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Abstract. We introduce the horizontal and vertical topologies on the product
of topological spaces, and study their relationship with the standard product
topology. We show that the modal logic of products of topological spaces with
horizontal and vertical topologies is the fusion S4 ⊕ S4. We axiomatize the
modal logic of products of topological spaces with horizontal, vertical, and
standard product topologies. We prove that both of these logics are complete
for the product of rational numbers Q× Q with the appropriate topologies.

1. Introduction

The study of products of Kripke frames and their modal logics was initiated by
Shehtman [16]. A systematic study of multi-dimensional modal logics of products
of Kripke frames can be found in Gabbay and Shehtman [8], and for the up to date
account of the most important results in the field we refer to Gabbay et al. [9]. We
recall that for given two frames F = 〈W,S〉 and G = 〈V, T 〉, the ‘horizontal’ and
‘vertical’ relations on the product W × V are defined as follows.

(w, v)R1(w′, v′) iff wSw′ and v = v′

(w, v)R2(w′, v′) iff w = w′ and vTv′

Amongst many other results, Gabbay and Shehtman proved that if L1 and L2 are
modal logics complete with respect to frame classes F1 and F2 defined by universal
Horn conditions, then the logic L1 × L2 of the class of products

F1 × F2 = {〈W × V,R1, R2〉 : 〈W,S〉 ∈ F1 and 〈V, T 〉 ∈ F2}
is axiomatized by the fusion L1 ⊕ L2 plus the two additional principles of commu-
tation com = 2122p ↔ 2221p and convergence (also known as the Church-Rosser
principle) chr = 3122p → 2231p. In particular, since S4 is complete with respect
to the universal Horn class of reflexive and transitive frames, the product S4× S4
is axiomatized as S4⊕ S4 plus com and chr.

It is known that topological semantics generalizes Kripke semantics for S4. In
this paper we consider products of topological spaces. We generalize the notions
of horizontal and vertical relations to horizontal and vertical topologies and study
their relationship with the standard product topology. We show that the modal
logic of products of topological spaces with horizontal and vertical topologies is
S4⊕ S4, and thus much weaker than S4× S4.

Since the topological setting strongly suggests adding the ‘true product topol-
ogy’, we also investigate the modal logic of products of topological spaces with all
three topologies: horizontal, vertical, and the standard product topology. We show
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that the modal operator associated with the product topology is not definable in
terms of the modal operators associated with the horizontal and vertical topologies,
and we axiomatize the modal logic of products of topological spaces with all three
topologies.

The paper is organized as follows. In Section 2 we recall some basic facts about
topological semantics of S4 and present a new proof of completeness of S4 with re-
spect to the rationals. We also recall the fusion S4⊕S4 and the product S4×S4. In
Section 3 we introduce the horizontal and vertical topologies, and investigate their
relationship with the standard product topology. Section 4 is concerned with the
commutation and convergence principles in the topological setting, while Sections 5
and 6 contain completeness results for modal languages with operators correspond-
ing to the horizontal, vertical, and standard product topologies. In the concluding
Section 7 we point out some of the remaining open questions.

2. Preliminaries

2.1. Topological completeness of S4. If we interpret the modal operators 2 and
3 in topological spaces as the interior and closure operators, then the complete
modal logic of all topological spaces is S4 (McKinsey and Tarski [13]). A much
stronger result, also due to McKinsey and Tarski, states that S4 is in fact the
complete modal logic of any metric separable dense-in-itself space. In particular,
S4 is the complete modal logic of the real line R, the rational line Q, or the Cantor
space C. An alternative proof of completeness of S4 with respect to C can be found
in [14], and that with respect to R in [2]. In the subsequent sections we will need
completeness of S4 with respect to Q. In order to make the paper self-contained,
we present here an alternative proof of this fact, which might be of an independent
interest.

To this end we recall that a topological model is a structure M = 〈X, τ, ν〉,
where 〈X, τ〉 is a topological space, and ν is a valuation assigning subsets of X to
propositional variables of the modal language. Then for x ∈ X, the modal operators
2 and 3 are interpreted as follows.

x |= 2ϕ iff (∃U ∈ τ)(x ∈ U and (∀y ∈ U)(y |= ϕ))
x |= 3ϕ iff (∀U ∈ τ)(x ∈ U ⇒ (∃y ∈ U)(y |= ϕ))

A topo-bisimulation between two topological models M = 〈X, τ, ν〉 and M ′ =
〈X ′, τ ′, ν′〉 is a non-empty relation ® ⊆ X ×X ′ such that if x ® x′ then

(i) Base: x ∈ ν(p) iff x′ ∈ ν′(p), for any propositional variable p

(ii) Forth condition: x ∈ U ∈ τ implies that there exists U ′ ∈ τ ′ such that
x′ ∈ U ′ and for every y′ ∈ U ′ there is y ∈ U with y ® y′

(iii) Back condition: x′ ∈ U ′ ∈ τ ′ implies that there exists U ∈ τ such that
x ∈ U and for every y ∈ U there is y′ ∈ U ′ with y ® y′

An important feature of topo-bisimulations that will be used throughout is that
they preserve truth of modal formulas [1].

Let T2 be the infinite binary tree with the (reflexive and transitive) descendant
relation. Formally, T2 can be defined as 〈W,R〉, where W = {0, 1}∗ is the set of
strings (including the empty string) over {0, 1} and sRt iff ∃u : s · u = t.

In our proof of completeness we will rely on the following two well-known results.

Theorem 2.1. (van Benthem-Gabbay) S4 is complete with respect to T2.
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Proof. For a proof see, e.g., [10, Theorem 1 and the subsequent discussion]. ¤

Theorem 2.2. (Cantor) Every countable dense linear ordering without endpoints
is isomorphic to Q.

