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WHILE THE MOST COMMON WAY of evaluating a computa-
tional model is to see whether it shows a good fit with
the empirical data, recent literature on theory testing
and model selection criticizes the assumption that this
is actually strong evidence for the validity of a model.
This article presents a case study from music cognition
(modeling the ritardandi in music performance) and
compares two families of computational models (kine-
matic and perceptual) using three different model selec-
tion criteria: goodness-of-fit, model simplicity, and the
degree of surprise in the predictions. In the light of what
counts as strong evidence for a model’s validity—
namely that it makes limited range, nonsmooth, and
relatively surprising predictions—the perception-based
model is preferred over the kinematic model.
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Meeting a friend in the corridor, Wittgenstein said: “Tell me,
why do people always say it was natural for men to assume that
the sun went round the earth rather than that the earth was
rotating?” His friend said: “Well, obviously, because it just looks
as if the sun is going round the earth.” To which the philosopher
replied, “Well, what would it have looked like if it had looked as
if the earth was rotating?”

Tom Stoppard, Jumpers, 1972

HOW SHOULD WE SELECT among computational
models of cognition? This question has recently
attracted much discussion (Pitt, Myung, &

Zhang, 2002; Roberts & Pashler, 2000, 2002; Rodgers &
Rowe, 2002). While the most common way of evaluating
a computational model is to see whether it shows a good
fit with the empirical data, the discussion addresses
problems that might arise with the assumption that this

is actually strong evidence for the validity of a model.
Some authors consider a fit between a theory and the
empirical observations a necessary starting point, but
clearly not the end point of model selection or verifica-
tion (e.g., Desain, Honing, Van Thienen, & Windsor,
1998;  Jacobs & Grainger, 1994; Rodgers & Rowe, 2002).
Others suggest alternatives to a goodness-of-fit (GOF)
measure, such as preferring the simplest model, in
terms of both its functional form and the number of
free parameters (e.g., Pitt & Myung, 2002; Pitt, Myung,
& Zhang, 2002). Yet others have indicated a preference
for theories that predict an empirical phenomenon that
was least expected, as they consider a good fit to be of
less relevance or even misleading (e.g., Roberts &
Pashler, 2000).

It comes as no surprise that models stated in compu-
tational form are now subject to this discussion. One
of the advantages that computational models of cogni-
tion have over alternative types of theories (e.g., verbal
theories) is that the former are open to direct and imme-
diate test (Longuet-Higgins, 1987) and allow, in princi-
ple, for easier evaluation, verification, or falsification.
However, the aim of this article is not to add to this
lively debate in a philosophical or methodological sense.
Instead, the focus is on a specific problem from music
cognition, that is, modeling ritardandi in music per-
formance. It is a case study on how one can select between
two computational models, informed by the method-
ological discussion mentioned above.

This article compares two families of computational
models. The first takes a kinematic approach to the
modeling of expressive timing in music performance.
These models focus on commonality, that is, on the
timing patterns that are commonly found in music
performance and on how they conform to the laws of
physical motion (see Honing, 2003; Shove & Repp,
1995). Here, this approach is contrasted with a percep-
tual approach. Rhythm perception models predict
constraints on the use of timing and tempo in music
performance. As such, this approach focuses on diver-
sity: These models predict the degree of expressive
freedom a performer has in the interpretation of a
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rhythmic fragment before it is “misinterpreted” by the
listener as a different rhythm (see Clarke, 1999; Desain
& Honing, 2003; Honing, 2005).

In this article, the two approaches are compared using
three different model selection criteria, namely good-
ness-of-fit, parsimony, and the surprisingness of the
predictions. However, before discussing further these
issues in model selection, I shall elaborate the domain
(music cognition), the problem (modeling expressive
timing in music performance), and two approaches in
modeling it (kinematic and perceptual).

