basic modal language, it is
invariant for bisimulation(the infinitary conjunctions needed to define iteration do not
affect this), while transitivity is not. So we would need a counterpart tpittealculus.

Question Find decidable fixed-point extensions of the Guarded Fragment.
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The current conjecture is that these exist, generalizing the medalculus, perhaps
using the 'tree model property' highlighted by Moshe Vardi. But there is a subtlety here.
The p—calculus has only part of its possible fixed points, viz. those defined by recursion
over state predicatédsBut one can also use fixed points for new program constructions,
recursing oveaction predicatesE.g., transitive closure ap is mimicked by setting

uge <a>p O<a>q

But the natural recursion® & ald a;d over binary relations is not expressed directly.

| do not know if thep—calculus remains decidable when adding the latter version.
Likewise, state recursion and action recursion are two different ways of adding fixed
points to GF and its ilk. For instance, the finite approximations for state predicate-based
fixed point equations remain inside GF, whereas those for action predicates need not.
To see the latter, note that substituting an arbitrary guarded formula for a guard atom
need not produce a guarded formula (substitutexy for Axy in [y (Axy & Qy)).

Only 'safe’ formatsy (a(x, y) & ...) have this substitution property, which unpack into
iterated guarded quantifications. In this connection, recall the above discussion of tiling
problems, where a transitive closure of action predicates N, E ledlexidability

On a simpler note, for many practical purposes, it suffices tdinisely distributive
operators, whose smallest fixed point occurs uniformly after at mo#eration steps
(cf. Sections 2 and 4, 7 below, which claim decidability for the state predicate case).

3.6 Finite models

Another topic of interest is the behaviour of GF and its variationnda models
Andréka, van Benthem & Németi 1998 show that GF has many of the 'nice' properties
of first-order logic. Typically, such properties are lost for full first-order logic in Finite
Model Theory. But for GF, some of them transfer immediately to finite models,
because of itfinite model propertylndeed, for basic modal logic, we know all its nice
meta-properties hold on finite models. Which general transfer principle is at work here?

3.7 Interpolation

Maarten Marx and Eva Hoogland have just shown that GF lacks Craig Interpolation.
(It does have generalized interpolation in the sense of Barwise & van Benthem 1996.)
This raises the issue what interpolation behaviour is exhibited by the above fragments —
and whether such behaviour may serve as a guide toward identifying useful ones.
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4 A Beth Theorem for Process Operations?

Here are some speculations about process operations by entirely classical means.

The setting is not relational algebra (as in safety theorems), which stays insjde

single process graphs — but rather model constructions over process grapis.

1 Operations on process graphs

Think of processes as represented by process graphs (LTSs, polymodal Kripke models).
Process operations are defined as operations F (A, B, ...) creating new graphs out of old
ones, which mustespect bisimulationThat is,

if A bisA, BbisB, ..., then F (A, B, ..DisF (A, B, ...).

Examples araddition A+B (joint rooting, offering the options of botlgequential
product A+B (substitution at the end, continuing with B after A has been completed),
or parallel productsAxB (performingbothprocessesimultaneously in the left and right
components of ordered pairs). Further examples abound (polarity flip, merge, iteration).

Onewouldlike tofind restrictechaturalspace®f process operationgreferably through

some kind of semantic invariance, invoking a version of the Beth Definability Theorem.
Thus, standard model theory would apply, as happens in Marco Hollenberg's 1998
Ph.D. thesis "Logic and Bisimulation" (Philosophical Institute, Universiteit Utrecht).

2 Defining operations by first-order theories

To represent matters in standard model theory, take models with new unary predicates
A, B, ... for disjoint argument domains (with a union O (= 'old’)) and a predicate N (=
'new') describing a disjoint value domain. Together, O and N exhaust the whole
domain. The A, B, .. and N-components may be viewed as submodels for some
language L describing the internal structure of the process graphs. In addition, to
describe relevant relations between the argument and value domains, we add new
predicates C 'connecting’ objects in O to those in N . The latter may be identical with
old objects (as happened in the above suamd sequential produef), but they may

also be new things, created by some construction (such as the ordered pairs in a parallel
product x ). Thus, we view the operation F as given by a class of models of this
similarity type, where the additional vocabulary may satisfy a number of constraints.
The above process operations may then all be specified in the following format:
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I uniform first-order definition of the new objects in the value graph
involving finite sets of objects in the arguments (possibly with some
new object with a unique function, such as the new root added-i) A

I uniformfirst-orderdefinitionof the L-predicates among the new objects in
termsof theL-predicate@mongheoldobjects related to them in clause | .

Thus, F is defined by some first-order theory Whose models allow for this schema.
Let us say, in this case, that T h&@PDP, theconstructive definition propertyWhen

do first-order theories have this definitory character? We want a semantic criterion,
matching some natural way of thinking about process operations.

3 Unique extension properties
Instead of bisimulation, let us first lookiabmorphismThe semantic feature matching
the above intuitive formulation seems to be this:

Any partial L-isomorphism f matching the O-parts of two T-models
has aunigue extensiorio some total bijection*fbetween these models
which is even amsomorphisnwith respect to the full language L+C.

Let us say, in this case, that T WB®, the 'unique isomorphism extension property'.
This says, more informally, that the semantic behaviour of the old objects 'enforces’ that
of the new objects introduced by the operation.

4 A Beth-type theorem?
Our natural conjecture would be the following kind of Beth theorem:

A first-order theory has CDP if and only if it has IEP.

Although | got some way toward proving this, | did not yet arrive. We are trying to turn
‘dependence’ (in the sense of IEP) into explicit definability (in the sense of CDP). But
what we have seems weaker than Beth's implicit definability. (For instance, even with a
fixed O-part, the root in the construction can be chosen in different ways, and therefore,
different isomorphic 'superstructures' are possible.) One technical trick uses (suitably)
saturatedmodels of T . The identity on the O-part must have a unique extension to the
whole model. This implies that there cannot be non-trivial automorphisms of the value
part extending the identity on the argument part. By familiar arguments, it then follows
that objects must have unique definitions in the full languadjewing arbitrary sets of
parameters in the O-part. This seems to tell us something about the above parts | and Il.
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But these definitions may still be 'local' in one single given model for T . Is then the
additional force of the Unique Isomorphism Extension Property adifesezntmodels
that it enforces more uniformity on these definitions?

5 From isomorphism to bisimulation

| would also be happy witktrengthenedorms of IEP toward an equivalence with
CDP. One natural strategy for this purpose wouldpagential L-isomorphismisistead

of complete isomorphisms. Also, going back to the original motivation on process
graphs, one would like to have good variants vibitimulationinstead of (total or
potential) isomorphism. Unfortunately, then, no unicity seems left (because of the much
rougher identifications allowed in bisimulations) — as may be seen from inspection of
the earlier examples of sum and products. What might still hold as a constraint is the
existence of some uniqureinimalextensiorfor the component bisimulations.

6 More general uses

This analysis might have several benefits. It would make the standard format for
specifyingprocess-algebramperationsnoreuniform from a model-theoretic viewpoint.
Moreover, it would make the route taken in Marco Hollenberg's dissertation less ad
hoc. Its author assumes (with some pangs of conscience) that new process constructions
involve states which arfinite sequencesf old objects, with some uniform finite bound

on their length. It might be that this is an inevitable feature of any first-order treatment.

Addendum

This sketchy promissory note was written in early 1998. Sol Feferman has informed me
in the meantime about two relevant earlier papers. (1) S. Feferman & R. Vaught, 1959,
'First-Order Properties of Products of Algebraic Systefmsidamenta Mathematicae

47, 57-103. (2) S. Feferman, 1972, 'Infinitary Properties, Local Functors, and Systems
of Ordinal Functions', il€onference in Mathematical Logic, London,'Z@cture Notes

in Mathematics 255, Springer, Berlin, 63—-97. In particular, (2) introduces an extension
property for potential isomorphisms, while (1) studies when elementary equivalence for
arguments implies elementary equivalence for values of model constructions. Algebraic
products turn out to be a counter-example. By contrast, the usual operations in Process
Algebra (including both its products!) all have this first-order preservation property.
Thus, one may get a handle on different complexities for proposed process operations.
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5 Modal Fixed Points and Bisimulation

These are some thoughts on Jon Barwise & Larry Moss' intriguing\lioiaus Circles
(CSLI Publications, Stanford, 1996) including a proposed simplification of their prpofs,
a mysterious analogy, and speculations about a broader moral. Larry Moss has some

new

results that seem relevant to our discussion — but they have not yet been referenged here.

1 Characteristic Modal Formulas for Bisimulation Equivalence Classes

Barwise & Moss show that each modal madels has @&haracteristic formulagM in
an infinitary modal language with all set conjunctions and disjunctions. l.e., for all
models N, t, we have an equivalence between the following two assertions:

(DN, t|=M

(i) there exists disimulationbetweenM, s and\, t (connecting s to t)

This is a variation on the well-known Scott Theorem for infinitary logic, with
bisimulationtakingtherole of potential isomorphism, and the modal fragment that of
the full first-order repertoire. (The same characterization was proved independently for
countable models only in van Benthem & Bergstra 1995.) The method of proof goes as
follows. Startingfrom atomic base descriptions, one works in ordinal rounds At

each round, partial descriptior®a, x) are generated for the worlds x M . Let y

range oveall R—successors of x iM . Then the next descriptio®(a+1, x) is
defined to be

the conjunction of all statements &, y)
together with the closure condition [[]3(a, y)

At limit ordinals,onetakesthe obviousinfinite conjunction of everything obtained so
far. One can show that this construction will stabilize at some ordiha(depending

on the cardinality ofM) after which no new descriptions are generated. The resulting
formula 3(a*, s) is the characteristic formula, defining the bisimulation equivalence
class.

2 Characteristic Modal Formulas via Fixed Points

What follows revolves around one simple observation. The above looks very much like
the construction of &éixed point Its template is a description NEf for any modal
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model first given by Jankov and Fine in the Z0ddere is the definition. Take a set of
new proposition letters (different from those in the initial modal language)ome for
each world x inM . Moreover, for each x, let ATbe the conjunction of all literals
in the original language that hold &, x . Here is the major tool in what follows:

E(M) is the conjunction of all statements
px —» ATx & env M, x), where
env M, x) is the formula& rxy <>py & [] UrxyPy

2.1 Computing uniform fixed points
Now, it is easy to establish the following description for all models dfl )E(Let the
symbol = indicate the existence of a bisimulation between two rooted models.

Proposition 1
For any two modal modeld, s andN, t the following are equivalent:

Q) M,s = N,t
(2) N, t can be expanded to a model foME((i.e., the latter statement
holds throughoutM ) such that the predicate; molds at world t.

Note that this amounts to the truth of some monadic second-order formhI|a in

Proof From (1) to (2) Define the predicatesy pin N, t by setting p(u) iff x=u .

All clauses of B{1) hold, by the back-and-forth conditions of modal bisimulation.
From (2) to (1) Define a relation E between worldsih andN by setting x E u iff

u satisfies p in the expanded model for ] . The latter's clauses ensure that u, x
satisfythe same atoms, and that the back-and-forth conditions hold everywherd@

Next, there is a well-known intimate connection between truth of existential second
order formulas and the existencefiaked points This suggest the following alternative
version of the preceding result. Note thatlg( whose 'minimal reading' can be seen as
an equivalence, may be viewed asimultaneous inductive definitidar the predicates

px , all of whose clauses are syntacticgligsitivein all p, . Thus, the associated
semantic approximation operator is monotone. Therefore, every modal Mptehas

a greatest fixed point for the latter operator — say, GFE(M)) — whose obvious
'projections’ to the predicateg gatisfy EM).

1 These formulas were originally used to define axioms for special modal logics ‘omitting- all p

morphic pre-images of some fixed finite set of frames. Van Benthem 1985 has further applications.
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Proposition 2
For any two modal modelM, s andN, t the following are equivalent:

Q) M,s = N,t
(2) N, t]|= (GFPN, EM)))ps

From (2) to (1), this follows directly from Proposition 1. From (1) to (2), we must add
the observation that, if any set of predicates satisfies the implicatiov$ iB(N, with
the root predicate gpholding at t, then so does the greatest fixed point.

2.2 Special classes and specific definitions

The precedingbservationshave further implicationsWe can analyse modal fixed
points in special cases of interest. In what follows, we use the basic modal language for
ease of exposition. But everything we say transfers to a polymodal logic with many
modalities. There aréwo directionshere. Start with some class of models, and
determine its modal invariants — or start with some class of modal formulas, and find
the models which they can characterize up to bisimulation. We start with a
characterization of thinite models

Proposition 3
Each finite model is characterized by a formula of propositional dynamic logic.

Proof Consider any finite modeM . Without loss of generality, we can pass to its
contraction under the maximal bisimulation. The latter model has the following further
property. Two worlds satisfy the same finitary modal formulas iff they are equal
(otherwise, non-trivial bisimulations would occur after all). Therefore, by a standard
combinatorialargumenon finite models, each world x has a unique modal definition
Ox in M. But then, we can describe an explicit solution for the fixed point equations
E(M), by setting the yp equal todx . More precisely, letuy be the infinitary modal
formula

0 E0& Ps

where [[ is the transitive reflexive closure of [], and® Bays that thedy satisfy
E(M) . (Note that this formula is immediately definable in propositional dynamic logic.)
It is evident from the above definition thadl, s itself satisfies JE® & ps. Hence,

any model bisimilar to it also does. Conversely, if an arbitrary mbdidel satisfiespyy

, then the & describe a set of predicateg ps meant in the preceding propositions,
which guarantee the existence of a bisimulation wWiths . (Incidentally, the prefix T
only serves to guarantee that thg solution works in the 'transitive closure' of the root
t, but not necessarily throughot — but that is enough for the argument.) |
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Remark One really needs an infinitary modal formula here. E.g., consider the single
reflexivepoint.ltsfixed pointequationsmerelyp - <>p & [Jp . One can easily show

the greatestixed point for this, in any model, is the set of worlds satisfying the
infinitary formula [['<>T . But the latter is not equivalent to a finite modal formula, as
is easily shown by considering suitably large Kripke models of the form ({1, .., n},
'successor’). Note that this solution is what automatically results from applying the
above general solution schema P to the model consisting of a single reflexive
world.