Proof. For a proof see, e.g., [12, Page 217, Theorem 2]. ¤

Remark 2.3. We recall that if 〈X, <〉 is a linearly ordered set and x, y ∈ X with
x < y, then the open interval (x, y) is defined as the set {z ∈ X : x < z < y}. If we
view linearly ordered sets as topological spaces using the set of open intervals as a
basis for the topology, then it follows from Cantor’s theorem that every countable
dense unbounded linear ordering is (as a topological space) homeomorphic to Q.

We are now ready to proceed with the proof.

Theorem 2.4. S4 is complete with respect to Q.

Proof. This result is well-known and can be proved in many different ways. Here
we give a proof that later will be extended to prove our two main completeness
theorems. Our strategy is as follows. We use completeness of S4 with respect
to T2; view T2 as a topological space with the topology defined from the order of
T2; label a dense unbounded subset L of Q with nodes of T2; establish a topo-
bisimulation between L and T2. This will allow to transfer counterexamples from
T2 to L, which by Cantor’s theorem is homeomorphic to Q.

Our labelling is defined as follows.
Stage 0: Label 0 with the root r of the tree T2.
Stage 1: Label −1 with the immediate left R-successor, and 1 with the immediate

right R-successor of r. Call these two numbers environmental numbers at
distance 1

30 from 0.
Stage n: The environmental numbers labelled at stage n − 1 are no nearer to each

other than 1
3n−1 . Now for each of labelled numbers we create two en-

vironmental numbers at distance 1
3n and label them with the immediate

R-successors in the tree.
Define the partial function l : Q → T2 by letting l(q) to be the node in T2

assigned to q by some stage of the labelling. Subsequently we will refer to the stage
at which an element of dom(l) is first labelled. For example, 0 is labelled at stage
0; −1 and 1 are labelled at stage 1; − 4

3 ,− 2
3 ,− 1

3 , 1
3 , 2

3 , 4
3 are labelled at stage 2, and

so on.
There are several properties of l that need to be established. We need to show

that (i) l is well-defined, (ii) the domain of l is homeomorphic to Q, (iii) l is
continuous and open.

Claim 2.5. l is well-defined; that is, no q ∈ Q is labelled by two different nodes of
T2.

Proof. This is were we use the particular distances in the labelling. The proof is
by induction. For stages 0 and 1 it is obvious that no q is labelled by two nodes.
Since in the stage n the mutual distance between closest labelled rational numbers
is no smaller than 1

3n and the new numbers labelled in stage n + 1 are no further
than 1

3n+1 from the already labelled numbers whose environmental numbers they
are, no q is labelled twice in stage n + 1. ¤
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Claim 2.6. The domain of l is a dense unbounded subset of Q, hence homeomorphic
to Q.

Proof. To show that the domain of l is dense let q < q′ be in the domain of l. We
show that there is q′′ in the domain of l such that q < q′′ < q′. Let n be the earliest
stage at which q and q′ are labelled. Then at the next stage one of the successors
of q labels q + 1

3n+1 . But since the distance between q and q′ is at least 1
3n , we have

that q < q + 1
3n+1 < q′.

To show that the domain of l is unbounded, assume that there is a bound q.
Let n be the stage at which q is labelled. Then at stage n + 1 both q − 1

3n+1 and
q + 1

3n+1 are labelled, contradicting our assumption. ¤

Let L denote the domain of l. It remains to check that l : L → T2 is continuous
and open. To prove this, we will use the facts that the open intervals

{(q − 1
2n

, q +
1
2n

) : q is labelled at stage m < n}

form a basis for the subspace topology on L, and that a basis for the topology on
T2 is B = {Bt}t∈T2 where Bt = {s ∈ T2 : tRs}.
Claim 2.7. l is an open continuous map from L onto T2.

Proof. That l : L → T2 is onto is obvious.
(i) (Openness.) Given a basic open interval (q − 1

2n , q + 1
2n ), where q is labelled

at some stage m < n, we will show that l(q − 1
2n , q + 1

2n ) = Bl(q).
(⊆) Let q′ ∈ (q− 1

2n , q + 1
2n ). Clearly q′ was not labelled before stage n (because

of its small distance to q). Suppose that q′ was labelled at stage n + k. Then an
easy induction on k shows that l(q′) is a descendant of l(q), i.e., l(q′) ∈ Bl(q).

(⊇) Let t ∈ Bl(q), and the length of the path between l(q) and t be k. Then an
easy induction shows that at stage n+ k some point in the interval (q− 1

2n , q + 1
2n )

is labelled with t.
(ii) (Continuity.) It suffices to show that for each t ∈ T2, the inverse image of

Bt is open. Let q ∈ l−1(Bt). Consider (q− 1
2n , q + 1

2n ), where n is greater than the
stage at which q was labelled. Then the same reasoning as above guarantees that
l(q − 1

2n , q + 1
2n ) = Bl(q) ⊆ Bt. ¤

To complete the proof, if S4 6` ϕ, then by Theorem 2.1, there is a valuation ν on
T2 such that 〈T2, ν〉, r 6|= ϕ. Define a valuation ν′ on L by ν′(p) = l−1(ν(p)). Since
l is continuous and open and l(0) = r, we have that 0 and r are topo-bisimilar.
Therefore, 〈L, ν′〉, 0 6|= ϕ. Now since L is homeomorphic to Q, we obtain that ϕ is
also refutable on Q. ¤

2.2. The fusion S4⊕S4. Let L2122 be a bimodal language with modal operators
21 and 22. We recall that the fusion of S4 with itself, denoted by S4⊕ S4, is the
least set of formulas containing S4-axioms for both 21 and 22, and closed under
modus ponens, substitution, 21-necessitation, and 22-necessitation.