Music Cognition and Computational Modeling

In recent decades, computational modeling has become
a well-established research method in many fields
(Fodor, 2000; Pylyshyn, 1984), including music cogni-
tion (Desain, Honing, Van Thienen, & Windsor, 1998).
To characterize the current state of affairs in music
research, one can distinguish between (at least) two
approaches to computational modeling. One approach
aims at modeling musical knowledge. These are models
originating from music theory in which a thorough
formalization contributes to an understanding of the
theory itself, its predictions, and its scope (e.g., Lerdahl
& Jackendoff, 1983; Narmour, 1992). The other approach
aims at constructing theories of music cognition. Here,
the objective is to understand music perception and
music performance by formalizing the mental processes
involved in listening to and in performing music (Clarke,
1999; Gabrielsson, 1999). Both approaches have differ-
ent aims and can be seen as being complementary.
Music cognition is the domain of the current article,
which discusses model selection in the context of the
computational modeling of the final ritardandi in music
performance.

Modeling the Final Ritard

A considerable number of theories on the use of expres-
sive timing in music performance make predictions on
the final ritardandi (or “final ritard”), that is, the typical
slowing down at the end of a music performance, espe-
cially in music from the Western Baroque and
Romantic periods (Hudson, 1996). This characteristic
slowing down can also be observed in, for instance,
Javanese gamelan music and some pop and jazz genres.
Together with the “fade-out,” it is one of the most
common ways of marking the ending a piece of music
in Western culture. Several approaches have been
suggested to explain the typical ritardandi found in
music performance, most notably the relation between

these timing patterns and physical motion (e.g., Shove
& Repp, 1995; Truslit, 1938). However, also direct phys-
iological (e.g., Todd, 1999) and perceptual explanations
(in the Gibsonian sense; Clarke, 2001) have been pro-
posed. Other theories focus more on the metaphorical
relation between music and motion, investigating how
far this is facilitated by cognition (Eitan & Granot, 2005;
Gjerdingen, 1994). However, this is not the place to
fully discuss the relation between music and motion.
This article concentrates on two computational
approaches to modeling final ritardandi: the kinematic
model and the perception-based model.

Kinematic Model

An important contribution to the modeling of expressive
timing is made by a family of computational theories,
namely kinematic models (Honing, 2003). They make
an explicit relation between the laws of physical motion
in the real world and expressive timing in music per-
formance (Epstein, 1994; Feldman, Epstein, & Richards
1992; Friberg & Sundberg, 1999; Kronman & Sundberg,
1987; Longuet-Higgins & Lisle, 1989; Sundberg &
Verrillo, 1980; Todd, 1985; Todd, 1992; Todd, 1995).
Most of this research suggests that musicians, in using
tempo and timing as an expressive device, allude to
physical motion, even so far as modeling it as a force
that causes the tempo to “push forward” or “hold back”
(Gabrielsson, 1999). In the case of the final ritard, the
analogy is made with deceleration in human motion, as
in walking or running. Such a deceleration pattern can
be described by a well-known model (from elementary
mechanics) of velocity (v) as a function of time (t):

v(t) = u + at (1)

where u is the initial tempo and a the acceleration factor
(deceleration when a is constrained to be less than 1).
This function can be generalized and expressed in
terms of score position x, resulting in a model in which
normalized tempo v (normalized with respect to the
initial or pre-ritardando tempo) is defined as a function
of normalized score position x (normalized with
respect to the length of the ritard), with q for curvature
and w determining slope (Friberg & Sundberg, 1999;
see Figure 1):

v(x) = [1 + (wq�1)x]1/q (2)

In this generalized model, w is defined over the inter-
val � 0, 1], and q over the interval � 0, �]. Furthermore,
the curvature of q is dependent on w. When w
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approaches 1, curvature is reduced (see Figure 1). Two
instances of this model are most commonly found in
the literature: a model of constant braking force (q � 2,
Epstein, 1994; Kronman & Sundberg, 1987; Longuet-
Higgins & Lisle, 1989; Todd, 1992), and a model of con-
stant braking power (q � 3, Friberg & Sundberg, 1999).
Both were found to be good predictors of performance
and perception data (Friberg & Sundberg, 1999).
Furthermore, the latter model (q � 3) was shown to
be similar to the way dancers stop running. Alternatives,
such as a model of duration (IOI instead of tempo) of
score position (Repp, 1992; Todd, 1985), were shown to
fit the empirical data less well.