It is also possible to derive a converse for the preceding proposition.

Proposition 4
Formulas from PDL characterize only finite models (up to bisimulation).

Proof Let ¢ characterize a modd\l, s . By the Finite Model Property for PDlg
then holds in some finitll, t . SON, t = M, s, andp characterizes a finite model

Theorem 5
The finite models are precisely those that are characterized by PDL-serdences.

This result can be improved to broader modal classes (@-gaturated ones). As an
illustration, here is an instant proof of one of Baltag's theorems in Barwise & Moss.
Here, the direction of interest reverses, going from some given class of modal formulas
(viz. the finitary ones) to a corresponding model class.

Proposition 6
The models characterized by finite modal formulas are precisely

the finite well-founded ones.

Proof Any finite well-founded model satisfies some modal formula of the special
form [] ...(k times)... [[O. Therefore, in the above formula® % & ps, the initial
modality [[* may be replaced by that K[JO , and we have found a finitary
characteristic formula. The converse is even faster. If a finitary modal formpula
characterizes some model, then it is satisfiable, and — by a standard modal unraveling
argument — it must also be satisfied in some finite well-founded tree.

|

2 A speculation about the broader thrust of this result. Only one fixed point iteration is involved in the
eventual characteristic formulas: namely, for the outermost reachability operator []* . This reflects the fact
that fixed-point logics can replace nested iterations by one 'grand loop'. There should be a connection
between the 'flatness’ of the equations irM E(and the well-known trick for coding subformulas by new
propositon letters in the usual way, which only requires equivalences of fokrms>g and p- []q .
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Here are some further general issues.

Questions  Which formulas characterize the well-founded models (the ZF séts)?
When is the characteristic modal formula 'effective'?

Therearealsosoméurthergeneratjuestionsabout the whole point in describing models

or sets by modal formulas. Can we use known facts about modal logic to get interesting
new lines on sets? For instance, do known properties of modal logic, such as
interpolation have somenice set-theoretieneaning? Or, what about the known
PSPACE decision procedure for the minimal modal logic K? Or in line with our
Sections 2, 4:

Does the above analogy help us in matclpraress operations
(combining modal models) with more standaed operation?

Van Benthem & Bergstra 1995 observe that the + of process algebra is just set-theoretic
union (working on models). Can we compute the characteristic formula for a union
effectivelyfrom those for the components? (This might be an interesting exercise in
general fixed point logic.) What are the natural operations in this setting anyway?

3 Computing Fixed Points

3.1 Uniform fixed points

The above solution is not very pretty. Can we compute the greatest fixed poim of E(

in some nicer way? First, the above argument works (and hence characteristic formulas
exist) because there isiaiform ordinal boundo the computation of a non-empty fixed

point for EM) in any modeN, which only depends on the cardinality Bf (not on

that of N ). This is worth noting, because not every fixed point equation has this
uniformity property# More precisely, the solution for E( in M itself will be found

after at most\l|*M | steps, as there must be a change in at least one unary preglicate p
at each approximation state. Hence, characteristic formulas for each predicate are found

3 The 'De Jongh-Sambin Theorem' says that in the modal logic wémaditive well-founded models,
every fixed point equation of the form p E(p), where p occurs only 'boxed' in E(p) (positive or
not!) has an explicit solution. | think this is a reflection of the general Recursion Theorems in ZF,

exploiting the well-foundedness of the models. Can we find similar general results in the present setting?

4 E.g., the well-known smallest modal fixed poiape[Jp defines the well-founded part of the relation

R in any model. Its computation length depends essentially on the latter's size.
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at modal operator depth at mdgt/4M | , i.e. M| for infinite models (for finite ones: see
below). Here is a formal statement, making the preceding analysis a bit more precise.
Note, however, that the following argument makes no claim about a uniform bound for
computing thegreatest fixed point only forsomenon-empty fixed point (with the
appropriate proposition true at the root). So, there is an open question here. Also, the
following proof is rather roundabout; and one would prefer a direct combinatorial one.

Fact 7
In any modelN, if a schema B{) reaches a non-empty fixed point at all,
then it reaches one after at mdst| tages.

Proof Suppose some non-empty fixed point is reachedlljit . Then by the earlier
reasoning, there is a bisimulation betwekh s andN, t. Now M, s satisfies the
explicit modal solution statement E where & describes the satisfying modal
formulas of deptkx [M|. But then, through the mentioned bisimulatidh,t must also
satisfy the modal formula® And by its definition, that means that some non-empty
fixed point was reached at stag¢M| inside N . |

For finite models, we might have a quadratic blow-up here: but we can do better. For, in
the approximation sequence, whenever some predicatelops not change in some
round, we can stick to ifgreviousdefinition, instead of using the next layer. Thus, its
complexity only increases when there is some real change. We have derived the general

Fact 8
Characteristic formulas for worldsyjpneed only modal operator dept¥ ||.

Specific examples may be computed by hand for simple cases, and then reveal further
syntactic fine-structure — which we will forego here.

3.2 Fixed points at omega

To obtain a greatest fixed point for a formupgp), we compute a smallest fixed point
for its dual = @ (- p) and then negate that. Often that greatest fixed point is found after
w rounds. Thus, for the single reflexive point, one works with the new equation

p - <>pUflp

which is modally equivalent to <>@[]0J . The latter has p only under existential
modality and disjunction. Now all fixed point equations whose defining clauses for p
have the latter only under <>, &] arefinitely distributive and hence they compute a
smallest fixed point uniformly in at mosto rounds. For PDL-formulas, one can
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computaall relevantiixed pointsthisway (cf. Kleene iteration). Thus, our analysis seems
close to a proof that all characteristic formulas for finite models have this property.

Question When are characteristic formulas computable at omega?

Another interesting question would be to determine in some effective manner

Question Which general fixed point formulas have a uniform solution bound?
In particular, which formulas in the modgl-calculus do?

4 Connections with Other Simulations

Theaboveresultgyiveaninvariant- in the standardmathematicasense for models up

to bisimulation. All modelssharingheinvariant ¢\, form a bisimulation equivalence
class. But there are more results of this kind, that connect up with standard automata
theory.

4.1 Automata and regular sets
Kleene's Theorergives regular expressiongy as invariants for finite state machines
M characterizing these upfiaite trace equivalencénstead of bisimulation):

N, t |=Km iff N, t has the same 'language yieldMss .

This can also be stated in a modal language of ‘finite-path formulas' (van Benthem &
Bergstra 1995). In particular, we can compuig with afixed point equatiomas above,

using predicates y recursively describing the 'yield' &l starting from x . | did not

find this particular point in the FSM chapter of Barwise & Moss, but | guess they do
mean one can now generalize Kleene's Theorem to arbitrary machines (finite-state or
not). Here is a further observation. The essential thing is that these new fixed-point
equations areimpler To describe the yield oM at x, one only needs

a disjunction of cases <ayywith y running over the a-successors of x
(and this for all atomic actions a) .

That means that the fixed point will be reachedformlyin w steps! This is true of
coursdor all regularexpressionécf. the above point about propositional dynamic logic).
Thus,theabovecharacterizationesultaboutfinite models may be interpreted as follows.

It says thaPDL doedor themwhat regular expressions will do if you are interested only
in their finite succesful sequences. | wonder what else one might get from this analogy.

Question Whichtopicsin formallanguageheory match which issues in modal logfc?

5 Also, what kind of set theory does one get if one makes this very rough identification?
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4.2 Invariants and simulations

(1) Similar invariants exist for any simulation equivalence, e.g., generated graph

isomorphism (van Benthem & Bergstra 1995). Is there a general connection between
definitionsof simulations and those for the characteristic formulas? Fixed-point analysis

works for all simulations defined by pebble games (Barwise & van Benthem 1996,

‘Interpolation, Preservation, & Pebble Games', to appekiumal of Symbolic Log)c

(2) A very sweeping philosophical thought (though not for situation theorists). Perhaps,
all languages justaninvariantfor analogiescrossituations? That is, we can reverse the
usual order, and think of (infinitary) first-order logic as that language which all rational
beings would inevitabljnventwhich are born attuned to potential isomorphism.

(3) Kleene's result was striking because he invenfigdta notationfor his invariants.
Modal invariants for finite models are also finite. What is going on really is that we
introducesomeeffective notation for the relevant fixed points. For which models can we
getinvariantdrom someeffectivdragmenbf the modal language M, ? In particular,
which models have their characteristic formulas inside the madelculu®

5 Connections with AFA Set Theory

Finally, there seems to be a very tight connection with the non-well-founded set theoy
AFA. Is the above implicit in the relative consistency result for AFA vis-a-vis ZF?

5.1 Fixed points and the 'solution lemma'’

The above fixed-point equations NE] are exactly the 'flat systems of equations' of the
Solution Lemma, and so they drive the key AFA axiom. That one can make dtawith
equations instead of iterated ones must have to do with an earlier standard trick. (In
computing fixed points, we lose no generalitydoglingup all subformulagy atoms)

Also, theuniform bound on the fixed point seems related to the requirement that the
solution must be aet Any solution to ‘'unbounded' fixed point equations like the above

p - [[p (well-foundedness) would presumably give us a ‘class'. Have we (including
Barwise & MOss) then been doing essentially the same things twice?

5.2 Truth as simulation?

Toconcludehereis a wild speculation. What is the essential role of modal formulas vis
a-vismodelsundemisimulationA model is a possibly non-well-founded set. A formula
is a well-founded object. Now infinitary modal formulas, as objects, cat least as
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complexas the models they describe. (They may be even more complex, like when we
use infinite conjunctions to describe finite models). This point has always bothered me.
Finite models are characterized by their first-order theories, but the descriptive sentence
is intuitively more complex than the model itself! So, what is the gain? One might just
as well manipulate the model (rather than all subformulas, or other syntactic items).
Perhaps the gain is in theell-foundedstructure of the formulas, which allows us to use
some simple inductive techniques. (But is this really a line of defense available to
Barwise & Moss, who advocate free-wheeling circularity all around?)

Whatever the answer, it seems to me that viewing models and formulas on a par has
some advantages. We can think ofrath definitionitself as a notion of simulation
between models and formulas. Think of a language where all negations have been
pushed inward. At the atomic level, 'truth’ is simple embeddability (more or less half an
atomic clause in potential isomorphism). Upward, quantifiers or modalities suggest
natural zigzag conditions between the <>, [] successor structure in the syntax tree and
R-successor structure in the mod&l.The result looks like the semantics behind Hans
Kamp's Discourse Representation Theory, which has 'embeddability conditions' relating
DRSs to actual models (cf. Kamp & van Eyck 1997). (It is also in the spirit of a
Wittgensteinian picture theory of language.) Could one get further mileage out of this?

6 Bisimulationitself, for instance, also works if one compares process modelsliffighentstructure:
provided some match makes sense between moves of the right sorts. This is the standard situation in
practice. Much standard theory goes through then — including the Modal Invariance Theorem and the

Modal Interpolation Theorem in Barwise & van Benthem 1996. Cf. Section 10.1 for further details.
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6 Information Transfer across Chu Spaces

Chu spaces are a new model for information structure (cf. J. Barwise & J. Seligman,
"Information Flow", Cambridge UP, 1997) and for mathematical structure in general
(cf. Vaughan Pratt's ongoing work at the homepage http://boole.stanford.edu/l|ve).
Their properties are usually developed as a form of category theory. In this notg, we
show how they may also be viewed as models for a two-sorted first-order langyiage,

and we determine the exact flow of information across the natural Chu transfofms.

Our analysis is akin to that of process graphs via bisimulation and modal formdilas.

1 Chu Spaces

A two-valuedChu Spacés any structure (A, X, R) with two domains A, X and a binary
relation R inside AxX. Examples: A = objects, X = sets, R,=or A = models, X =
formulas, R = |=, or A ="tokens', X = 'types', R = 'classification by'. Such spaces are
naturally viewed as models fotao-sorted first-order languageith variables a over

(as we shall say) 'objects' and variables x over 'types'. Of course, one can also use
other languages extending first-order logic here, such as infinitary or second-order ones.
General Chu Spaces have a k-valued relation R (which makes them 'fuzzy' rather than
crisp2-valuedclassificatiorstructures)butin practicewo-sortecexamples predominate.

2 Chu Transforms

A Chu transformbetween two Chu spacég = (A, X, [0), N = (B, Y, ) (we shall use

the same notatiort]' for convenience across Chu spaces) is a pair of functions f:
A - B, g: Y- X (note the inversion in direction!) satisfying the following condition:

for all alJA, yOIY: f(Q)y = alig(y)

There are motivations galore for this 'contravariant ' equivalence, for instance, in the
logical theory of relative interpretation (cf. Barwise & Seligman 1997).
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3 Preservation and Flow Formulas

What information is preserved in switching between Chu spaces connected by such a
transform? We can view this as a standard question in model theory, asking for a
preservation theorenThe following syntactic notion is obvious from some reflection

on what we have, and do not have, in the above diagram:

aflow formulais any first-order formula produced
by the schema [ |-alx|&|0] A |Ox

Flow formulaso (a1, .., &, X1, .., Xn) can define many useful notions on Chu spaces:
in general, relations between k objects and m types. Here are some examples:

OX (= ax Oagllx) < ‘object inclusion’
Ox (= a0x O= apldx) — ‘object incompatibility'
[ (allx1 & allx2) o] 'type overlap'

Let us call a first-order formulap Chu-preservedf we have (with bold-face symbols
indicating 'fitting' finite tuples of objects and types):

M, a, gly)|=¢ only if N, f(a), y|=¢
whenever (f, g) is a Chu transform betwé&randN.