S4⊕ S4-frames are triples 〈W,R1, R2〉, where W is a nonempty set and R1 and
R2 are reflexive and transitive. Define a new relation R on W by putting wRv if
there exists a sequence w1, . . . , wn of elements of W such that

w = w1R1w2R2 . . . R1wn−1R2wn = v.



MODAL LOGICS FOR PRODUCTS OF TOPOLOGIES 5

Figure 1. T2,2. The solid lines represent R1 and the dashed lines
represent R2. The dotted lines at the final nodes indicate that the
pattern repeats on infinitely.

It is obvious that R is reflexive and transitive. Call 〈W,R1, R2〉 rooted if 〈W,R〉 is
rooted.

Theorem 2.8. (Kracht-Wolter and Fine-Shurz) S4⊕S4 has the finite model prop-
erty; in fact, S4⊕ S4 is complete with respect to finite rooted S4⊕ S4-frames.

Proof. For a proof see, e.g., [9, Page 196, Theorem 4.2]. ¤
Let T2,2 denote the infinite quaternary tree such that each node of T2,2 is R1-

related to two of its four immediate successors and R2-related to the other two; both
R1 and R2 are taken to be reflexive and transitive. Formally T2,2 can be defined as
〈W,R1, R2〉, where W = {0, 1, 2, 3}∗, sR1t iff ∃u ∈ {0, 1}∗ : s · u = t, and sR2t iff
∃u ∈ {2, 3}∗ : s · u = t (see Figure 1). Clearly T2,2 is a rooted S4 ⊕ S4-frame. In
fact, S4⊕ S4 is complete with respect to T2,2.

Proposition 2.9. S4⊕ S4 is complete with respect to T2,2.

Proof. A straightforward generalization of the standard unravelling procedure for
S4 (cf., e.g., [10] or [2]) unravels an arbitrary finite rooted S4 ⊕ S4-frame into a
bisimilar branching tree of the form T2,2. For details see the forthcoming [15]. ¤
2.3. The product S4×S4. For two S4-frames F = 〈W,S〉 and G = 〈V, T 〉, define
the product frame F ×G to be the frame 〈W ×V,R1, R2〉, where for w, w′ ∈ W and
v, v′ ∈ V ,

(w, v)R1(w′, v′) iff wSw′ and v = v′

(w, v)R2(w′, v′) iff w = w′ and vTv′

The frame F×G can be viewed as an S4⊕S4-frame by interpreting the modalities
21 and 22 of L2122 as follows.

(w, v) |= 21ϕ iff ∀(w′, v′) . (w, v)R1(w′, v′) ⇒ (w′, v′) |= ϕ
(w, v) |= 22ϕ iff ∀(w′, v′) . (w, v)R2(w′, v′) ⇒ (w′, v′) |= ϕ

Let S4 × S4 denote the logic of products of S4-frames. As we pointed out in
the introduction, the product logic S4×S4 is axiomatized by adding the following
two axioms to the fusion S4⊕ S4:

com = 2122p ↔ 2221p

chr = 3122p → 2231p
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By the Sahlqvist theory, com (for commutativity) and chr (for Church-Rosser)
have the following first-order correspondents:

∀x∀y(∃z(xR1z ∧ zR2y) ↔ ∃z(xR2z ∧ zR1y))

∀x∀y∀z((xR1y ∧ xR2z) → ∃w(yR2w ∧ zR1w))
Besides R1 and R2, there is yet another (reflexive and transitive) relation on the

product W × V defined componentwise:

(w, v)R(w′, v′) iff wSw′ and vTv′

This allows us to interpret yet another modal operator 2 in F × G:

(w, v) |= 2ϕ iff ∀(w′, v′) . (w, v)R(w′, v′) ⇒ (w′, v′) |= ϕ

However, since in product frames we have that R = R1 ◦ R2, 2ϕ becomes
equivalent to 2122ϕ, and so 2 turns out to be definable in terms of 21 and 22.
As we will see shortly, in the subtler setting of topological products, the analogue
of 2 is independent of the analogues of 21 and 22.

3. Product spaces and product topo-bisimulations

3.1. Horizontal and vertical topologies. Let X = 〈X, η〉 and Y = 〈Y, θ〉 be
two topological spaces. We recall that the standard product topology τ on X ×Y is
defined by letting the sets U × V form a basis for τ , where U is open in X and V
is open in Y. Let I denote the interior operator and C denote the closure operator
of τ .

We will define two additional one-dimensional topologies on X × Y by ‘lifting’
the topologies of the components.

Suppose A ⊆ X × Y . We say that A is horizontally open (H-open) if for any
(x, y) ∈ A there exists U ∈ η such that x ∈ U and U × {y} ⊆ A. Similarly, we say
that A is vertically open (V-open) if for any (x, y) ∈ A there exists V ∈ θ such that
y ∈ V and {x}×V ⊆ A. If A is both H- and V-open, then we call it HV-open. The
complements of horizontally open sets are called horizontally closed (H-closed), the
complements of vertically open sets are called vertically closed (V-closed), and the
complements of HV-open sets are called HV-closed.

Let τ1 denote the set of all H-open subsets of X × Y and τ2 denote the set of all
V-open subsets of X × Y . It is easy to verify that both τ1 and τ2 form topologies
on X × Y . We call τ1 the horizontal topology and τ2 the vertical topology.