The rationale for the kinematic model is that it mod-
els types of movement with which the listener is quite
familiar, and consequently facilitates the prediction of
the actual end, the final stop of the performance.

Perception-Based Model

An alternative to the kinematic approach is based on
computational models of rhythm perception: It is
referred to as a “perception-based model” (Honing,
2005). It consists of two components. The first compo-
nent, a model of perceived regularity (or “tempo
tracker”), tracks the perceived tempo of the perform-
ance using an adaptive oscillator (Large & Kolen, 1994;
McAuley, 1995; Toiviainen, 1998). The output of a
tempo tracker can be described by:

(3)o(t) � 1 � tanh[�( cos 2��(t) � 1)]

(4)

where p is the period, tx the time at which an event is
expected, and � the “temporal receptive field,” that is,
the area within which the oscillator can be changed (a
higher value being a smaller temporal receptive field).
At the point in time that an event occurs (referred to as
t*), the period and phase are adapted according to:

(5)

(6)

where �p and �� are the coupling-strength parameters
for period and phase tracking. If an event occurs within
the temporal receptive field, but before tx (i.e., it occurs
earlier than expected), the period is shortened. If an
event occurs outside the temporal receptive field, the
period remains unchanged.

The second component, a model of rhythmic catego-
rization (or “quantizer”), takes the residue—the timing
pattern after a tempo interpretation—and predicts the
perceived duration category (e.g., an eighth note as
opposed to a sixteenth note in common music nota-
tion). Three quantizers are considered. Each takes as
input an inter-onset interval (IOI) pattern and returns a
categorized version of it. The Dannenberg and Mont-
Reynaud (1987) model does this using techniques from
control theory, the Longuet-Higgins (1987) model uses
AI-based techniques, and the Desain and Honing
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FIG. 1. Predictions of the final ritard made by the kinematic model. The x axis indicates the normalized score position, the y axis the
normalized tempo. The left panel shows some of the predictions that can be made by varying q for curvature (with q � 2 being a model of

constant braking force, and q � 3 a model of constant breaking power); the right panel shows some of the predictions that can be obtained by
varying w for slope.
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(1989) model takes a connectionist approach. Each
of these models has two parameters. They are all used
with their default values. Hence, in this article I shall
consider the categorization component as parameter-
free. For details on the formalization of these models,
the reader is referred to Desain and Honing (1992).

The perception-based model was evaluated on artifi-
cial data (Honing, 2005), an example of which is given
in Figure 2. It shows the results of simulations of the
model on data that were varied for rhythm (isochro-
nous and nonisochronous durations; see the columns in
Figure 2) and curvature (without and with ritard; see
the rows in Figure 2). The gray areas indicate the degree
of expressive timing (tempo change or variance) that a
performed note can exhibit before being categorized as
a different duration category. It was shown that the
rhythmic structure constrains the expressive freedom:
More complex rhythmic patterns restrict the degree of
slowing down; the narrower the gray area, the less free-
dom a performer has in varying the duration of that
particular note (as predicted by the model).

In more formal terms, when a certain inter-onset
interval (IOI) is categorized as C (e.g., C0 in Figure 2a)
by the categorization component, the upper border

(filled circles) indicates the tempo boundary at which
an input duration will be categorized as C�3/4 (C1 in
Figure 2a), and the lower border (open circles) the
boundary at which it will be categorized as C�4/3
(C2 in Figure 2a).1 The error bars indicate the maximum
and minimum prediction of the rhythmic category
boundary over the three quantization models
(Dannenberg & Mont-Reynaud, 1987; Desain & Honing,
1989; Longuet-Higgins, 1987).2 Note that just one
possible category boundary is shown here.