Of course, this notion also makes sense for non-first-order fornqulas
Proposition All flow formulas are Chu preserved.

Proof This is a straightforward induction on the above definition, starting from the
above characteristic Chu equivalence ifg)~ allg(y) for literals. |

Application Chu transforms armmonotonewith respect to object inclusion, as the
latter relation was defined by a flow formula.

Comment We have described preservation in the 'f-direction' only. But in the
oppositég-direction’, we have the following syntactic description of preserved formulas
(pushing negations inward for the equivalent implicatidi=-¢@ 0 M |=-@"):

alx |-~ adx | & | 0] Da |Ox

This outcome is precisely what one would predict by the obwviuadity of Chu
Spaces, where interchanging of the roles of A and X makes no difference.
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4 Application: Rigid Chu Spaces

The preceding analysis systematizes several separate observations about Chu
transforms. Take the following 'rigid Chu space' constructed by Pratt. Objects A = {1,
2, 3, 4}, types X ={x, Y, z, u}, classificatiofil as in the following diagram:

x: {1} y: {2}
z: {1, 3} u: {1, 2, 4}

Plotkin and Pratt have shown that the only Chu transform sending (A) &, itself
must be thedentity. We can explain this by observing that each objé¢A & uniquely
definableby a flow formula, and therefore, it must 'land on itself' by our Proposition.
Let the relations<, — be as in Section 3 above. Here are the definitions:

@) Cpap (<! & ax<! & a—-ap) is unique for object!
(b) Ox (10x O20x) is unique for object

(one uses the flow definition for objecthere:

(a (DEF; (a) & Ox (alx O20x)).)
(c) Ox ((10x & 20x) -» = 30x) is unique for object’
(d) <l & “4<I is unique for object

5 Flow Preservation Implies Chu Tranform on Finite Models

Now let us convert the result, showing that the above is 'best possible'. Up to logical
equivalencegnly flow formulas are preserved under Chu transforms. We will formulate
this as a preservation theorem in Section 6. But before proving this, we give a warm-up
result inspired by an analogy with bisimulation and modal logic. (Some further aspects
to this modal analogy that can be usefully exploited have been pointed out by Martin
Otto.) The proof that follows here contains some key ideas for the later one.

Proposition For finite Chu spaceM, N, the following assertions are equivalent:
0] there exists a Chu transform fravhto N
(i) every flow sentence true M is also true iN

Proof (i) O (ii) is a special case of our earlier Proposition.[{ii\i) works as follows.
Enumerate A as {8 ..., &} and Y as {\, ..., ¥n}. We do one case of a stepwise
constructiorfor the desired function f. (The remaining case, as well as the construction
of the contravariant companion function g, are similar.) The idea is that, progressively,
f should assign some object f(#) to &JA which satisfies the same flow properties
(where the latter may involve parameters for objects which have already been matched).
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Suppose that nollB satisfies all flow properties that hold for, im M. That is, for
some flow formulay, , we have that

M, a |=yp butnot N, b |=y
Altogether, M then satisfies the flow formula (here we U§e — closure)

(a & poB Yo

But by condition (ii), the latter formula should hold k. But, each DB is disqualified
as a witness for this, since it lacks 'its' conjupgtTherefore, by reductio ad absurdum,
a 'good choice' b must exist after all, and we can set

f(ag) = b

This argument can be repeated to produce the successive values for f on all of A.
Moreover, it can also be used in the opposite direction to find values for the function g,
again maintaining the 'invariant' that flow formulas be preserved goingNramN.

E.g., when searching for a matching type x fa@r one assumes that each fails for

this purpose with a 'defecdy , and then uses a flow formula of the form

Ox Dygy oy
(with a dual use of] | 0 — closure) to obtain a contradiction, going frbiioN. W

6 A First-Order Preservation Theorem
Instead of a standard preservation theorem, we formulate a slight strengthening in terms
of 'generalized interpolation’ (cf. Barwise & van Benthem 1998). Let us say that

@ implies Y along Chu transformgf always
M., a, g(y)|=¢ onlyif N,f(a),yl=y

Then we have the following result:

Theorem For all first-order formulag,y, the following statements are equivalent:
0] ¢ implies Y along Chu transforms
(i) there exists a flow formulax such thatg|=a |=

Proof (i) O (i) is again essentially the earlier Proposition. As foi(i)ii), assume
that @ implies ¢ along Chu transforms. First, define
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FF@@) =gef { a aflow formula |@|=a }
It suffices to prove that
Claim FFEp) |=y

The required flow interpolant then exists by Compactness. So consider any countable
model N = (B, Y, 0) for FF@). (This case suffices by the Léwenheim-Skolem
theorem.) Let Th, rr(N) be the set of allN-true negations oflow sentences. By a
routine argument, using the closure of flow formulas under disjunctions, we have that

Th-orr(N) O{ ¢} is finitely satisfiable

Therefore, there is a (countable) modél= (A, X, ) for Th, gg(N) O {¢@}, so that
the following implication holds for all flow formulay :

M|=y O N|=y

Without loss of generality, we can even assume tatN) is arecursively saturated
modelbpair with thesameransfer property. But then we can mimick the earlier argument
for finite models, this time, using the recursive saturation. Enumerate A,a®.{a.}

and Y as {{, y2, ...}. In the general case, suppose that some finite part of the pair (f, g)
has already been constructed. Moreover, assume that all flow formulas whose free
variables are set to objects a in the domain of f and types g(y) in the range of g in
M, and to the corresponding items f(a), yNinsatisfy the following implication:

M, a, g(y)|=y onlyif N, f(a),yl=y #

Then we can extend this situation both ways. Here is the case for objsttdhat for
types inN is similar). Let & be the first object in A without an f-value. Consider the
recursive(!setof all formulas of the following shape, wheyeruns over flow formulas
asintheprecedingmplication—excepthatthereis onefreeobjectvariablea on the right:

W (@ g(y), &) - YW (f(a),y. a)

This set is finitely satisfiable in the model pait,(N), because for any finite number of
flow propertiesy; of & in M, we can form the flow statement (by & — closure)

Ca & vi (& g(y), a)
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which is also true ilN (by the earlier transfer implication #). So, we can find a value
for a in B satisfying all these finitely many implications. But then, because of
recursive saturation (our set is recursive, with only finitely many parameters from the
domain), there is even somé&lB satisfying this whole set of flow implications
simultaneouslyand we can choose this object to be the desired f-value for the object a
. The argument in the opposite direction, producing a suitable g-valMiean the first

virgin type y1Y, is analogous, but now using thé| [0 — closure of flow formulas.

Then, finally, we haveM |=¢@, N is a Chu transform d#l, and soM |=¢ : |

Remark Sol Feferman (Stanford Logic Seminar, June 1998) has given an alternative
proof for this preservation result using his interpolation theorem for many-sorted first
order logic. At its present state, this argument only covers Chu transforms with
injective object maps. But it can presumably be modified to deal with the full case.

7 Variations and Extensions

The preceding result tells us preciskbwmuch(or perhapswhat little) information is

passed between Chu spaces that are related by their 'natural equivalence’, at least for
theirfirst-order language. But we can vary the result to cover other cases of interest.

(1) The result goes through for special classes of Chu spaces, provided that these have
first-order definitions. This holds in particular forextensionalChu spaces, satisfying

Oaldb (a=b ~ Ox(allx ~ bOx))
Ox0Oy (x=y « Da(dx ~ ally))

In practice, this means that for bi-extensional Chu spaces, one can use two further
atoms in flow formulas, without affecting preservation:

- x=y, a=b

(2) But also, the above proof itself can easily be modified to yield further preservations.
For instance, if we know that the f-map in a Chu transforsuiigective then we can
adduniversal object quantifieréla in the construction of flow formulas, and likewise,
existential type quantifieréx if g is surjective.

(3) Finally, a first-order perspective also suggesker equivalencefor Chu spaces,
such aslementary equivalengpotential isomorphismor pebble game variants
thereof. From the perspective of information flow, there is no need for one model
equivalence: the more structure preservation one can get, the better!
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8 Infinitary Versions: Information Sequents

The preservation proposition of Section 3 still holds for arbitr#rgitary conjunctions

and disjunctions in flow formulas. This explains the observations found in Barwise &
Seligman 1996 on transfer (and non-transfer) of 'local logics' along 'infomorphisms'.
In their terminology, let U, V be sets of typedMn. We define true sequents:

UlwmV if Oa: &0 NU - ad0v

This infinitary definition is not an flow formula (as their maps f need not be surjective,
universal object quantifiers are not allowed), and it is not preserved by Chu transforms.
The implication will only hold inN on the image of f, the so-called 'normal tokens' in

N. Thus, logically true sequents do not transfer in the f-direction. But they do transfer
in the opposite g-direction, as the negatidm &1 NU & - al ]V is equivalent to an
infinitary flow formula. (Barwise & Seligman do not consider further flow properties.)

This application increases the interest of an infinitary version of our preservation result.
We conjecture that this is the case. But so far, we have only checked that the techniques
of Barwise & van Benthem 1996 go through. These apply to model relations that can be
cast in the form of pebble games. Applied to Chu transforms, this means the following.
Instead of total maps, we now have a non-empty family of finite partial maps (f, g)
betweenM, N, which satisfy the basic Chu equivalence for atoms, such that twe back
and-forth properties hold, one extending each f-domain with an objectMroamd one
extendingeachg-domainwith a type fromN. Let us call thespotential Chu transforms

Theorem The above preservation theorem extends to formplgs in the infinitary
language L.y, When we require preservation along potential Chu transforms.

9 Richer Chu Spaces: General Frames in Modal Logic

In modal logic, the natural Chu spaces are general frames’,(M), with W a set of
worlds, » a family of sets of worlds (the 'admissible propositions') @nmdembership.

Here the natural equivalence is as in the following ‘contravariant’ picture (cf. Blackburn,
de Rijke & Venema 1998, van Benthem 1985), whi&ve [)) q iff wi7g(q):
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Butherethere is an additional requirement: f must bg-morphismfrom M toN. l.e.,
it isahomomorphism for the accessibility relatioN R and it satisfies the zigzag clause

if f(w) RN v, then there exists someélW such that w R u & f(u) =v

Moreover, the map g is just the set-theoretic inverdeoh© (landing inside"!),

which is ahomomorphisnwith respect to the natural 'modal algebra' structure)on.

(This 'parasitic' nature of g is also known from Chu spaces in general.) Modal logicians
have proved preservation theorems in this setting. But of course, more is preserved
now, as the 'quality’ of f, g is higher than in the above. In particular, flow formulas will
now also allow the usual modal constructions, or more precisely:

atoms Rab | bounded universal object quantifiebs(Rab —

Combiningthiswith theearliersyntaxof flow formulas, we see that we get propositional
literals p, —p, conjunction, disjunction, existential and universal modalities, plus
arbitrary existential object quantifiers and universal propositional quantifiers. This
includes all standard modal formulas, with a slight first-order and 'second-order' extra.
This is surely an instance of a more general result, telling us how to 'load’ our general
Chu preservation with extra information from maps f, g that preserve special structure.

10 Constructions on Chu Spaces

The theory of Chu spaces gives a prominent place to (categorial) cood¢tuctions
One example is thdual operation taking (A, X[J) to (X, A, D). Another is the
productM xN used extensively in Barwise & Seligman 1996:

new object AxB (Cartesian product)
new types X +Y (disjoint union)
new epsilon (a, b)O X1 iff adX, (a, b)d Y2 iff bOY

Here the picture of natural connections is as follows:

MN

M x N
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Here, preservation results might characterize formglasuch that, if bothM |=¢@and

N |= @, then MxN |=@. (In particular, this holds for first-order Horn sentences.) But
one does not want 'preservation’' here so mucombinationof information, or viewed

in the other directiorgecompositionif we have a tight constructive definition of some
operation on Chu spaces, then we can use it to reduce first-order evaluation.

Example '‘Every Type is Inhabited'
Here is a simple semantic calculation from the given definitions:

MxN |= Ox [a alx iff
OxOX CaOJA [bOB : (a, blIx & OydY LA [bOB : (a, by iff
OxOX aOA aldx & OydY [hUB : by iff

M |=0Ox Ca ddx & N |=0x O dx

So in this particular (Horn-definable!) case, the property does reduce to its presence in
the components. In general, however, we don't expect this. Nevertheless, the example
suggests aaffective component reductiéor arbitrary first-order statementgxN :

(@) introduce a supply of marked variables with superscripts for A, B, X, Y
(b) replace object quantifiersa by (BA[bB , and replace corresponding
atoms alx in the formula by disjunctions Aalx 00bBOx
(c) replace type quantifiersx by disjunctionsCxX... 00 [XY...
(d) replace (using the added markings) all 'heterogeneous' atoms
aAOxY or BOxX by false

The result is a first-order formula which may deparatednto an equivalent Boolean
compound of separate fist-order assertions akbandN.