We point out that the set {U × {y} : U ∈ η & y ∈ Y } forms a basis for
the horizontal topology, and the set {{x} × V : x ∈ X & V ∈ θ} forms a basis
for the vertical topology. Moreover, a point (x, y) is a horizontal interior point of
A ⊆ X×Y if there exists a neighborhood Ux of x such that Ux×{y} ⊆ A. Similarly,
(x, y) is a vertical interior point of A if there exists a neighborhood Vy of y such
that {x}×Vy ⊆ A. Let I1(A) denote the horizontal interior of A and I2(A) denote
the vertical interior of A. Then A is H-open iff A = I1(A), and A is V-open iff
A = I2(A).

We also point out that a point (x, y) belongs to the horizontal closure of A ⊆
X×Y iff for any neighborhood Ux of x, (Ux×{y})∩A 6= ∅. Similarly, (x, y) belongs
to the vertical closure of A iff for any neighborhood Vy of y, ({x} × Vy) ∩ A 6= ∅.
Let C1(A) denote the horizontal closure of A and C2(A) denote the vertical closure
of A. Then A is H-closed iff A = C1(A), and A is V-closed iff A = C2(A).
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Remark 3.1. Let Iη and Cη denote the interior and closure operators of X , and Iθ

and Cθ denote the interior and closure operators of Y. Let A ⊆ X × Y . For x ∈ X
let Ax = {y ∈ Y : (x, y) ∈ A}, and for y ∈ Y let Ay = {x ∈ X : (x, y) ∈ A}.
Then we can represent A horizontally as A =

⋃
y∈Y (Ay × {y}) or vertically as

A =
⋃

x∈X({x} ×Ax). Using the horizontal representation of A we obtain that

I1(A) =
⋃

y∈Y

(Iη(Ay)× {y}) and C1(A) =
⋃

y∈Y

(Cη(Ay)× {y})

and using the vertical representation we obtain that

I2(A) =
⋃

x∈X

({x} × Iθ(Ax)) and C2(A) =
⋃

x∈X

({x} × Cθ(Ax))

Remark 3.2. It is obvious that a set open in the standard product topology is both
horizontally and vertically open. That is τ ⊆ τ1 and τ ⊆ τ2. However, the converse
inclusions don’t hold in general. In fact, we will show below that I is not modally
definable by means of I1 and I2.

We interpret the modal operators 21 and 22 of L2122 in 〈X×Y, τ1, τ2〉 as follows.

(x, y) |= 21ϕ iff (∃U ∈ τ1)((x, y) ∈ U and ∀(x′, y′) ∈ U . (x′, y′) |= ϕ)

(x, y) |= 22ϕ iff (∃V ∈ τ2)((x, y) ∈ V and ∀(x′, y′) ∈ V . (x′, y′) |= ϕ)

Dually,

(x, y) |= 31ϕ iff (∀U ∈ τ1)((x, y) ∈ U ⇒ ∃(x′, y′) ∈ U : (x′, y′) |= ϕ)

(x, y) |= 32ϕ iff (∀V ∈ τ2)((x, y) ∈ V ⇒ ∃(x′, y′) ∈ V : (x′, y′) |= ϕ)

We say that a formula ϕ (of the language L2122) is valid at (x, y) if for every
valuation on X × Y we have (x, y) |= ϕ. We say that ϕ is valid in 〈X × Y, τ1, τ2〉 if
ϕ is valid at every (x, y) ∈ X × Y .

The one-dimensional nature of the horizontal and vertical topologies is empha-
sized by the following proposition.

Proposition 3.3. (1) A formula ϕ constructed from the Booleans and the
modal operator 21 is valid in 〈X × Y, τ1, τ2〉 iff ϕ is valid in 〈X, η〉.

(2) A formula ϕ constructed from the Booleans and the modal operator 22 is
valid in 〈X × Y, τ1, τ2〉 iff ϕ is valid in 〈Y, θ〉.

Proof. See the forthcoming [15] for details on this and similar results. ¤
3.2. Failure of com and chr on R × R. Whenever topological spaces X and Y
are Alexandroff, i.e., defined from S4-frames, the horizontal and vertical topologies
on their product X × Y can be defined from the horizontal and vertical relations
on the product of these frames. Hence, our topological setting generalizes the case
for products of Kripke frames. Nevertheless, there are crucial differences between
these two settings. In particular, both com and chr, while valid on products of
Kripke frames, can be refuted on topological products. To stimulate intuitions
before plunging into general theory, we exhibit their failure on R× R.
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(-1,1)

(-1,-1)

B)

p

(0, 0)

(1,-1)

(1,1)

(1/n,1/n)

(1/n,-1/n)

p

(0, 0)

(1,1)

(1,-1)

(0,1)

(0,-1)

A)

Figure 2. Counterexamples of com and chr on R× R.

(a) Failure of com: Let

ν(p) = (
⋃

x∈(−1,0)

{x} × (x,−x)) ∪ ({0} × (−1, 1)) ∪ (
⋃

x∈(0,1)

{x} × (−x, x))

(see Figure 2a). Then there is a basic horizontal open (−1, 1)×{0} such that (0, 0)
is in it and every point in (−1, 1)× {0} sits in a vertically open subset of p. Thus,
2122p is true at (0, 0). On the other hand, there is no vertical open containing
(0, 0) in which every point sits inside a horizontally open subset of p, implying that
2221p is false at (0, 0).

(b) Failure of chr: Let ν(p) =
⋃{{ 1

n} × (− 1
n , 1

n ) : n ∈ N} (see Figure 2b).
Then in any basic horizontal open around (0, 0) there is a point that sits in a basic
vertical open in which p is true everywhere. Thus, 3122p is true at (0, 0). On
the other hand, since the horizontal closure of ν(p) is ν(p) ∪ {(0, 0)} and since the
vertical interior of ν(p)∪ {(0, 0)} is ν(p), we have that (0, 0) is not in I2(C1(ν(p))),
implying that 2231p is false at (0, 0).