The rationale for the perception-based model is that,
in general, a performer would like the listener to recog-
nize the original, notated rhythm. The model makes
precise predictions about when a rhythm performed
with some tempo and timing variations will still be
recognizable as such by the listener (e.g., those

368 H. Honing

FIG. 2. The influence of rhythmic structure (isochronous vs. nonisochronous; left vs. right column) and curvature (top vs. bottom row) on the
predicted degree of expressive freedom (gray area) in a final ritard, as predicted by the perception-based model. Crosses indicate the input

data; circles mark the average upper and lower perceptual category boundaries. The bars indicate the minimum and maximum values predicted by
different quantizers2 (adapted from Honing, 2005).
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1A log scale will make the areas shown in Figure 2 symmetrical. A
linear scale is used for easier comparison with the existing literature.

2As it turned out, it is not too important which models are used for
the categorization component: Different combinations of quantizers
and a tempo tracker gave roughly similar behavior (Honing, 2005).
See error bars in Figure 2.

02.MUSIC.23_365-376.qxd  30/05/2006  11:11  Page 368



performances that stay within the gray areas shown in
Figure 2). It also predicts when the perceived rhythmical
structure will change or break down because there was
too much tempo change (e.g., a performance that
crosses a category boundary).3 So, in short, the percep-
tion-based model does not predict the specific shape of
a ritardando, but the perceptual boundaries between
which ritardandi are expected to occur.

General Differences between the Two Approaches

Before starting a more detailed comparison, I shall first
point out some general differences between the two
models.

As mentioned, the main difference between the two
approaches is the focus on either commonality (What is
the shape of a “prototypical” ritard?) or diversity (What
is the variability observed?). However, both models
can make predictions regarding both questions. The
perception-based model, while characterized as a model
of diversity, can make predictions on the shape of the
final ritard by defining it as the shape that can best be
tempo-tracked using the perceived regularity compo-
nent of the perception-based model. For the kinematic
model, while characterized as a model of commonality,
one can define the range of possible ritards as those
that can be successfully fitted. As such, this model can
make predictions on the variability of ritards.

Another important difference between the two models
is the type of input they use. The kinematic model
assumes the score position to be known (x in Eq. 2),
whereas the perception-based model takes real per-
formance data as input (t in Eq. 3). So while the kine-
matic model has to be informed of score information,
the perception-based model derives this categorical
information from the input data by using the rhythmic
categorization component. This makes the perception-
based model more complex, but arguably also more
perceptually realistic. This has implications for the com-
parison of both models on empirical data. It informs the
kinematic model of score information (i.e., duration
categories) such that it can distinguish between tempo
and timing variations, while the perception-based
model has to try and separate these (using, respectively,

period and phase adjustments). However, since there
seems to be no elegant way to resolve this issue, I shall
ignore this difference here. Hence the complexity of the
rhythmic categorization component in the analyses below
(see under “Measure of simplicity”) is not considered.

And, lastly, although the output of the two models is
also different, both can easily be interpreted as a tempo
prediction. For the kinematic model, this is simply the
result of Eq. 2, while for the perception-based model
this is the reciprocal of the period, the output of the
oscillator (Eq. 3). The other differences between the
models will be discussed in more detail below.

Theory Testing and Model Selection

I shall now compare the two approaches (kinematic and
perception-based) using the perspectives on model
selection mentioned in the introduction, namely
(a) how well the model fits the empirical data (measure
of good fit), which is the most parsimonious model
(measure of simplicity), and (b) how surprising the pre-
dictions are (what could one expect). For brevity, I shall
henceforth refer to the kinematic model as the
“K model” and to the perception-based model as the
“P model.”