Sol Feferman has pointed out a more general background here. Chu dual and product
satisfies the following preservation property (wihfor elementary equivalence):

if M=M" andN =N', then MxN = M'xN'

Most operations in abstract process algebra have this feature (Hollenberg 1998). On the
otherhand productspaces in the usual mathematical sense, whose objects are functions,
do not (cf. the references given in Section 4). One obvious conjecture is th&nSou
productasdefinedby Pratt in his model for linear logic, lacks this preservation property.

Preservationf elementargquivalencés aconsequenaaf the above effective reduction.
But having an effective decomposition seems stronger. So we want to know about both.
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11 Co-limits and Generalized Evaluation

Dual and product were just two examples. The natural general construction is an
inverse limitof families of Chu spaces which may have Chu transfoms running between
them:

'Objects’ in the inverse limit/[ are tuplesa having the right ‘coherence’: e.g.,
f ((a)i) = (a);, etcetera.

This setting makes it much harder to do a 'logical decomposition' as above. It rather
suggests that we generalize our perspective once more. One could think of evaluation of
formulas in VI as ageneralized seman8¢ where we have a family of models
available instead of just one. We then sometimes shift (a bit like in some recent
semantics for modal predicate logic) from looking for an object in one model to some
image in another. This theme of 'long-distance evaluation' will return in Section 8 on
'information links', and, viewed as a strategy for ‘decomplexifying' logics, in Section
10.3.
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Abstract

Semantic invariance approaches to 'logical constants' capture the important aspect of
their 'topic-neutrality’. But these approaches tend to overgenerate, in that they admit
all infinite Boolean combinations — which can hide a lot of unwarranted complexity.
To advance further, we note that semantic invariances rather tell us something pbout
the kind ofevaluation procesassociated with logical constants. This process view
leads us to impose a natural further constraint, of finite computability, which can be
implemented over arbitrary models in a language-free manner. The result of su¢h an
analysis is a complete characterization of the logical constants that relate predicates
and individual objects as precisely those definable in a standard first-order langyiage.

We also discuss ways of extending this analysis to more complex 'logical procegses'.
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1 Logical Constants, Semantic Invariances and Evaluation Processes

The logical expressions of a language are topic-neutral, and describe only abstract
patterns in semantic models. Thus, they typically eximb#riance for permutationsf

the universe of individuals (Tarski 1986, van Benthem 1986). But still very many
expressions pass this test. More restrictive kinds of logicality arise by imposing
invariance for less demanding semantic equivalence relations, sich as potential
isomorphism, or bisimulation. Invariance may then be modified to a notion of 'safety’
(preservation of back-and-forth behaviour), which allows for complete syntactic
characterizations, e.g., of all safe first-order operations (van Benthem 1996, Ch. 5).
Such results are attractive expressive completeness theorems, effectively enumerating
all logical constants. A drawback common to all such invariance approaches, however,
is their 'Boolean slippage': arbitrary infinite combinations of invarinat items satisfy the
criterion. The reason is the symmetry of invariance, plus the usual inductive argument.
(If one moves to different, asymmetric model relations to avoid this slippage, too many
Booleans are lost, not just infinite ones.) Now, infinitary combinations are undesirable,
as they encode a lot of unanalyzed structure that does not seem 'logical’. For instance,
infinitary modal theories suffice for characterizing all sets (Barwise & Moss 1996)!

So, we have to find a further intuitive ingredient to logicality. Our analysis starts from
the observation that semantic equivalence relations like the above may be viewed as
'simulations' between models, where the latter serve as process representations. Logical
constants are naturally viewed as processesgvauation procedured-or instance,

Tarski semantics defines the following evaluation process for first-order predicate logic.
Its states are variable assignments, its basic moves are stdptween assignments

that agree up to their x—value (for the relevant variables x ), while in between these,
one can perform atomic tests on the current state (Groenendijk & Stokhof 1991). Now,
our general suggestion is that all logical constants are evaluation procedures, and that
'logicality’ also means computational 'simplicity’ in some sense. In particular, this
requires finite computation spaces. We will now implement this view more technically.

2 Semantic Computation: Approximating Models by Finite State Machines

Fix some finite predicate vocabulary, disregarding function symbols. Logical constants

can be viewed as relations between these predicates, plus distinguished individuals.
(Logical operations, like negation or composition of relations, may be subsumed here

via their graphs — or via the use of models-cum-initial-assignments introduced below.)

Thus, we identify a potential logical constant with some model dlass the relevant
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(predicate) similarity type. For instance, the clas of modéls (D, P, Q) where P, Q

are unary predicates with a non-empty intersection encodes the logical notion of
‘overlap'. More generally, we also consider pal, §) with s a variable assignment.

For instance, the class of pairs (s) with (D, P, Q) as above, and s an assignment
sending one single variable x to some object in both P and Q , naturally encodes the
logical operation of intersection. Next, we seek a link with semantic computation.
Fix some finite number of variables k . After all, any computation process uses only a
fixed number of registers for accessing objects in the domain of the relevant models.

2.1 Evaluation states: assignments modulo zigzag equivalences

It seems rasonable to identify our computational states with ‘current workspaces', being
k-assignments from these variables to objects in our model. But this may still be an
infinite set (viz. if the domain of individuals is infinite), and not all differences between
k—assignments need be relevant for our intended computations. Given any ivhqdel

we therefore define a family of equivalence relations between statdxy mduction:

s—ot iff the relation &1 is a partial isomorphism
(i.e., s,t satisfy the same atomic facts place-by-place)
S ~g+1t iff s 4t and for each variable x and object dhf| |

there exists an object e IM|| with s[x:=d] 4 t[x:=€],
and vice versa from right to left.

Note that these are language-free relations (introduced e.g. in Chang & Keisler 1970).
We can consider their equivalence classes as appropriate abstract computation states. In
particular, we do not need the concrete k—assignments displaying domain objects when
computing Tarski's truth definition, since evaluation need not touch the actual objects
(provided that we have access to the outcome of all relevant atomic tests). Of course,
the larger the index d, the more information we get frgqrabout our current model.

2.2 Linguistic analysis: types up to some quantifier depth
There is a well-known ‘linguistic' definition for the preceding relations.

Proposition 1 The following assertions are equivalent for all models and assignments:
) S gt
(i) M, s |=¢@ iff M, t|=¢ for all first-order formulasp in k variables
up to quantifier depth d

Proof (i) O (ii) requires a well-known induction on the quantifier depth degoffFor
(i) O (i), we also use the logical finiteness of the latter first-order language. W
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Corollary 2  Let X,y be sequences of objects, both of length k . There are obvious
corresponding k-assignmentg, s, . The relation E(x,y) defined by
Sx ~d Sy Iis first-order definable (‘having the same d-type in k variables’).

2.3 Model approximations by filtration
Next, we define a family of model approximatiord Ky , which are finite Kripke
models for modal logic, or more computationally (' annotated') finite state machines:

states all ~q equivalence classed! s
transition relations sd = @ iff s'5(t' in M for some s'gs, t' 4yt
atomic valuation A= Px..x iff M, s|=Px..x

The valuation is well-defined, since any two n-equivalent states agree on all atoms.
Note also thatMKy is not an ordinary first-order model. There are no objects, and
atoms are directly interpreted by their truth values at states without looking up tuples of
objects in the usual Tarskian manner. This is precisely what we have in Kripke models
for modal formulasMore precisely, theM kg are multi-S5 models. Again, one can

look at this construction purely structurally. The reader will find it helpful to draw a
concrete sequence of n—approximations, seeing how these reflect the structure of given
first-order models. (A good example is (IN, <) with k=3 .) Incidentally, this is a new
source of concrete models for modal logic, quite different from the usual examples.
Here is an observation that we shall need later on:

Proposition 3  Each individual modeMKy is finite. Moreover, there are only
finitely many different modelsM Ky up to isomorphism. Both these finite
numbers have upper bounds which are effectively computable from k, d.

Proof This is a simple calculation from the given definitions. It reflects (in-non
linguistic terms) the logical finiteness of the above predicate language. |

Thus, over the universe of all models, there are only finitely many 'projectibks.
Let us call this finite setkq. It is easy to show that not all multi-S5 Kripke models

up to this size are filtrations of first-order models.
Question Is there a goodepresentation theoresingling out those who are?

Even with such a result, it would still be@decidablaf a modal model is representable
in this way. Otherwise, one could decide universal validity for any first-order formula
¢ by surveying all appropriate finite modal candidate models for it, up to the-above
mentioned effectively bounded size for its number of variables and quantifier depth.
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2.4 Linguistic analysis: relating truth across filtrations

On the above models, first-order formulas behave jusha@dal formulas, with
existential quantifiersCx as existential modalities <x> for each of the k variables.
One precise connection is a well-knotiftration Lemmafrom modal logic.

Proposition 4 For all first-order formulag with k variables
and quantifier depth at most dV}, s |[=@ iff MKy, 9= ¢

Proof Induction on the depth ofp. The atomic step is by the definition of a valuation.
Boolean cases are routine. Next, consider the existential quantifidvk, $f|=[x ¢ ,
then there exists some assignmeni $ =with M, t |=y . By the inductive hypothesis,
MKy, td |= ¢ . By the above definition, dt = &, whence MKy, & |= Ox ¢ .
Conversely, suppose thatky, ¢ |= Ox ¢ . By the truth definition for the existential
modality <x>, there is a staté tith $ =, td and Mky, td |= . By the definition

of =¢ on equivalence classes, there are stategsst~yt with s'xt' in M . Now,
by the inductive hypothesidyl, t' |= . Then alsoM, t |= Y, by Proposition 1. But
then, by the standard first-order truth definitiol,, s' |= [x { , and once more by
Proposition 1, we have the desired outcome tafs [= X . |

Proposition 4 only tells us how to relate truth of formulas up to quantifier depth d . But
there is a more general result allowing us to reduce evaluation of arbitrary first-order
formulas in filtration modelsM Ky to what happened in the parent modiél. One can
translate backwardfrom MKy to M , by faithfully transcribing the above definition

of states and accessibilities For this purpose, we define (cf. Corollary 2 for notation):

(o = 0 for all atoms @
o = - (@)

(@& Y)# = (@)% & (P)#

(DX @) = X1 ... Ok (BE9(X1, .. %6 X2 ) oees %)

& X (@ (X1, -\ %, -, X)) -

Note that the latter formula is indeed first-order, using the finiteness of k, n—types.
Now, a straightforward induction establishes the following

Proposition 5 For arbitrary modal formulag, MKy, & |= @ iff M, s |= @

We can check that this generalizes the Filtration Proposition 4 by observing that, for
all formulas @ up to quantifier depth d, the equivalenpe. (¢)* is universally valid.
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We conclude by noting that the same constructions and arguments work on any model
M with some distinguished assignment s - the basic setting for Tarski semantics.
The latter lands inMKy as 8, which we can think of as a distinguished 'starting state'.

3 Logicality as Bisimulation Invariance in a Finite Computation Space

In this technical setting, we can sharpen up our general analysis. A 'logical’ relation is a
semantic computation process. This means two things. (1) On any model, it only uses a
fixed finite workspacgeno matter how large that model is. (2) It does not distinguish
models with 'the same' associated process: i.e., whose associated workspaces are related
by a standard process equivalence. For the latter purpose, we use an obvious candidate.

3.1 Basics of bisimulation and modality

There is a strong case fbisimulation defined as usual (cf. van Benthem 1996), as a
basic equivalence preserving both external output and internal choices of a process,
across many fields (logic, computer science, game theory). We know, in particular, that
modal formulas are invariant for bisimulation. Of various converse results, we mention

Lemma 6 Finite models are modally equivalent iff they are bisimilar.

Proof Cf. any modern textbook. From right to left, this is a straightforward induction
on modal formulas. From left to right, one can take modal equivalence between states
as the bisimulation. The back-and forth clauses use the finiteness essentially. l

Also useful is the following simple consequence.

Lemma 7 Let A be some finite set of finite modal models. Let B be any
bisimulation-closed subset of A. Then B has a modal definitionin A .

Proof Consider any modeM in B, and any modeN in A-B . The two are not
bisimilar, because of the closure condition on B . By Lemma 6, there is then some
modal formula pyv, N true in M and false in N . The conjunction of all these
formulas with N running over the finite set A-B is a modal formula trueMn but

false throughout A-B . Then the disjunction of the latter formulas, Wthrunning

over the finite set B, is the required modal definition for B in A. |

3.2 Defining logicality as finite process invariance

The above two requirements on logicality now naturally combine into one. Consider
any classC of models with distinguished assignments, standing for a putative logical
relation. As earlier, we assume that models come with some distinguished assignment.
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We call any such model clagsite-bisimulation-invariant (FBI) if there exist two
natural numbers k, d for which the following invariance condition is satisfied:

for all models M JC, and for all modelsN ,
if MKy is bisimilar with Nky, thenNOC

In this formulation of the FBI property, the bisimulations betwdéky and Nky are
always taken to connect the two distinguished starting st&te#! s even if the latter
have not been mentioned explicitly.

4 From Logicality to Definability

4.1 First-order definability
Here is our main result, which amounts to the following syntactic characterization.
(The term 'first-order definable' refers to definability by one single formula.)

Theorem 8 A class of models is FBI iff itis first-order definable.

Proof First-order definable classes of models are FBI. Suppos®thiafines C .
Let k indicate all the variables occurring @, and let d be the quantifier depth @f
Suppose thaM, sOC satisfies@ . By Proposition 4 MKy, s |=¢ as well. Now let
N, t be any model such thatlky, & is bisimilar with NKg, . By the invariance of
modal formulas under bisimulations, we géfq, td |=¢@. Once more by Proposition 4,
N, t satisfiesp as well, and hence — sinag defined C —N, tOC .