As we will see in Section 4, the structure of these counterexamples on R× R is
not accidental. We will show under which circumstances they can be reproduced
in other products of topological spaces.

3.3. Product topo-bisimulations. As in Kripke semantics, an appropriate no-
tion of bisimulation plays crucial role in understanding and developing topological
semantics. In this subsection we generalize the notion of topo-bisimulation intro-
duced in Section 2.1 to topological models equipped with several topologies. We will
use it to show that the standard product interior is not definable in terms of the hor-
izontal and vertical interiors. Another important application of multi-dimensional
topo-bisimulations will come in the completeness proofs below.

We exhibit the case of two topologies, but the generalization to any number of
topologies is straightforward.

Definition 3.4. Let M = 〈X, τ1, τ2, ν〉 and M ′ = 〈X ′, τ ′1, τ
′
2, ν

′〉 be topological
models equipped with two topologies each. A 2-topo-bisimulation is a nonempty
relation ® ⊆ X ×X ′ such that if x ® x′ then:
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(i) Base: x ∈ ν(p) iff x′ ∈ ν′(p), for any proposition variable p

(ii) (forth condition):
1. x ∈ U ∈ τ1 implies that there exists U ′ ∈ τ ′1 such that x′ ∈ U ′ and for all
z′ ∈ U ′ there exists z ∈ U with z ­ z′

2. x ∈ V ∈ τ2 implies that there exists V ′ ∈ τ ′2 such that x′ ∈ V ′ and for all
z′ ∈ V ′ there exists z ∈ V with z ­ z′

(iii) (back condition):
1. x′ ∈ U ′ ∈ τ ′1 implies that there exists U ∈ τ1 such that x ∈ U and for all
z ∈ U there exists z′ ∈ U ′ with z ­ z′

2. y′ ∈ V ′ ∈ τ ′2 implies that there exists V ∈ τ2 such that y ∈ V and for all
z ∈ V there exists z′ ∈ V ′ with z ­ z′

The 2-topo-bisimulation ­ is called total if it is defined for all elements of X and
X ′, i.e., dom(­) = X and rng(­) = X ′. The fundamental invariance property of
2-topo-bisimulations is given by the following proposition.

Proposition 3.5. Let M = 〈X, τ1, τ2, ν〉 and M ′ = 〈X ′, τ ′1, τ
′
2, ν

′〉 be topologi-
cal models equipped with two topologies each, and let x ­ x′ for some 2-topo-
bisimulation ­ ⊆ X ×X ′. Then for every modal formula ϕ in L2122 we have that
M,x |= ϕ iff M ′, x′ |= ϕ.

Proof. The proof is a straightforward generalization of the 1-topo-bisimulation ver-
sion found in [1] and we omit the details of the induction. ¤

Definition 3.4 and Proposition 3.5 apply to arbitrary topological models M, N
with two (or more) topologies each.1 In the special case when M and N consist of
product spaces with the horizontal and vertical topologies, the 2-topo-bisimulation
­ is called a product topo-bisimulation.

To give an example of a 2-topo-bisimulation, let M = 〈X, τ1, τ2, ν〉 be a topo-
logical model, and let U ∈ τ1 ∩ τ2. Let also τ ′1 and τ ′2 denote the restrictions of τ1

and τ2 to U . For a valuation ν′ on 〈U, τ ′1, τ
′
2〉, define a valuation ν on X by putting

ν(p) = ν′(p). Then it is routine to check that the identity map i : U → X is a
2-topo-bisimulation between the topological models M ′ = 〈U, τ ′1, τ

′
2, ν

′〉 and M . In
particular, if X = Y × Z for some topological spaces Y and Z, and if U = Y ′ × Z ′

for some Y ′ ⊆ Y and Z ′ ⊆ Z, then i is a product topo-bisimulation.
For another example, let 〈X, τ1, τ2〉 and 〈X ′, τ ′1, τ

′
2〉 be given. Let also a map

f : X → X ′ be continuous and open with respect to both topologies. For a valuation
ν′ on X ′ define a valuation ν on X by putting ν(p) = f−1(ν′(p)). Then it is easy
to verify that f is a 2-topo-bisimulation between the models M = 〈X, τ1, τ2, ν〉 and
M ′ = 〈X ′, τ ′1, τ

′
2, ν

′〉. In particular, if X = Y ×Z and X ′ = Y ′ ×Z ′ with τ1 and τ ′1
being the horizontal topologies, and τ2 and τ ′2 being the vertical topologies, then f
is a product topo-bisimulation. In this case we call f HV-continuous and HV-open.
If in addition f is a bijection, then we call f a HV-homeomorphism.

We now have a technique that can be put to various uses such as establishing
undefinability or transfer from one model to another. Our first illustration concerns
the undefinability of the interior operator of the standard product topology in terms
of the interiors of the horizontal and vertical topologies.

1By analogy with Kripke semantics, one can think of such models as fusion models.
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For two topological spaces X and Y, consider the product space 〈X×Y, τ, τ1, τ2〉,
where τ stands for the standard product topology, τ1 for the horizontal topology,
and τ2 for the vertical topology. We recall that 21 and 22 are interpreted via the
horizontal and vertical topologies, while 2 is interpreted via the standard product
topology.

Proposition 3.6. 2 is not definable in the language L2122 .