Measure of Good Fit

Goodness of fit (GOF) is the most common way of test-
ing the validity of a theory. It indicates the precision
with which a model fits a particular sample of observed
data. The predictions of the model are compared with
the observed data and the discrepancy between the two
is measured using an error measure.

I shall use GOF to compare the two models on meas-
urements of final ritardandi taken from Friberg and
Sundberg (1999). This set—the “F&S99” set—consists
of twelve harpsichord performances of compositions by
J. S. Bach. Sundberg and Verrillo (1980) used slightly
larger set of twenty4 performances that includes the
F&S99 set; these are referred to as the “S&V80” set, and
will be used for comparison.

To obtain the best fit, for the K model the q and w
parameters were varied (see Eq. 2), as was the voffset
parameter, which adds a constant to the model. This
third parameter was added to eliminate a propagating
effect of sometimes misfitting the first normalized
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3Of course, some performers challenge this. For instance, the late
Glenn Gould took tempi or used timing that would alter the actual
notated rhythm on occasion. However, it could be argued that the
mere existence of such perceptual boundary, and just crossing it,
makes an interpretation ambiguous and interesting (cf. Desain &
Honing, 2003).

4Sundberg and Verillo (1980) originally reported on 24 measure-
ments. Of this set, only 20 measurements were made available to the
author.
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value (Friberg & Sundberg, 1999:1478). For the P model,
the � , �p, and �� parameters were varied (see Eqs. 3, 5,
and 6).5 Table 1 shows the results of fitting the two
models to the F&S99 dataset minimizing the root mean
squared error (RMSE) between each model and the
observed data. Note that the results for the K model
replicate those presented in Table IV of Friberg and
Sundberg (1999, p. 1478).

From these results it can be concluded that both
models actually fit the F&S99 dataset quite well. The K
model does slightly better (r2 � .98) than the P model
(r2 � .90). A t-test comparing the mean correlations
indicates that this difference is significant (p � 0.1).

These results could, however, be affected by the
specific selection criteria used in determining which
and what part of the measured performances to use as
a final ritard. For instance, only ritardandi with
“smooth shapes” were selected by Friberg and Sundberg
(1999, p. 1478), resulting in a set of twelve perform-
ances, instead of the twenty performances of the origi-
nal S&V80 dataset. Furthermore, at least for one
performance the last IOI was removed (WP1). In this
performance, the penultimate IOI was longer than the
last IOI: Apparently, the performance speeded up at the
end of the ritard.6 Table 2 shows the influence of the
specific data set used (F&S99 or S&V80) and the effect
of a systematic inclusion or exclusion of the last IOI
(note that the first row in Table 2 is the same as the
means and standard deviations reported in Table 1).

Table 2 shows that the specific dataset chosen has an
effect on the result: For the F&S99 set the difference in
fit is significant, while for the S&V80 set the difference
is nonsignificant (compare the first with the third row
in Table 2). Furthermore, systematically removing the
last IOI from both datasets has a large effect on the
results. When it is excluded, the P model is significantly
better, and when it is included the K model makes bet-
ter overall fits (compare the first and the second row,
and the third and the fourth row in Table 2).

Based on these results, we cannot conclude that one
model fits the empirical data better than the other. In

370 H. Honing

TABLE 1. Results for the K (Kinematic) and P (Perception-Based) Model as Fitted on the F&S99 Dataset.