Conversely, consider the d,k—projections of all models in our FBI dassThis is a
finite subsetCKky of the finite class of all finite model®/k,. By Lemma 7, the finite
bisimulation closure of this set has a modal definitijon (Note that all models in the
latter closure are bisimilar to some member@fy.) This modal formulas it stands
need not be the required first-order definition. (Proposition 4 only applies to formulas
up to modal depth d, and we have no reason to thinis of the latter kind.) But by
Proposition 5, we catranslate backwardérom MKy to M , and use the first-order
formula ()% . The latter indeed defines our claSs. First, if M, sOC , then MKy, &

is in CKg, and hence it satisfies the modal formyla By Proposition 4 then, p#
must hold in M, s . Conversely, assume thM , s |= (1) . By Proposition 5, its
approximation MKy, ¢ satisfies i . Then, by the above construction of the modal
formula p , this means thaMky, & is bisimilar to Nk, td for some modelN, t in the
class C . But then, by the definition of the FBI propertyl, sC0C as well. |
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4.2 Relaxing the bounds on computation

This is not the only result that can be extracted from this style of analysis. In particular,
our restriction to some fixed finite bound on the computation space rules out cases with
genuine iteration, such as fixed-point operators. For instance, computing the operation
of transitive closuretc(R) (x, y) involves computing through finite spaces whose size
may depend on the arguments X, y. This case may be covered, however, by the
following relaxation of the above FBI property, shifting its quantifiers somewhat:

Ok M, sOC [Jd [N, t:
if MKy, § is bisimilar to Nky, td, then N, t [IC

An easy modification of the preceding proof in Section 4.1 shows that this weaker
property holds for a class of models if and only if the latter is definable by a
countable disjunction diirst-order formulas. As countable disjunctions may be highly
non-effective, however, we feel this outcome still cannot be the final word.

4.3 Other states over first-order models

The preceding analysis of transitive closure is still unsatisfactory, as it does not capture
the uniformfinitenessof the process involved. This latter is the computation of afixed
point with a fixed scheme whose approximation sequence 'stabilizes'wafteunds.

One way of representing these takes richer statési)(scombining the above ds
standing for an 'environment' that yields replies to tests, with the 'current instruction' i .
Such states occur in computations by Turing or Register machines. Here is a program
checking whether the transitive closure of the binary relation R connects x with y:

1. IF Rxy THEN 2 ELSE 4 2: SUCCESS 3: FAILURE
4: |F [z Rxz THEN 4 ELSE 5 5: SEX:= ez Rxz : GOTO 1

This program terminates succesfully just in case tc(R)(x, y) . It may diverge or fail
otherwise, depending on the model. These actions can be described in terths)of (s
state models with d=1 (no test for the program reaches greater depth), while arrows
between the i's encode possible further activity. We then need a notion of bisimulation
on such product models, which we will not pursue here. Note also that we need a new
indeterministic atomic action x:€ze Rxz ('x becomes some successor of its old self),
different from the random changes in x—values that sufficed so far. Alternatively, we
can make use of the fact that fixed-point computations correspond to expandability of
the original model with certaiadditional predicatesand complicate our notion of state

sd accordingly. We leave the analysis of fixed-point computations to another occasion.
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5 Points for Discussion

5.1 This analysis is close to the usual characterization of first-order logic in terms of
Ehrenfeucht games. We have merely 'rearranged the pieces' to throw some new light.

5.2 There is also a close connection to algebraic-style gener&i&tmodels for
first-order logic, and their representation theory.

5.3 Can one give a similar analysis for definability in first-order logic plus
monotone (or justw—continuous) fixed point operators? This would be an interesting
step toward a purelgemanticanalysis of the notion of computational 'algorithm'.

5.4 How does our analysis of logical relations between individuals and predicates
extend to relations at higher type levels?

5.5  Are there goodepresentation theorender finite modal models as/ky's?

5.6 Develop some standard model theory of d,k—approximations. CanMade
retrieved as an inverse limit of its approximatiai& , plus their natural connections?

5.7 The only atomic actions allowed in our analysis of semantic computation are
random shifts in single registers (cf. the relationg),~and tests for atomic formulas.

One might consider richer repertoires, such as multiple assignment, and choice of new
values constrained by some atom (e.g., 'let x become one of its own R-successors').
What will happen to our previous analysis? What happens if we throw in further
infinitary regular constructions, like iteration?

5.8 Isthere a link with the category-theoretic analysis in Butz & Moerdijk 199772
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8 Information Links and Logical Transfer

Informationcanresidein anumberof differentbut connectedituations.

Wediscusghelogicalstructureof informationflow acrosghesdinks,

using'generalizedonsequenceelationsin amodallogic framework.

1 Information Networks

One situationcan carry information about another, provided there is sufficient
‘connection'betweenthe two. Thisidea is the core of Fred Dretske'sanalysis of
informationflow, asdevelopedurther in alogical vein by Barwise& Seligmanl996,
Israel& Perry1991.Suchconnectionsanbe'extrinsic’'(dueto regularitieshathapperno
holdin thisworld), butalso'intrinsic': basedn structuralkimilaritiesbetweenthe
situationsOnecan model bothby information network plususfu links betweenthem.
(Anothersourcdor thisideais Michiel van Lambalgerswork oninformationflow across
variousapproximationsf visual scenes.YJnlike Barwise& Seligmanwe donotassume
thatthesdinksareof onekind: informationflows alongvariouschannelsAn information
networkis a(finite) labeledransitionsystemjnterpretedntuitively asa setof 'situations'
relatedby somebinary relationghat allow flow of information from onesituationto
anotherConcretexamplesnightbefirst-ordermodels,with relationsof isomorphism,
homomorphismsubmodeletcetera.

Thisisaveryabstractramework WhatconcretequestionsiriseOneconcernsameasure
for 'identity’ of our notion. Whatis the correctstructuralequivalencdetweendifferent

informationnetworksBisimulationseemsigoodcandidatejustasin processheory—but

thistime,describingequivalenpotentialdor directionsof informationflow. Next, at least
two basiclogicalissuesuggesthemselvegaturally:

(1) A generatalculugor combiningnformationfromdifferentsources
(regardlessftheorigin of itsinitial statementsextrinsic,intrinsic),
(2)  intrinsicinput':transfetbehaviouof specificmodelrelations.

The formeris modalor dynamiclogic (or suitableragmentsof it), re-interpretedn this

setting,while model-theoretiqreservationtheoremsare a prime sourceor the latter.

Thus,ourstartingpointarethesamemodelsthatunderlymodalprocessheorieqSections
2,3).Butthequestionshatweraiseareratherdifferent.
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2 ConsequencalongaConnection
Informationnetworkssuggesthefollowing keynotionof 'flow' acrossinks:

A - [R]B: if A holdsinsituations and sRt,then B holdsin situationt

Thisisageneralizedonsequencalongsuchmodelrelationsas'submodelor ‘potentially
isomorphicimage'Standarcconsequenas the casewhere R is the identity relation.
Motivationfor andapplicationf thisnotionarefoundin Barwise& vanBenthenml996.
Hereis atypicalresultfor (infinitary) first-orderlanguages.

Example Bisimulationpreservatiomndmodalinterpolation.

If A, B arefirst-orderformulas,andR isbisimulationw.r.t.theirsharedsocabularythen
(1) A impliesB alongR iff (2)thereexistsamodalinterpolantC suchthat A|=C|=B .
A simplemodificationholdswith differentlanguagesnbothsideqcf. Section10.1).

3 CompleteModal Calculi
Thesimplestusefulinferencesvork asfollows. Givensomdransferstatementé — [R]B
aspremiseshow to deriveanewone representingomefurthertransferof information?
Whatthisrequireds anaxiomatizatiorf the Horn fragmentof minimalpolymodallogic.
(Theversiomeededor thispurposes 'globalconsequencdromuniversaltruth of the
premisesn amodeltouniversatruthof theconclusion.)rhisiseasytodo.

RicherlogicstothiseffectuseHornfragmentof dynamidogicsbuildingupcomplexnew
relationdogdtheright transferstatementgor theconclusionsk.g.,hypotheticasyllogism:

from A - [R]B andB - [S]C toA - [R;S]C

TheTreeCalculusfrom”"DynamicBitsaxdPieces"(1997¢ivesaconcretamplementation.
ItsassertiongeneralizéheschemaA - [R]B tothe moreconvenientandflexible format

"descriptiorof somereeof connectednodels'implies"descriptionof the rootsituation"”.

Thiscalculusvasdesignedodescribglanformation butit canalsodescribecombination
of informationlinks (‘planningnewinformation').It is reprintedn the Appendixbelow.

4 A First-Order Horn ClauseAnalysis

All the aboveinferencecan beformulatedin termsof universalHorn clauseswhose
variablegangeoverthesituationsnoneinformationnetwork.andwhosevocabularyefers
totransferrelationsaswell asunaryfactslocalto a situation.Horn clausescan express
moresophisticateéhformationaldependenciethanwhatwashandledabovesay,
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Oxyz ((Rxy & Sxz& Tyz & Ay & Bz) - CXx)

(Theseicherstatementarenolongerpreservedinderisimulationbetweemetworks.)
Thisfirst-ordercalculugs easilydecidablgastandardact), andonecompleteinference
systems PROLOG-styleSLD resolution.Evenso, thereis aninteresto explicit calculi

for specificlinks —andexpressivecompletenes$or modallogics matchingtheir Horn

clauses.

5 SequentialandParallel Operations

Informationalinferencegoesin tandenwith link-building. To seethis,onecan analyse
propositionainferencesvith relationatagsandobservehe emergencef complexlinks.
(Cf. againtheTreeCalculusof our Appendix.)Naturalexamplesrethefollowing:

from A - [R]B,B - [S]C infer A - [R; S]C composition
from A - [R]B infer =B - [R]-A converse

from A - [R]B,A - [S]B infer A - [ROS]B union

Theobvioudanguagéor thisisafragmenof propositionatlynamiclogic. But if we want
to'linearizethetwo-dimensionafinite actiontreeswhichariseeventuallyin thissetting,
wemustusetheextendedhoiceCalculuswith mainoperation& of Section10.6.Even
then,noteverypropositionalnferencewill ‘fit'. We alsoneedparalleloperatorsasin:

from A - [R]B,C - [S]D infer (A, C) - [RxS](B,D) product
orinfirst-ordertranscription:

Oxyzu:((Ax & Cy) & (Rxz& Syu)) - (Bz& Du)

A concretecalculudorthispurposeneedproductoperatoro®ncomplexstatesnapolyadic
versionof propositionatlynamidogic. Suchmodal calculi wereprovidedin Section2.
Notice againthat, althoughthesecalculi weredevelopedo model processegthrough
procesgraphs)theyalsofit thecurrentinterpretationn termsof informationnetworks.

6 Extensionswith Guarded Patterns;'Boosting’
ModallogicsretaintheirdecidabilitywhenextendedotheGuardedrragmenof first-order
logic (andevenfurther;cf. Sectior3). Thelatterallowsall boundedxistentiabjuantifiers

Oy (G(X,Y) & 9(X,Y))

Thus,wecanfreelyuseexistentiamodalities <R> of variouskindsin our calculi (going
beyonduniversaHorn clausesyvithoutlossaf decidability.Forinstanceamodalstatement
A - <R>(A &B)
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sayshat A maybeboostedo B along R . In modallogic, technique$ike Segerberg's
'‘BulldozerTheoremor Vakarelov'sProductemma'boostvariouspropertiesof frames
along bisimulation. (Van Bentheml997Bhas more on boosting.)Also, standard
unravelingis a constructiorwhichaddsintransitivityandother tree propertiesalong
bisimulation.

7 A CompleteModal Calculuswith Existence

To describesomeof the previougphenomenégsuch as 'modalboosting')onecan
axiomatizehe A - [R]B, A - <R>B fragmenbf the minimal modallogic in itsown
right. (Thelattersufficesjnasensefor the wholesystem- via awell-knownsubformula
coding trick.) Butagain,to get the subtler principles,oneneedsxplicit first-order
versionstoo.

8 ConcreteExcursion: PredicateLogic with an ExtensionModality
Specifidransferfactsin our richercalculimay bemuchmorecomplicatedhanthoseof
theform A - [R]B, whichwereoften RE (thoughusuallynotdecidable)Forinstance,
sayinghat A implies B alongall submodelss quivalent,by the Los-TarskiTheoremio
statingthatthereexistssomeuniversalinterpolantC suchthat A|= C and C|=B.Butthe
latter assertionis clearly RE.We discussonesimilarexistentiakase,showing how
procuringbasdactsaboutintrinsicinformationflow' is highly non-trivial.

Consideffirst-order formulas with implicationsto existentiaimodalities. These are
needede.g.toexpressituation-theoreticonstraintdike "wherethereis smokethereis
fire." Anothermotivation was the ubiquity of modal techniquedike 'boostingalong
bisimulation'.Welist some&actswhichareeasyto prove:

Fact Thegenerahotion" A - <inclusion>B" isnotRE.
Proof Oneeasilyreducedirst-ordersatisfiabilitytothisnotion. |
Question Whatis theexactcomplexityof thisnotion?

Asweshallseanamomentiheprecedingmplicationisarithmeticallydefinable Our more
preciseconjecturas M9 for the relationof 'submodel'Similarquestionsrisefor other
importantmodelconnectionan particular—with 'modalboosting=for bisimulation.