Proof. It is sufficient to find two product models M = 〈X × Y, τ1, τ2, ν〉 and
M ′ = 〈X ′ × Y ′, τ ′1, τ

′
2, ν

′〉 with (x, y) ∈ X × Y and (x′, y′) ∈ X ′ × Y ′, and a
product topo-bisimulation ®⊆ (X × Y ) × (X ′ × Y ′) such that (x, y) ® (x′, y′),
that M, (x, y) |= 3p, and that M ′, (x, y) 6|= 3p. Since all formulae in the language
L2122 are preserved by product topo-bisimulations and 3p is not, we conclude that
3p is not equivalent to any formula of L2122 (or to any infinite set of such formulae
for that matter). It follows that neither is 2p.

For the product space we take Q × Q. Let ν(p) = {( 1
n , 1

n ) : n ∈ N} and
ν′(p) = ∅. Let also ® be the identity relation on (Q × Q)\{( 1

n , 1
n ) : n ∈ N}.

It is not hard to see that ® is a product topo-bisimulation between the models
〈Q×Q, ν〉 and 〈Q×Q, ν′〉 that connects (0, 0) to (0, 0). Since (0, 0) is in the closure
of ν(p), we have that 〈Q×Q, ν〉, (0, 0) |= 3p. On the other hand, it is obvious that
〈Q×Q, ν′〉, (0, 0) |= 2¬p. ¤

4. Correspondence for com and chr

As we have seen above, unlike products of Kripke frames, products of topological
spaces do not always validate com and chr. In this section we specify classes of
products of topological spaces in which com and chr hold. We start by investigating
the validity of com. It is useful to split com into com→ = 2122p → 2221p and
com← = 2221p → 2122p.

Let X = 〈X, η〉 be a topological space. We recall that X is Alexandroff if the
intersection of any family of open sets is again open. We call X κ-Alexandroff if
the intersection of any family of open sets of cardinality κ is again open; that is,
η′ ⊆ η and |η′| ≤ κ imply

⋂
η′ ∈ η.

Proposition 4.1. If X = 〈X, η〉 is κ-Alexandroff and |Y | ≤ κ, then X×Y |= com←
and Y × X |= com→.

Proof. We show that X×Y |= com←. That Y×X |= com→ is proved symmetrically.
Suppose for a point (x, y) ∈ X × Y and a valuation ν on X × Y we have that
(x, y) |= 2221p. Then there exists a neighborhood V of y such that for each z ∈ V
there is a neighborhood Uz of z with Uz × {z} ⊆ ν(p). Since |V | ≤ κ and X is
κ-Alexandroff, we have that U =

⋂{Uz : z ∈ V } ∈ η. But then U × V ⊆ ν(p),
implying that (x, y) |= 2122p. ¤
Corollary 4.2. If X is Alexandroff, then X ×Y |= com← and Y ×X |= com→ for
any topological space Y.

Proof. It is sufficient to observe that every Alexandroff space is κ-Alexandroff for
every cardinal κ, and apply Proposition 4.1. ¤

It follows that if both X and Y are Alexandroff, then X × Y |= com. Given the
well-known correspondence between Kripke frames for S4 and Alexandroff topolo-
gies, the above corollary sheds some topological light on the validity of com on
products of Kripke frames.
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The converse of Corollary 4.2 does not hold. For instance, every topology com-
mutes with the discrete topology of any cardinality. Thus, it can happen that X or
Y are not Alexandroff and yet X × Y |= com. However, if X and Y coincide, then
the converse of Corollary 4.2 holds. To see this, for x ∈ X, let ηx denote the set of
all neighborhoods of x.

Lemma 4.3. If X is not Alexandroff, then there is a point x ∈ X such that⋂
ηx /∈ η.

Proof. Since X is not Alexandroff, there exists a set B of opens such that
⋂

B 6∈ η.
Let x ∈ ⋂

B. Obviously
⋂

ηx ⊆
⋂

B and
⋂

B =
⋃{⋂ ηx : x ∈ ⋂

B}. If
⋂

ηx were
open for every x ∈ ⋂

B, then
⋂

B would be open. Therefore, there exists x ∈ ⋂
B

such that
⋂

ηx is not open. ¤

Proposition 4.4. If X is not Alexandroff, then X × X 6|= com← and X × X 6|=
com→.

Proof. We show that X ×X 6|= com←. The case for X ×X 6|= com→ is symmetric.
Since com← is equivalent to 3132p → 3231p, it is enough to show that X ×X 6|=
3132p → 3231p. As X is not Alexandroff, by Lemma 4.3 there exists x ∈ X
such that

⋂
ηx /∈ η. Let ηx = {Ui}i∈I . We order I by putting i ≤ j iff Ui ⊇ Uj .

Since Ui, Uj ∈ ηx implies Ui ∩ Uj ∈ ηx, it follows that (I,≤) is a directed partial
order. Let J = {i ∈ I : ∃j ≥ i with Ui − Uj 6= ∅}. We show that J is cofinal in
I. If not, then there exists i ∈ I such that for any j ≥ i we have Ui − Uj = ∅.
Therefore, Ui = Uj for any j ≥ i. Thus,

⋂
ηx =

⋂
i∈I Ui =

⋂
j≥i Ui = Ui ∈ η, a

contradiction. For i ∈ J let j ≥ i be such that Ui − Uj 6= ∅ and pick xi ∈ Ui − Uj .
Then {xi}i∈J is a net converging to x. Let ν be a valuation on X × X such that
ν(p) = {(xi, xj) : i, j ∈ J and i ≤ j}. For U ∈ ηx and i ∈ J , let Uj = U ∩Ui. Then
i ≤ j. Since J is cofinal in I we can assume that j ∈ J . Therefore, (xi, xj) ∈ ν(p).
It follows that (xi, x) |= 32p. Thus, (x, x) |= 3132p. On the other hand, for any
U ∈ ηx and for any xj ∈ U we have (Ui×{xj})∩ ν(p) = ∅ for any i ∈ J with i > j.
Therefore, (x, x) 6|= 3231p. ¤

From Corollary 4.2 and Proposition 4.4 we obtain the following characterization
of Alexandroff spaces.