K model P model

Music examples Id Notes q w voffset r2 � �� �� r2

W. clav. I Prel. 1 WIP 10 2.4 .32 .010 .98 0.1 0.7 1.0 .85
W. clav. II Prel. 1 WP1 8 2.1 .50 .000 .98 0.0 1.0 1.0 .99
W. clav. II Prel. 2 WP2 7 2.5 .51 .030 .97 0.0 0.6 1.0 .99
W. clav. II Fug. 3 WF3 6 1.1 .48 �.020 .97 0.0 0.7 1.0 .95
W. clav. II Fug. 5 WF5A 7 4.3 .51 .010 .99 0.0 0.2 1.0 .93
W. clav. II Fug. 5 WF5B 8 2.6 .38 �.020 .98 0.2 0.0 0.8 .89
Eng. Suite 1 All. E1A 6 2.0 .45 �.030 .98 0.0 0.4 1.0 .88
Eng. Suite 2 All. E2A 11 3.8 .37 .020 .98 0.0 1.0 1.0 .85
Fr. Suite 4 Cour. F4C 6 4.1 .50 .020 .99 0.0 0.5 1.0 .89
Fr. Suite 6 All. F6A 7 2.3 .44 .020 .98 0.0 0.6 1.0 .96
Fr. Suite 6 Cour. F6C 7 5.0 .46 �.010 .99 0.0 0.0 0.8 .76 
It. Conc. Mvt. 3 IC3 7 1.2 .34 �.010 .97 0.1 0.9 1.0 .85

Mean 2.7 .44 .002 .98 0.03 0.55 0.97 .90
SD 1.2 .07 .019 .01 0.07 0.35 0.08 .07

TABLE 2. Results for Datasets F&S99 and S&V80 with (�) and
without (�) the Last IOI.

K model P model

Set Last Mean r2 SD Mean r2 SD

F&S99 + .98 .01 .90 .07 *
F&S99 � .89 .08 .97 .04 *
S&V80 + .95 .05 .91 .07 n.s.
S&V80 � .86 .09 .97 .05 **

* p � .01. ** p � .001.

5For the other parameters of the P model, the default settings were
used (i.e., the period of the oscillator is initially set to the first
observed interval in the input, and the initial phase is set to zero).
Furthermore, since the global tempo (absolute IOIs) is not consid-
ered relevant to the K model, for the P model the fit was selected for
the tempo that gave the best results.

6This special behavior of the last IOI in the context of the final
ritard was also observed by Repp (1992). Sometimes performers give
the last IOI the same length as the penultimate IOI, but they mostly
give it a much longer or even a shorter length (e.g., WP1).
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addition, we have to realize that the K model has
an advantage in that it has access to score information
(see under “General Differences between the Two
Approaches”). However, even if we were to restrict our
evidence to the results shown in Table 1, we could not
select one model over another. The reason for this is
that such measures as RMSE or percentage of variance
accounted for (PVAF) only assess fit. These measures
are not able to distinguish between variations in the
data caused by noise and those that the model was
designed to capture. Therefore, several alternative model
selection criteria were proposed (for an overview, see
Pitt & Myung, 2002), some of which will be discussed
below.

Measure of Simplicity

How can we select between models that fit a particular
sample of observed data equally well? One way of doing
so is to relate the complexity of a model to the degree
of success in making a good fit. Complexity is a prop-
erty of a model that enables it to fit diverse patterns
of data; it is the flexibility of a model (Pitt & Myung,
2002). Dimensions of complexity that can be evaluated
are, for example, the functional form—the way in which
parameters and data are combined in a model’s equation
(e.g., y � ax and y � a � x have the same number of
parameters but different functional forms)—and the
number of free parameters of a model (e.g., in y � ax, a
is the free parameter) that can be adjusted to improve
a model’s fit to the data. As such, it provides a measure

of the flexibility of a model (the GOF measure used in
the previous section does not consider any dimension
of complexity).

With regard to the number of free parameters, it is
clear that we cannot make a selection between the two
models under discussion, simply because both use the
same number of parameters. But even if one model were
to have fewer parameters than the other, this would be too
crude a comparison since the functional form of both
models is not considered. While a model might have
fewer free parameters, it could well have a functional
form that allows much greater flexibility in making fits;
in fact, it might even suffer from over-fitting the data.
Therefore, we need a way of showing the flexibility—
that is, the range of predictions—a model can make.

I shall investigate this by plotting the response area of
a model. This graphical representation shows the range
of predictions a model can make.7 The larger the
response area, the more flexible the model.