Proposition Thenotion™” A - <inclusion>B" isequivalentoconservativity
of A overB w.r.t.universalstatements.
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Proof Thereisastraightforwardsemantiargumentor this.(1) First,if B impliessome
universakentenc€,thensodoesA. For,letM beanymodelfor A. It hassomeextension
N whichisamodelfor B. ThereforeC holdsin N, andby preservationindersubmodelsC

alsoholdsin M. (2) ConverselyletM beanymodelfor A. Considethe atomicdiagramof

M togethewith B. We claim thatthisis finitely satisfiable For supposetherwise.Then
B impliessomenegatiorof a conjunctionof true literals in the M-diagram, and—

quantifyingoutthenewdomainconstants-we getauniversalconsequencef B whichis

false in M ,andhencedoesnotfollow from A. This refutes the given universal
conservativity. H

Notethatconservativitystypically M9%—whichexplainsthe earlierconjecture By quite
similarreasoningwe candetermineacounterpartor 'boostingalongbisimulation'.

Proposition Thefollowing assertionareequivalentor first-orderformulasA, B :
(a) eachmodelfor A hasabisimilarmodelwhereB holds
(b) B isconservativ@verA with respectomodalconsequences.

If A isamodalformula,condition(a)givesabisimilarmodelwherebothA andB hold.

Excursion  Implicationuptosomevocabulary
Conservativitysuggestaternarynotionof consequenc@ |=B | L definedasfollows: A
impliesevery L-consequencef B . Ordinaryvalid consequends A |=B |Lg, and
conservativeextensiorof A by B is B|=A |La & A |=B|La. Thisleadsto a new
calculuswith ternaryinferenceshatmayalsochangerocabularyE.g.,A |=B|L andC |=
B|L" imply AOC|=B|LnL".Interestingnewquestionsirisein suchasetting.E.g.,does
A|=B|L, A|=B|L"implythatA |=B |LCL' ? Theanswers: "no" in generalput"yes"
for propositionalogic, andsuitabldfirst-orderfragmentsThiswould providea concrete
calculusof interpolatiorandconservativity,beyondhe usualproof systems.It also
generalizeso-calledRamseyEliminability' of theoreticaltermsin the philosophyof
sciencewhichturnsonextensiorrelationsdbetweertheorieswith differentvocabularies.
(Historicalmotivation:explaining the role of theoretical terms, as opposed to
observationaVocabularyin the claimsmadeby empiricalscientific theories.)Hereis a
negativeresult. Theory Tt (vocabularyL+L' ) may conservativelyextendtheory T
(vocabularylL ), withouteverymodelof T havingan L-bisimulationtoamodelof T+.

Anotherviewof the matter is provided in Section 10.3.Universal or existential
consequencadongmodelrelationdanvolves modal statementacrossstandardmodels.
Thismoveamountgo evaluationofformulasbothinsideandacrossamodels In particular,
anexistentiamodality <R> shiftsevaluatiortosomeothermodel,suitablyrelatedto the
currentone.Thuswe haveamuchmoregeneramodel-theoretic
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Question  Whatisthecompletgropositionatlynamidogic of theuniverseof models
with therelationsof submodelbisimulation andpotentiaisomorphism
(alltakenw.r.t.changingrocabularies)?

In particularmightit beeffectivelyequivalento TrueArithmetic?

9 CombinedIinterpolation Theorems
Letusalsonotethat,ininformationnetworksclassicapreservatiomesultsnayhavetobe
modified.Forinstancesuppos¢hatweknowthatmodelM sitsin anenvironmenof one
extensiorN whereA holdswhile it isahomomorphiemmageof somemodelK whereB
holds.Whatisthebesthatwe cansayaboutM ? UsingLos-TarskiandLyndon,onewould
saythatM satisfiesall positiveconsequences B andall universalconsequencesf A.
Butisthisalsothebesibnecando?Thismaybeseerasaform of generalizeddonsequence
in athree-modehetworkwith asubmodelink andahomomaorphisntink. Indeedwehave
thefollowing generalizatiof theusualfirst-orderpreservatiotheorems:

Proposition If C followsatpositionM from A, B inall 3-networksasdescribed,
thenthereexistsauniversalconsequenc®’ of A andapositiveconsequence
B' of B suchthattheconjunctionA' & B'impliesC.

Proof Theargumentsastraightforwarccombinatiorof theusualbnesLetUN(A) bethe
setadf all universaconsequencex A, andPOS(B)thesetof all positiveconsequences B.

Claim UN(A) OPOS(B)|=C

LetM beanymodelfor thiscombinedset.First,sinceM satisfiePOS(B) theusuaimodet

theoreticargumenshowsthatthereexistssomemodelK for B, aswell asa surjective
homomorphisnfromK ontosomeelementargxtensionM’ of M . Next, considerthe
atomicdiagranof M' togethexvith A. Thissets finitely satisfiable- againby astandard
argumentobservinghatanyuniversakentencéruein M' isalsotruein M). Thereforeby

theassumptioof thetheoremC holdsatM' —andthereforeit alsoholdsatM.

TherequiredconjunctionA’ & B'nowemergesromtheClaimby Compactness. W
Obviously,sincetheusuaimodel-theoretipreservatiomrgument&ddup' so easilyhere,

theremustbeamoregeneratombinatiorresultin the backgroundWe leavethe relevant
generalisatiotothereader.
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10 PlansandaResourcdnterpretation

Theplaninterpretatiorof procesgraphsnakegheirnodesnto locationswith resources
while relationgandicate actions possiblyusingthese resourcesintuitively, thisis
occurrencdasedasinlinearor categorialogic), andhenceit leadsto differentnotion of
bisimulation,wherehavingmanysuccessorsatisfying(say)atomp is notthe sameas
havingjustone.Thisgoesbeyondhe frameworkso far,andwhentakento information
networksjtmayrequiretreused ternaryandgenerafinitary relationsbetweertheirnodes.

Thisresourcenterpretatiorrequiresustoresolveanambiguity.lt readgprocesgraphsas
AND treeg(onehasto performall the componenéactionsto obtainthe result),notasOR

treeqtheusualinterpretationof graphsprocesgheories) Thisisthe sameissuethatcame
upinourdiscussiorof extensiongor PDL: choicetreesversuscomplexstatesfor joint

action.

11 Richer Flow Networks
In GraphTheory,networksareonemajorusefor graphswith basicresultdike the Ford &
FulkersonTheorenmonmaximumflow capacity Canthisberelatedto ouranalysis?

Inprobabilistictreatment$d. Michiel vanLambalgen'svork), onehasnumericalmeasures
o reliability for thelinks. Canwe extendouranalysigodealwith 'quality' of transmission?

APPENDIX Resolutionin Dynamic Logic asTaskCalculus

HoareCalculusis a systenfor provingcorrectnes®f programser developingcorrect
programsButcomputations justonekind of action,andcorrectnesassertion{A}S{B}
mayjustaswell bereadasdescription®f anyavailableactionS thatwill produceeffects
describediy postconditiorB gvenresourcedescribedy preconditiorA. Our moregeneral
planningtaskdoesnotconsisin provingisolatedcorrectnesstatementdt is ratheroneof
logicalderivation.Givenanumberof routines {A}S{B}, how canwe puttogetheisome
combinationof them performingsomenew task,from a given preconditionto a given
postconditionBucha more generalcalculusof tasks(ELD, chapterll) is a common
interpretationof propositionalynamidogic. It onlyinvolves a smallfragmenbf the
lattersystemhoweverWe cantaketheconditiongobeBooleanandthe given actionsto
beatomic.Soourquestions, whatisacompletesubsystenfor planningderivations?

Resolutionand Monotonicity Onenaturaimethods propositionaresolution We
cannormalizetaskstatements- by valid Disjunctionof AntecedentandConjunctiorof
Consequent$p conjunction®f universalactionclausesoftheforms A - gB,with A a
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conjunctionof literals,B adisjunctionand S aprogramexpressionWe needasuitable
styleof reasoningntheseclausesNow,resolutions really Monotonicity averygeneral
logical inference allowing insertion of suitableformulas in syntactically 'positive’
positionsE.g.,consider- A [1B, A [IC. TheformersaysA implies B . Hence,we may
substituteB for A inthepositiveA-occurrencénthesecondlisjunction to getthe usual
resolvent B [0C.Thisisthe 'upwardview. Alternatively,we can use a 'downward
monotonicinferencewvhere- C implied A, substituting— C for the negativeoccurrence
of A in the first clause.With labeled actionclauses A - g B, howeversome
complicationsrise:

(D) First,consideranaloguesf standargropositionainferencesLet A - g B,
B - 1C.WewanttoconcludeA - s.1C.Whatistheprecisemechanism
producingtheright programsn theseconclusions?

2 Next,takeactionpremisesA - sB [IC, BD - 1E. Giventhattheactions
separatéheBooleamtomsjsthereagoodformatforanevidentconclusiord d?

We makeasimpleproposabasedn'plantreesdescribingactionswith conditions.

Planimplications  Let us replacethe above correctnesstatementsA —-s B by
Booleanmplicationsof theform PsA — B —ormoregenerally by 'planimplications’

Mn-B

wherell describesghe succesfukexecutionof someactionsfrom givenresourcesjsing
existentiamodalitiesPsA lookingbackwardnto thepasif the currentstate.In general,
M describesfinite treeof previousatomicactions,with literals true at its nodes.Thus, it
maybeconstructedsingonlyliterals, conjunction@ndindexegrogrammodalities Ps.
TheconclusionB maybeadisjunctionof literals.AsusuainHoareCalculuspremisesare
universallyguantified,overall availablestatesn ourmodel. Theaboveexample®ecome

D PsA - B,PrB - C,withconclusionPt PsA - C bydownwardVionotonicity.
Thepassag® onecomplexprogramPs: 1A — C will comelater.

2 FromPsA - BOC, Pt (BOD) - E, downwardVionotonicityyields
Pr(-=COPsA D) - E —or'linearized:Pa)?:s:(~-cop)?;7~ E

Tree Calculus Hereis asimpleTreeCalculusjustifying theseinferencesGiven
premise®f theaboveform,plussometreeformula M* , apply the following threerules.
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In generalstartingfrom {M*} , thesewill leadto the formationof a finite setof tree

(formula)s{My, ..., Mk} , tobeviewedasadisjunctionof possiblecases:

I If thetreefor somepremiselT — B 'fitsinside'someree [T,
atanynodeposition,thenwemaywrite B atthatnode.

Il If atreehasadisjunctionD atanodewemayreplaceit by
adisjunctionoftreeswith thesuccessiv®-literals atthatnode.

1] If acontradictionoccursatanodeyemovehetree.

A setof treesmpliesadisjunctionB if B followsfromtheliteralsateachroot.We revisit
theaboveexampletodemonstrat@owthisworks(includingthenotionof 'fitting inside’).

Q) Start: {PTPsA}
l: {P1(PsA OB)}
l: {P1(PsA OB)C}
Theliteral C attherootimpliesthedesiredconclusion.

(20 start: {PT(-COPsA OD)}.
§ {PT(-COPsA O(BOC) OD)}
Il {PT(-CUOPsA UBOD),Pr(-COPsA JCUD)}
1l {PT(-COPsA OB OD)}
§ {E OPt(~COPsA OB OD)}
ThedesiredconclusionE follows frominspectiorof theroot.

Theorem TheTreeCalculuds completdor ourtaskinference.

Proof Startingwith set{ M} fortheconclusionll - B, performall possiblenferencesn

the calculusyusingthe given premisego performsubstitutionsRemovetreeswhichare
subtreesf otherones(Thesexeimplied.) Thisprocessvill stopafterfinitely manysteps.
It onlyproducesreesicherthantheoriginalone—whichthereforamply it, in anobvious
senseNow,suppossomereel; intheresultingsethasrootliterals whoseconjunction
failstoimply B. It givesacounter-modeiotheimplication asfollows. Takell; itselfasa
model,with onlytheatomicrelationdescribedandonly thoseatomicpropositiongrue at
eacmodethatareexplicitly indicatedatit. Evidently,B fails attheroot.But,eachpremise
istrueateverynodein thismodel.For, if itsantecederiteeis true at anode thenit 'fits'

inside N; (thisis becaus®f the speciaform of the correspondingnodalformulas),and
henceijt wouldhavegivenrisetoafurther I-moveaddingliterals.In generalthiswill bea
disjunctionwhenceafurther Il-move wasappliedyieldingtreeswith extraliterals (as
compareavith I1; ). Notall of thesecanhavebeenremovedby Ill-moves, or I1; would

nothavemadaitinto thefinal set.Buttheothersituationsareimpossiblefoo,asM; would
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thenhavebeenremovedor notbeingmaximal.Theoutcomanustbethatnoantecederuf
apremisastrueatanynodein ourmodel-andhenceall premisesioldvacuously. W
A completecalculusof taskinferenceis no surprise Inferencebetweerplanimplications
isdecidableevenwith premiseseaduniversallELD, Chaptef7, Theorentl0).

Program Operationsfor Hoare-StyleConclusions  Isthereastandardporocedurdor

linearizingstatementd1 — B into standarccorrectnessssertionsA — s B, of course,
for suitablecomplexprogramsS ? Thematteris notentirelyclear Branchingtreepatterns
callfor parallel programoperatorsgoingbeyonddynamidogic.E.g., premisesA - g B,

C - 1 D suggesaconclusionAIC - y BOD for somenewprogramU . Oneoptionfor

U mightbeBooleanintersectionSn T. Butwe canalsousenewparallel operatorsTree
transcriptionof our premisessuggestsa conclusion(PsA [ PtC) - BID, whose
linearisatiormightreadtrue - ((a)2: s)||((B)?; T)C. A third optionaren—arymodalities
directly overtree-like structureg(cf. Hollenberg1998), that supportparallel programs.
Thedesigrof asuitablyexpressiveepertoireof programoperationgor our taskcalculus
remainopenButthen treeshemselvemaybejustasconvenientepresentationd plans.