Corollary 4.5. The following conditions are equivalent:
(1) X is Alexandroff.
(2) X × X |= com.
(3) X × Y |= com← for every topological space Y.
(4) Y × X |= com→ for every topological space Y.

We end this section by investigating validity of chr in the products of topological
spaces.

Proposition 4.6. If either X or Y is Alexandroff, then X × Y |= chr.

Proof. Let X = 〈X, η〉 and Y = 〈Y, θ〉. First suppose that X is Alexandroff. So
every x ∈ X has a least neighborhood Ux. If for a valuation ν on X × Y and a
point (x, y) ∈ X × Y we have that (x, y) |= 3122p, then there exists z ∈ Ux such
that (z, y) |= 22p. Therefore, there exists V ∈ θy such that {z} × V ⊆ ν(p). But
then for every u ∈ V we have (x, u) |= 31p, implying that (x, y) |= 2231p.
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Now suppose that Y is Alexandroff. So every y ∈ Y has a least neighborhood Vy.
If for a valuation ν on X×Y and a point (x, y) ∈ X×Y we have that (x, y) |= 3122p,
then for every U ∈ ηx there exists z ∈ U such that {z} × Vy ⊆ ν(p). But then for
every u ∈ Vy and for every U ∈ ηx there exists z ∈ U such that (z, u) ∈ ν(p). Thus,
(x, y) |= 2231p. ¤

Since Kripke frames for S4 correspond to Alexandroff topologies, the above
proposition gives a topological insight into the soundness of chr with respect to
products of Kripke frames. Even though the converse of Proposition 4.6 is not in
general true, similar to the case with com, we have that if X and Y coincide, then
the converse does indeed hold.

Proposition 4.7. If X is not Alexandroff, then X × X 6|= chr.

Proof. Let x ∈ X, ηx = {Ui}i∈I , J ⊆ I, and the net {xi}i∈J be chosen as in the
proof of Proposition 4.4. We define a valuation ν on X × X by putting ν(p) =⋃

i∈J({xi} × Ui). Then it is easy to verify that (x, x) |= 3122p but (x, x) 6|=
2231p. ¤

Propositions 4.6 and 4.7 lead to yet another characterization of Alexandroff
spaces.

Corollary 4.8. The four equivalent conditions in Corollary 4.5 are equivalent to
the following one:

(5) X × X |= chr.

For more results in this direction we refer to the forthcoming [11].

5. The logic of product spaces

As we saw in the previous section, both com and chr can be refuted on products
of topological spaces. This suggests that the complete logic of all products of
topological spaces is weaker than S4×S4. The main goal of this section is to show
that this logic is S4 ⊕ S4. In fact, we will show that S4 ⊕ S4 is complete with
respect to Q×Q.

Theorem 5.1. S4⊕ S4 is complete with respect to Q×Q.

Proof. By Proposition 2.9, S4 ⊕ S4 is complete with respect to the infinite qua-
ternary tree T2,2 = 〈W,R1, R2〉. We view T2,2 as equipped with two Alexandroff
topologies defined from R1 and R2. So for completeness of S4 ⊕ S4 with respect
to Q × Q it is sufficient to find a HV-open subspace L of (a HV-homeomorphic
copy of) Q×Q and a continuous open map from L onto T2,2 with respect to both
topologies: this will allow us to transfer counterexamples on T2,2 to L, and hence to
(a HV-homeomorphic copy of) Q×Q. To achieve this, we label a subset of Q×Q
recursively with the nodes of T2,2 as follows (see Figure 3):

Stage 0: Label (0, 0) with the root r of the tree T2,2.
Stage 1: Label (−1, 0) with the immediate left R1-successor, and (1, 0) with the

immediate right R1-successor of r; also label (0,−1) with the immediate
left R2-successor, and (0, 1) with the immediate right R2-successor of r.
Call these four points environmental points at distance 1

30 from (0, 0).
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Figure 3. The labelling of Q × Q. Points labelled with the R1-
successors are black, while the ones labelled with the R2-successors
are white. The crosses around each point suggest that the pattern
repeats at further stages. At each stage, given a point labelled in
the previous stage, four new points are labelled; two are labelled
with the respective R1-successors, and the other two with the re-
spective R2-successors.

Stage n: The environmental points labelled at stage n−1 are no nearer to each other
than 1

3n−1 . Now for each of labelled points we create four environmental
points at the distance 1

3n –two at the horizontal distance 1
3n and two at

the vertical distance 1
3n –and label them with respective immediate R1- and

R2-successors in the tree.

Define the partial function l : Q×Q→ T2,2 by letting l(p, q) to be the node in T2,2

assigned to (p, q) by some stage of the labelling. The same argument as in Claim
2.5 guarantees that the distance invariant gets maintained, and no point ever gets
labelled twice. Thus, l is a well-defined partial function.

Let L denote the subset of Q×Q of all labelled points. Let also P = {p : (p, 0) ∈
L} and Q = {q : (0, q) ∈ L}. From the same argument as in Claim 2.6 it follows
that both P and Q are dense unbounded subsets of Q, thus by Cantor’s theorem
homeomorphic to Q. Therefore, P ×Q is HV-homeomorphic to Q×Q. Moreover,
it follows from the labelling that L is a HV-open subset of P ×Q.2

Claim 5.2. l is an open and continuous map from L onto T2,2 with respect to both
topologies.