Figure 3 shows the response area for both models as
well as the ritardandi in the F&S99 dataset. Figure 3a
shows the response area containing all the predictions
that can be made by the K model, in fact the full square
(all possible ritards). For the P model (see Figure 3b),
the response area contains all the ritards that can be
successfully tempo-tracked by the model (r2 	 .99), a
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FIG. 3. The response area (gray) for the K model (left) and the P model (right). Circles indicate the measurements of the F&S99 dataset
(closed circles indicate mean tempo; error bars indicate 
 one standard deviation).
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7For alternatives in visualizing the complexity of a model, see Pitt,
Myung, and Zhang (2002).

02.MUSIC.23_365-376.qxd  30/05/2006  11:11  Page 371



much smaller portion of the full square. So, in conclu-
sion, the P model exhibits much less flexibility than the
K model, despite the larger complexity in terms of the
functional form of the former model (cf. equations).

Another aspect that can be analyzed using the
response area visualization is the influence of the struc-
tural characteristics of the input data. In Honing (2005)
it was shown that the K model is insensitive to note den-
sity and rhythmic structure: The predicted shape of the
ritard is not affected by these factors. However, these fac-
tors were shown to have an effect on the predictions
made by the P model. Using the response area visualiza-
tion, this can also be shown in the current context.

In Figure 4a the response area for the P model is shown
for six notes (marked with open squares, repeated from
Figure 3b) and for an input twice as dense (i.e., 12 notes;
marked with closed triangles). It shows that note den-
sity has an effect on the size of the response area: The
more notes (per time unit), the larger the response area.
This is in line with the idea that one would expect a
ritard of many notes to allow for a deep rubato, while
one of only a few notes is likely to be less deep (i.e., less
slowing down), simply because there is less material
with which to communicate the change of tempo to the
listener (cf. Honing, 2005).

Furthermore, as is shown in Figure 4b, the rhythmic
structure also has an effect on the response area of the
P model. When the input pattern (marked with open
triangles, repeated from Figure 4a) is grouped into
notes of different duration (shown for rhythm 1-2-3-1-
2-3 in Figure 4b; marked with closed triangles), the
response area shrinks. This is in line with research in

rhythmic categorization that showed that the expressive
freedom in timing—the amount of timing that is allowed
for the rhythm still to be interpreted as the same rhythmic
category (i.e., the notated score)—is affected by the
rhythmic structure. Simple rhythms can be expected to
allow for more timing variation than more complex
ones (cf. Honing, 2005).

In short, the P model shows less flexibility for rhythmi-
cally varied input than for isochronous input, and more
flexibility with higher note density. Interestingly, this has
no influence on the predictions made by the K model:
For the latter model, these factors are irrelevant.

In conclusion, in addition to making roughly similar
fits to the empirical data, the P model shows less flexi-
bility than the K model does. As such, it becomes the
preferred model. Still, we can wonder how surprising all
this is in the context of the phenomenon modeled.

Element of Surprise

How surprising is the prediction of a slowing-down
pattern in music performance when selected from a
musical genre known for its use? What could we actu-
ally expect?

To give some structure to the notion of surprise, in
Figure 5 a distinction is made between possible, plausi-
ble, and predicted observations of a final ritard. The
total area of the square indicates the possible tempo
values (e.g., a horizontal line would indicate a constant
tempo, a vertical line an instant tempo change). However,
the plausible values—the values one can expect to hap-
pen in the case of a slowing-down in tempo—are
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FIG. 4. The response area (gray) for the P model modulated by note density (left) and rhythmic structure (right). The left panel show the
influence of note density for a rhythm of six IOIs (open squares) and twelve IOIs (closed triangles). The right panel shows the influence

of isochronous data (open triangles) versus nonisochronous data (closed triangles).
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roughly within the gray area (note, however, that this is
a very loosely defined area, since there is no model
available of what is and what is not perceived as a
ritard).8 Finally, the dark gray area indicates the pre-
dicted values of several settings of the K model (w set
to .3 and q varied between 1 and 3).