SynthesizingPlans The Tree Calculusalsohelpssynthesizeplansoutof premise
routinesNow,wehave'resourcgropositionsA anda'goal’ G, anda'plan'is atreewith
leavedromA onlywhichimpliesG. Oneprocedureenumeratesll possibleesource-te
goalimplicationdromthegivenpremisegqwith their plantrees).A finite upperboundto
the numberof the latter canbecomputedn advancéit only depend®nthe proposition
lettersoccurringintheproblem).Then,wesolvethestandargropositionakearchproblem
from A to G usingthederivedimplications An associateglanwith intermediatections
arisefromsuccessivéeafsubstitutiorof treesfor auxiliaryimplications.

Example
Lettheresourceropositionbe A andthegoal G. Theavailableactionpremisesare PsB

0C - G, PrB - C,PyA - B.WederiveG from A asfollows:

1 G from B, C
2 B from A
3 C from B
4 B from A

Theassociatetteeswill work outto (viatheirabovenormalformdescriptions):

1 PsBOC
2 PsPuA 0OC
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3 PsPuA UPTB
4 PsPuA UPTPUA |

Lessblindly, weneedasearchproceduréor finding goodconclusiongincludingplans).
Now,noticethattheprecedingexamplelookssomewhatike alogic programderivation.
Herewe needa translatedirst-order versionof our plan implicationsjn the standard
modalfashionConsidetheearlierExample(1). Takefirst-orderclauseformsfor its two

premisesAx [1Sxy - By andBxTxy — Cy.FromanassumptionAu , the standard
searchprocedurdor aproofof thegoal Cv will produceoutcomeSus[] Tsv — whose
guantifiedversion [0s (Susl] Tsv) is exactly the definition of programcomposition
proposectarlier.Theprecedinggxamplemaybeanalyzedn asimilarmannerthroughits

first-ordertranscriptionstrying toget Gv frominstance®f Au usingtheclauses

BxOSxyUCy - Gy BxUOTxy - Cy Ax Uxy - By
Thus,standargroofsearclhviafirst-ordertranscriptiongnayproduceuseabl@answers.

Anotherangleon plan synthesiss 'propositionatompletenessAll valid consequences
betweenplan implicationsreduceto valid propositionainference®y disregardingall
actionoperatorsPs . (Theseconsequencesiustalsoholdon modelswhereall atomic
relationscoincidewith theidentity relation.)Converselyconsideanyvalid propositional
inferencefromasetof implicationalclausedo oneimplicationalclause D — E . Now,
assumehatthe premiseclausesall carryanaction S producingtheir consequenfrom
theirantecedent.

Question Istherealwaysaplanimplication I - E for avalid conclusion
whoseantecedenkl onlyemploysconditionghatoccurin D ?

A positiveanswemwouldexpressakind of functionalcompletenestor the programming
repertoireencodedn our Tree Calculus.Finally, we mentiona caseof planinference
whereadditionalexpressivgpowerseemseeded.
Negationsand Converse Theobviousdynamicversionof propositionaContraposition
istheinferencdrom

fromPsA - B to Pg=B - = A

involvingarelationalconverseS™. Contrapose@ncemore,thisimplication reflectsthe
well-knowntense-logicdtualityinferencefrom PA - B to A - G B . Thisexample
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showsthatwe needplan treeswhichalsoallow conversearrows,goingto successors,
ratherthanpredecessora the atomicrelationslt may be checkedhat the aboverules
remaincompleteE.g.,dynamiccontrapositiomemaingderivablein thisfashion.
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9 Information Processing as a Social Activity

Colloquim onSocial Organisation in Logical Theqr§yU Eindhoven, March 1998.

The following are points from an abstract for a talk, together with some observations

prompted by a day of pleasant discussion at Eindhoven Technical University.

1 Logic in Groups Traditional logic is mainly about single agents that think, reason and
evaluate. But social themes are emerging nowadays. Our somewhat Pickwickian sense of
'social' themes employed headl:those issues where a group level is essential

2 Epistemic Logic A famous case where a social level leads to significant logical insight is
Epistemic Logic, in its gradual development from individual knowledggréop knowledge
Hintikka talked about single agents which can reflect on each other's information through finite
iteration of knowledge operators K| . Lewis put ‘common knowledge' on the map in his
study of conventions and rules, R. Fagin, J. Halpern, Y. Moses & M. Vardi 1995 has a full
fledged theory of 'collective epistemic operatorgs E'everyone in group G knows"),&
("common knowledge in G "), IG ("implicit knowledge in group G"). Common knowledge is a
typical group phenomenon (what is known in 'reflective equilibrium’), as is implicit knowledge
(what is known by pooling the individual information). No explicit calculus of groups occurs in
epistemic logic, which would take this emancipation of social structure one step further.

Questions

Introduce groups as an explicit object of study, in a dynamic logic with manipulation of
G-arguments, not just proposition arguments. An example is a modal calculus of social
combination inferences such as (Ig&Aimplies Cg'A for all subgroups G' of G (valid

for factual propositions, invalid for statements of ignorance), or (2) combinations of
group knowledge, such as@3A & CG2B) - C(G10G2)(A&B) (invalid), or (IG1A

& 1G2B) - 1(G10G2)(A&B) (valid). This calls for systematic comparison with
dynamic logics and process algebras for parallel computation. (Common knowledge
can be viewed as referring to a program [(i.. [J ik)* where G ={i, ..., k}. What is

the natural group structure allowing for cooperation between subgroups?

3 Reducible versus emergergroupproperties. E reduces to properties of individuals, C
'half' (in a circular manner), some things not at all. Compare the semanticslecdtive
predicatesin natural language, which is notoriously hard. E.g., the meaning of a simple, almost



68

'logical' expression like the reciprocal "each other", turning an individual predicate into a
collective one applying to groups, has been under debate for decades. (No one has such
difficulties with its individual cousin "self"...) Similar problems afflict plural quantifiers (van

der Does 1992). This is a serious issue. Perhaps the collective talk pervading communication
in natural language has no definite truth conditions at all, only partial constraints! If "the
prisoners liberated each other", some prisoner liberated some prisoner. There may not be more
'regularity’ than that, though by no means everyone need have liberated everyone. And as every
academic knows, if "the professors quarrelled" it is even less clear what happened.

Questions

Study many-level languages mixing knowledge and action of both individuals and
collectives, allowing for some reduction between levels as the case may be.

4 Semantics of Communication Language use and reasoning is a social proces.
Contemporary logical semantics is moving from its original habitat of single sentence meanings
towardsdiscourse and communicatio”rlow to deal with these social phenomena without
losing the subtlety and rigour that has been achieved lower down? One concrete challenge in
this move is one single building block of dialogue, the communicative unit consisting of a
guestion/answeexchange. This crucially affects collective information states of questioner and
answerer, by suitable updates for the two speech acts. This is an active research area, witness
Jaspars 1994), Gerbrandy & Groeneveld 1997, as well as recent research by Jeroen
Groenendijk, dynamifying Groenendijk & Stokhof 1984.

Questions

How to model collective communication states, and important updates? More generally,
how to take communicative actions like questions seriously as a new category in logical
theory — in addition to proof steps or evaluation moves?

Excursion Specifying preconditions/postconditions, or specifying updates directly?

In this area, two logical approaches occur which are interestingly different. The Bunt-Jaspars
line specifies the relevant dynamic process in terms of preconditions and postconditions. Thus,
a question-answer exchange between agents Q and A might be any move which starts from Q
ignorance about some proposition P and Q-knowledge that A knows if P, to a state where it is
common knowledge that both know if P. The exact nature of the update can be left open.
Conversely, in much Amsterdam work, information states and their updates are central
(satisfying key intuitions) — after which one will just have to see if they satisfy the relevant
postconditions. E.g., Gerbrandy's 'Dynamic Epistemic Logic' has an update opeaat{?)

when agent i learns that P . This changes i's information state, updating all his alternatives
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with P, while leaving the alternatives for all other agents unchanged. (This is hard to implement
over ordinaryKripke models, which generate 'side-effects' for i's update, affecting the others'
knowledge after all. To avoid this, Gerbrandy uses non-well-founded sets.) Thus, the intuition
here is some form of minimal change. Can this also be cashed out in terms of pre- and
postconditions? After the update, i has 'only' learnt that P, while the others have not learnt
anything new at all. In dynamic logic terms, the postcondition should be something like the
backward-looking converse modality: SP{Barn(P)) := dearn(p)~1>A. But this statement is
undefinable in the usual update languages. Connections between update systems and pre/
postcondition specifications in static epistemic languages for group knowledge are still scarce.

5 Game Theory The oldest social paradigm in logic gamesthat go back to Antiquity.
Paradigmatic modern examples are Hintikka evaluation games, Ehrenfeucht comparison games,
and richest of all for analysing communication: Lorenzen argumentation games. Up until now,
logical games have mainly served to throw new light on existing notions. But they embody
many ideas that are sui generis, suchcasimitment, role, role switch, strategy, game
resources, 'social construction' of a common objé€ames are on the way up in logic, as a
means of exploring new avenues. (Compare the recent work on games for linear logics.)
Moreover, there are some interesting junctions between Game Theory in the received sense of
that term and epistemic logic, e.g., in the work of Bonanno and Vilks. (Cf. Dekel & Gul 1997.)

Questions
What is a paradigm for 'logical games' comparable in scope to the received analysis of
formal proof, or formal computation? Who will solve the meta-equafongame =
Hilbert : proof = Turing : computatior? How to import probabilistic considerations (at
the heart of classical Game Theory) into logical games? What are probabilistic moves —
or on another line, how could one certify, without playing all possible games, with
sufficiently high probability, my possession of a winning strategy in logical games?

6 Many-authored Theories 'Social themes' in logic correlate with developments in the
philosophy of science. First, consider informati@presentation The 'web of scientific
theories' is group knowledge of a whole field. Since the Renaissance, no single individual's
state contains this. Moreover, there are several questions about its architecture. One is
aggregation: possible consistency problems when merging theories. The other is segregation:
how to encapsule parts of theories in a modular fashion, so that failures in one module need not
vitiate the whole? Relevant logical work may be found in the literature on ‘combining systems',
as advocated by Gabbay. There are interesting analogies between work on theory structure, and
the structuring of information states in semantics of conditionals and epistemic updates (cf.
Segerberg's recent work on so-called 'hyper-theories', and the discussion in Subsection 10.4).
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Questions
Give a calculus of social knowledge architecture, with natural inter-theory relations and
combinations. How to combine this with current logics of belief update and revision?
And with preference structure in default logic?

7 Representation and Computation Representation invites computation. Cognitive
action is also becoming a central theme in the philosophy of science. This started with Popper's
pioneering emphasis dearningas a basic category — a theme which is also slowly penetrating
into logic and computer science. It is quite explicit in Theo Kuipers' recent broad monograph on
Cognitive Structures in SciencBhilosophical Institute, Rijksuniversiteit Groningen. Social
processes (in our logical sense) in science involve: argumentation games, the role of 'the forum’,
betting models for rationality (which involve several players), collective aspects in scientific
proof, theory change, language change, etcetera. Again, these lead to interesting analogies with
developments elsewhere (such as logic, or Artificial Inteligence); cf. Aliseda-Llera 1997.

Questions
Analyse classical problems in the philosophy of science in logical dynamics for 'social’
structures. Compare specific themes in logic and philosophy of science. E.g. key
notions of verisimilitude and truthlikeness in Zwart 1998 resemble those found in
AGM-style belief revision theory. Theory structure often has a syntactic flavour. Thus,
how can one translate systematically between epistemic logic and syntactic proofs:
KjA and 'i has a proof for A’ — individually, or socially?

8 Conclusions A social aspect is emerging in current logical studies. There is even more
evidence for this claim than what we have surveyed here, such as interesting analogies between
dynamic epistemic logic and the key phenomena studi€fbaial Choice Theorycf. the
introduction in the recent logic textbook by Royakkers and Sarlemijn). But the agenda and
paradigm for the study of social, collective structure in logical terms are still unclear. What this
move leads to is an interesting generalisation of logic. Not just individuals can have goals and
transform information. So can social organisations, which are epistemic agents just as
individuals. A major challenge, therefore, to logic as classically conceived, is extension of its
scope so as to deal with information flow in significant organisations.
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10 Paralipomena

This final section collects some disconnected fall-out of the preceding investigations.

1 Bisimulation Invariance and Translation

The following point was made by Natasha Kurtonina. Intuitively, 'simulations' may relate prdcesses

with differentmoves or local properties. But then, the usual model theory of bisimulation — for ingtance,

as presented in ELD — is too uniform, as it has the same language on both sides. Here is a first nesponse.

Consider two modal modeM, N, in different similarity types L, L'. Aisimulationis
a binary relation E between points in the two models with the following properties:

® there exists a correlation between L-atoms p and L'-atoms g such that
if sEt, andM, s |=p, theM, t |= g ; and vice versa

(i) there exists a correlation between L-actions a and L'-actions b such that
ifsEt, and s as’, then there exists t' withtb t'and s' E t'; and v.v.

This corresponds to a fixed correlation of features observed in one process with those in
another. In this case, each L-formylaas a direct L'-translatior{@) (and vice versa).

Theorem The following assertions are equivalent:
(@ @ implies Y along L-L'-bisimulations
(b)  there exists some modal L-formuta such thatg|=a, t(a) |= Y

Theproofis essentiallytheargumentor the Modal Invariance Theorem. From (a) to (b),
oneshowghat the set of all L'-translations of the modal L-consequenagsgflies .