For a model to be surprising, all predicted outcomes
should be a small fraction of the possible—or, even better,
the plausible—outcomes (see Figure 6). Only when few
observations and precise predictions across all parame-
ter values are made, is this substantial evidence for a
model (Roberts & Pashler, 2002). A good fit in itself
does not say much; what is more important is what the
model rules out. This is characterized by the “forbidden
zone” (Roberts & Sternberg, 1993), namely the out-
comes that a model cannot predict. In this case study,
these are the ritards that fall outside of the response area
(cf. the white areas in Figures 3 and 4). So for the
P model, since the response area is a small portion of
the plausible outcomes, it has a relative large forbidden
zone. And, since the model is less flexible, it is poten-
tially easier to falsify. This is considered a strong aspect
of a model (independent of whether empirical data
might actually support this). By contrast, the K model
can predict ritards in the whole space of possible ritards,
hence it has no forbidden zone, and as such it is unclear
what the K model predicts to be an unexpected or

impossible shape of a ritard. As an example, in Figure 6
we should prefer B and D over A and C.

Furthermore, a model that predicts simple or smooth
shapes is less surprising than one that predicts non-
smooth or complex shapes, because smooth and simple
functions (as often used in psychology research) are
likely on the basis of experience and are easily explained.
“It is hard to think of a theory that would not produce a
smooth function” (Roberts & Pashler, 2000). So in
Figure 6, we should prefer C and D over A and B.

In conclusion, and in addition to preferring models
that make a good fit and are the least complex, we
should favor models that are relatively surprising—
surprising in the sense that they make a limited range of
predictions and predict nonsmooth shapes. All this puts
the P model in a better position than the K model (as
summarized in Figure 6).

Summary and Conclusion

In summary, it was shown that both the K (kinematic)
and the P (perception-based) model could roughly fit
the data and do so equally well, dependent of the specific
dataset and selection criteria used. It was also shown
that even if one model were to fit the data significantly
better than the other, it would be impossible to select
between these models on the basis of a goodness of fit
(GOF) measure alone.

While the K model captures some common timing
patterns in music performance (a “prototypical” ritard),
this by itself is no strong evidence for the validity of
such a model. Just because a certain model fits the
empirical data well does not necessarily imply that the
regularity one seeks to capture in the data is well
approximated by the model (cf. epigraph).

Furthermore, while the shape of a final ritard might
often resemble a cubic root function (a K model with
q � 3), the P model predicts the shape of the final ritard
to be modulated by several structural and temporal
aspects of the music. Because these factors have an
effect on the predictions made by the P model, but not
on those made by the K model, the former is a stronger
model (independent of whether empirical data would
actually support this).

And, lastly, it could be argued that a model that
focuses on the perceptual boundaries—that is, on the
maximum diversity or expressive freedom predicted
(what the theory predicts will not happen)—is far more
selective than one that looks for common patterns in
the final ritard. The P model makes explicit what can-
not be explained (i.e., it has a clear “forbidden zone”;
cf. the white area in Figure 4b), while the K model does
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FIG. 5. Schematic diagram of possible, plausible, and predicted final
ritards (see text for details).
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not have this quality (cf. Figure 4a). The latter can fit a
considerably larger number of shapes of ritards, and is
hence more complex. A challenge for future research is
to see whether the predictions made by the P model
generally hold, that is, whether empirical data that is
systematically varied for note density and rhythmic
structure will stay outside the predicted forbidden zone.
For now, and in the light of what counts as strong evi-
dence for a model—namely making precise (constraint),
nonsmooth, and relatively surprising predictions—the
P model can be preferred over the K model. The general
aim of this article was to show how current issues in
model selection can be of use to the computational
modeling of music cognition.
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