But there are further natural situations. Suppose we have a more complex correlation,
with an occurrence of p M corresponding to truth iIN of some complex L'-formula

Op , and the occurrence of an a-mové/iralways matched by some finite sequence of
actiongn N defined by some expressern, . Assume the same in the opposite direction,
with a similar translationt. Then we need a more complex two-way preservation
statement. E.g., immediately preserved from left to right uodianslation are all
formulas generated by the syntactic schema-p | & || <a> . But in addition,
universamodalities[t(b)] may be allowed, when translated into plain L'-modalities [b].
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Question What is the proper treatment of the preceding situation?

Thingsgetevenmorecomplicatedf wewantthedefinabilityto come out, not by fiat, but
as a result of some semantic regularities — as happens in Beth's Definability Theorem.

2 How to Express Variable Dependencies

Decidable remodelling of first-order logic can be done in the form of generalized assignment models,
where 'gaps' encoddgependenciebetween variables. Now dependencies are interesting matherpatical

structures in their own right. But are they adequately reflected in the standard predicate-logical language?

We give some examples suggesting the need for, at least, an enriched modal logic on top of the|latter.

Consider the main example of a generalized assignment model in ELD, chapter 10. It
has a domain of objects {1, 2}, a set of variables {x, y}, and so there are 4 possible
states. These generate 15 non-empty assignment models, which may encode various
dependenciebetween the variables. For instance, the one with just {(x, 1), (y, 2)} and
{(x, 2), (y, 1)} made y and x heavily interdependent: a change of value for one forces a
changdor the other. Now we showed how to interpret a predicate-logical language with
quantifiersCx, [y over all these models. But is this really the right medium for bringing

out the underlying dependencies, viewed as important structures in their own right?

Let us look at the situation in modal logic. The standard model is really a 4-world
multi-S5 modeWith two modalities, which may be drawn as follows:

Xy
11
X y
Xy Xy
21 12
Yy X
Xy
22

To liven things up, we can postulate some binary relation R on the underlying objects,
say, R ={(1, 2)}. Let the language contain atoms Rxy, Ryx. Each of these will be true
in one world in the above picture. One way of making distinctions between dependency
models is by looking at all possible submodels of this multi-S5 model, and asking if
their modal theories are different. It is possible to show that they are, by inspecting all
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cases. But this does not define dependency informdtrectly. And indeed, standard
predicate logic seems to poor to adequately describe, say, the above 2-world model. No
ordinary relation x or 5, crosses from one world to the other: only, 3 does that.

More generally, we need an extended modal logic with modalities for all relations
w=xVv iff w,vagree on all variables except at most those in the set X
Butwill thisexpresgoncretdactsaboutvariabledependencies?onsider two examples:

(@) "If x changes its value, than so does y"
(b) "Any change in x determines a unique change in y"

Neither assertion is expressible in even a polyadic quantifier language, although some
approximations may be stated. But these are contrived and indirect. It seems we need
further relations % which say that, in passing from assignment w tat ieast(not:

‘at most') the variables in X change their values. Then we can express (a) as follows:

<=x}>¢p - <=x¥l>¢

This is another case where generalized semantics supports natural new types of
guantifier, beyond the standard first-order ones. The above type of quantification seems
related to introducing some kind difference modalitpetween states.

Questions What happens tecidabilityandaxiomatizationof generalized predicate
logic when we add a difference modality — or even just a universal modality?
Does this correspond to an obvious extension of the Guarded Fragment?

Here is an almost—translation into the Guarded Fragment with identitygplieve
variables {x, ..., %} in total, and let y be a new variable, different from these and x:

<=X}>@ o Dkg.xky. (RO ... X V) & YEX & QY/X)(X1, -y %))
where R is the uniform relativizing predicate for all quantifiers used in
Andréka, van Benthem & Németi 1998 in order to reduce satisfiability

in generalized assignment semantics to standard satisfiability in GF.
But note that this introduces new variables, and does not seem to do the job precisely.

Taking dependence models seriously means finding the right modal language for them
— and then developing its simulations, correspondences, and complexity properties.
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3 Lowering Complexity by Long-Distance Evaluation

Various strategies for lowering complexity occur in logical dynamics. One is the use of 'general|models'
for second-orddogic, restrictingpredicaterangesAnotherisalgebraiaelativization restrictingavailablg
object combinations. But one can also vary the mechanism of the truth definition for similar pyrposes.

We consider evaluation allowing jumps across 'indistinguishable' models as one further gtrategic

remodeling option, with some good independent motivation, and raise some questions about its gffects.

There are few general strategies for lowering the complexity of logical systems. One is
theuseof Henkin'sgeneralmodels which turn non-arithmetical second-order logics into
REmany-sortedirst-orderlogics.Anotheris algebraiaelativization which turns RE but
undecidable algebraic logics into decidable ones. But here is another approach, inspired
by the discussion of modal logic with 'bisimulation quantifiersp B Hollenberg

1998, which 'jJump models' by stating th@tholds in some bisimilar state in a possibly
different model. These quantifiers access the current model only 'up to bisimulation'.

Here is our proposal for second-order logic. The problem with predicate quaritifiers

is their ranging over the power set of the current mdtled mysterious set-theoretic
entity. Let us allow these quantifiers to be a bit fuzzier now, claiming the existence of a
set that we know 'up to a degree' measured by some semantic equivalence relation. In
general, formulas will have free object varialyeset to objects, and free predicate
variablesX set to predicateB. Here is a new second-order quantifier clause:

M, a, P|=Ye @ iff there is a modeN, b, Q potentially isomorphic
to M, and a set B ifN such thatN, B |= ¢

The relevant potential isomorphism generalizes that of first-order logic. Its component
partial isomorphisms refer to predicatesAnconcerninga-objects, matching their
counterparts it w.r.t the correspondin@-predicates — plus the constant predicates of

the language. This move does not make a difference over countable models, as potential
isomorphism is isomorphism there, but it does when we work on arbitrary models.

Question What are the complexity effects of this move?

For independent motivation, cf. ‘consequence along a model relation R' (Barwise & van
Benthem 1996), with a modal formp - [R]Y . OurllY is an existential modality <R>.
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4 Towards a Dynamic Theory Structure

Constructive information states can be thought of as 'theories’, in the sense used in the philgsophy of
scienceWeidentify a number of stages where theory structure is becoming more complicated these days,

plus some analogies with the needs of dynamic semantics. These thoughts were inspired by Zwart 1998.

Verisimilitudeis a ternary relation ) BC saying, intuitively: 'B is more like A than

C is'. To some extent this may be compared with a notion of (preferenins@quence

from C to B, in the context of C. Sjoerd Zwart's recent dissertation surveys many
proposals for more precise definitions, constraints on how the latter are to perform, and
in the process, different representations of the ‘theories' involved in this comparison.
Here are some analogies with issues in logic.

4.1 Base Level Here is a first view of theories. T is a set of sentences, which
corresponds semantically to MOD(T), the class of all models that verify every sentence
in T. Tarskian consequence operates at this level:

T1=T if MOD(T1) O MOD(Ty)

4.2 Partial Logic Let a theory now consist of two disjoint classes of models:
MOD*(T),theoneghataredefinitelyacceptedandMOD—(T), theoneghataredefinitely
rejected. The remaining models form a grey zone. This is exactly as in 3-valued logic,
and consequence becomes a bit les clear-cut accordingly. Here are two options:

Ti|=tT2  if  MOD*(T1) 0 MOD*(Tp)
T1|="-To if  MOD*(T1) O MOD*(T2) and MOD~(T2) O MOD~(Ty)

This emergence of options for defining logical consequence may match the well-known
proliferation of options for verisimilitude. No unique best choice may exist.

4.3 Hypertheories Now lift theories tofamilies of setsof models (there are
motivations for this in linguistics and Al). E.g., think of the family { MQip( @T}.

This is intermediate between making theories syntax-independent and -syntax
dependent. E.g., {p, p &q} will be different from {p&q}, but the same as {p&p, q&p}.
Valid consequence between theories at this level is even a less clear-cut intuitive
notion. Should one require, perhaps, that

UXOT2 LYUTy YOX?
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A Difficulty . There are two interpretations for thi3njunctive the theory says that all
models in its intersection are 'in', while those outside of all sets of the family are 'out'.
The family records how the intersection was arrived out, as a handle for later belief
revision, or other cognitive processBssjunctive the theory says that one of the sets in
the family is the right one. In this case, the intersection records what is 'in' no matter
what, and the exterior everything that is 'out’. Sjoerd Zwart's 'modal theory
representation’ in terms of S5 normal forms is of the second variety: it describes all S5
models in which the theory would be true.

Question What is the connection between this view of verisimilitude and
hypertheories for belief revision as developed by Krister Segerberg?

Of course, there are even richer theory representations, indicating preferences between
different pieces, as in Mark Ryan's well-known dissertation on 'structured theories'.

5 Updates, Upgrades, and Setting an Agenda

Incoming assertions need not just increase information, say, by eliminating possibilities. They may also

change current preferences over these possibilities (as being 'more or less plausible’), or they may merely

structure the set of assertions now on the table. We present a simple propositional model for dging this.

Model 1: Updates  Information states are sets of propositional valuatioipslate(p)
is an instruction (alternatively, a mode of reading the incoming assertion) which
eliminates all valuations that do not vergyviewed as a classical proposition.

Model 2: Updates and upgrades Information states are now 'graded’ sets of
propositional valuations, where each valuation has a natural number indicating its
‘current preference status'. Updgleyorks as beforeUpgrade@) adds 1 to each
valuation which verifiegin the standard sense.

Model 3: Updates, upgrades, and tabling Information states are graded sets of
propositional valuations, plus a marking of subsets named by specific formulas (‘what's
on the table'). Updatep), Upgrade@) work as beforeTablefp) adds a marking to the
current table for the set of valuations verifyipg

The final model is a bit like the hypertheories of an Section 10.4, as it carries 'historical’
information. The upshot of all this is a rich procedural version of propositional logic,
which can be used as a concrete model for studying issues like
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Q) laws of felicitous discourse: 'no update befor tabling’, etcetera

(2) logic of discourse moves: such as recursion rules for Update,
Upgrade, and Table w.r.t the standard Boolean connectives

3) new procedural notions of validity, or other items of
importance to argumentative discourse.

References
J. van Benthem, J. van Eyck & A. Frolova, 'Changing Preferences', CWI, 1995.
F. Veltman, 'Defaults in Update Semantidsurnal of Philosophical Logicl1996.

6 Choice Trees in Dynamic Logic

Labeledransition systems aredisjunctivedefinition of all possible steps in a process. Standard dy’jamic

logics do not manipulate such choice trees. We briefly sketch a modal extension of PDL which does.

6.1 Trees and Process Graphs Choice tree finite graph with arrows for actions
(perhaps including tests). OR-interpretation: the various options of a single process.
Distinguish from AND interpretation: joint action (as in Section 2). Intuitive ambiguity
"and"/"or" interpretation: cf. the deontic 'Paradox of Free Choice Permission'.

6.2 Language and Semantics Language. <G® . We record the nodes of the
tree G for use in the syntax, whil® is an assignment of formulas to these nodes.
Example: single-tree equivalent for <@™ <b> with branching tree <a + b >p<y>

. Interpretation in standard PDL models: via existence of a succesful embedding of G
into the model, starting from the current state as its root.

Fact Every tree-formula is equivalent to an ordinary PDL-formula.

Reason: trees can be successively 'unpacked' by conjunction of options plus
composition for continued branches. Next, considis operations& and ® . The first

adds trees undaijoint root (‘choice’). The second glues a tree under another at some
specified leaf, for 'continuation' of processes. (Options: glue at any node, or at specified
leaves only.)

Fact Initial & and final * are complete for building all finite trees.

6.3 Axioms and Completeness Distribution laws for & and ¢ describe
equivalent ways of constructing a tree. They result in a 'normal form' description which
belongs to the original PDL. This is also the complete axiomatization. Also reflected in
the logic: differences betweef and program uniori] .
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6.4 lteration and Fixed Points  Implicit definitions andteration. The outcome
becomes really stronger than PDL. Example: fixed point for the tree matrix
{g, a-b branch to <*, *>}.

Solution: all finite trees in which every node is either a p-leaf, or it has both an a- and
a b-successor that each start a similar tree.

Fact This class is undefinable in PDL, which defines only regular languages.
Nevertheless, this extended language isdstitidable

Fact All tree fixed points are definable in the-calculus.

Example The above statement about binary tregsgs p U (<a>qll<b>Qq)

Complete axiomatization? The two obvious valid iteration principles reflect properties
of 'smallest pre-fixed point'"

(1) @ (Mg @()) (2)if ¢(a) - a, then pgs@(q) - a

General analysis: effective translation into (a small recursive fragment of — countably)
infinitary modal logic: the above fixed pointsuse only very simple countable
disjunctions. Generalisatiarf Kleene'sNormal Form Theorenfor regular expressions:

tree notations.

Most striking feature: all relevant fixed points are reached afteapproximation steps,
because the associated operatorgiaitely distributive Syntactic normal form for such
special operatorsige ¢(q) where the occurrences of g lie only in the scopé, @f, [

. This is a tree-style generalisation of Kleene's syntactic regular notation.

6.5 Invariance and Safetyhe extended Ilanguage (including all
propositional fixed point operations) is invariant for bisimulation.

Proposition Safety for the new tree operations follows by an easy induction.

Converse: finitary and infinitary versions exist (cf. Barwise & van Benthem 1996), but
we have the same difficulty as ever in zooming in more precisely on just fixed point
logic.
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