Proof. That l : L → T2,2 is onto is obvious. Let τ1 and τ2 denote the restrictions of
the horizontal and vertical topologies on Q × Q to L, respectively. We prove that
l is open and continuous with respect to τ1. That it is open and continuous with

2Note that not all of P ×Q gets labelled. In fact, the only point on the diagonal of P ×Q that
gets labelled is (0, 0).
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respect to τ2 is proved symmetrically. We observe that

{(p− 1
2n

, p +
1
2n

)× {q} : (p, q) is labelled at stage m < n}
forms a basis for τ1. We also recall that a basis for the topology on T2,2 defined
from R1 is B1 = {B1

t }t∈T2,2 where B1
t = {s ∈ T2,2 : tR1s}.

(i) (Openness.) Let (p− 1
2n , p+ 1

2n )×{q} be a basic open for τ1. Then the same
argument as in Claim 2.7 guarantees that l((p− 1

2n , p + 1
2n )× {q}) = B1

l(p,q).
(ii) (Continuity.) It suffices to show that for each t ∈ T2,2, the inverse image

of B1
t belongs to τ1. Let (p, q) ∈ l−1(B1

t ). Consider (p − 1
2n , p + 1

2n ) × {q} ∈ τ1,
where n is greater than the stage at which (p, q) was labelled. Then by the above
reasoning l((p− 1

2n , p + 1
2n )× {q}) = B1

l(p,q) ⊆ B1
t . ¤

To complete the proof, if S4 ⊕ S4 6` ϕ, then by Proposition 2.9, there is a
valuation ν on T2,2 such that 〈T2,2, ν〉, r 6|= ϕ. Define a valuation ν′ on L by ν′(p) =
l−1(ν(p)). Since l is continuous and open with respect to both topologies and
l(0, 0) = r, we have that (0, 0) and r are 2-topo-bisimilar. Therefore, 〈L, ν′〉, (0, 0) 6|=
ϕ. Now since L is HV-open subset of P ×Q, we obtain that ϕ is refutable on P ×Q.
Finally, since P×Q is HV-homeomorphic to Q×Q, it follows that ϕ is also refutable
on Q×Q.

¤

Corollary 5.3. (1) S4⊕ S4 is the logic of products of arbitrary topologies.
(2) The logic of products of arbitrary topologies is decidable; in fact, its satis-

fiability problem is PSPACE-complete.

Proof. (i) follows from Theorem 5.1; for (ii) recall that the satisfiability problem
for the fusion S4⊕ S4 is PSPACE-complete (see [17]). ¤

Let us say that a logic L in the language L2122 has the finite topo-product model
property if any non-theorem of L is refuted on a finite product space. Then the
logic of products of arbitrary topologies does not have the finite topo-product model
property as finite spaces are Alexandroff, and hence validate com and chr.3 This
remark is not to be confused with the non existence of finite Kripke models: it
follows from Theorem 2.8 that every non-theorem of S4⊕ S4 does indeed fail on a
finite model.

To summarize, we showed that in the language L2122 the logic of products
of arbitrary topologies coincides with the logic of Q × Q and is the fusion S4 ⊕
S4. It follows that the logic has the finite model property, is decidable, and the
satisfiability problem for it is PSPACE-complete. However, it does not have the
finite topo-product model property.

6. Adding the true product interior

In this section we investigate the modal logic of products of topological spaces
with all three horizontal, vertical, and standard product topologies. We add to the
language L2122 an extra modal operator 2 with the intended interpretation as the
interior operator of the standard product topology.

3In fact, the same argument implies that no logic in the interval [S4 ⊕ S4,S4 × S4[ has the
finite topo-product model property.
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Figure 4. T6,2,2. The solid lines represent R, the dashed lines
represent R1, and the dotted lines represent R2. We assume that
all dashed and dotted lines are also solid.

For two topological spaces X = 〈X, η〉 and Y = 〈Y, θ〉, we will consider the
product X × Y = 〈X × Y, τ, τ1, τ2〉 with three topologies, where τ is the standard
product topology, τ1 is the horizontal topology, and τ2 is the vertical topology.
Then 2 is interpreted in X × Y as follows.

(x, y) |= 2ϕ iff ∃U ∈ η and ∃V ∈ θ : U × V |= ϕ

Since τ ⊆ τ1 ∩ τ2, we obtain that the modal principle

2p → 21p ∧22p

is valid in product spaces. Our main goal in this section is to show that adding
this principle to the fusion of three copies of S4 axiomatizes the logic of products
of topological spaces (with three topologies).

Definition 6.1. Let L2,21,22 be a modal language with three modal operators 2,
21, and 22. We define the topological product logic TPL as the least set of formulas
in L2,21,22 containing all axioms of S4⊕S4⊕S4 plus the axiom 2p → 21p∧22p,
and closed under modus ponens, substitution, and 2-, 21-, and 22-necessitation.

Let T6,2,2 denote the infinite six branching tree such that each node of T6,2,2 is
R-related to all six of its immediate successors, R1-related to the first two, and
R2-related to the last two; R, R1, and R2 are taken to be reflexive and transitive.
Formally T6,2,2 can be defined as 〈W,R, R1, R2〉, where W = {0, 1, 2, 3, 4, 5}∗,

sRt iff ∃u ∈ {0, 1, 2, 3, 4, 5}∗ : s · u = t
sR1t iff ∃u ∈ {0, 1}∗ : s · u = t
sR2t iff ∃u ∈ {4, 5}∗ : s · u = t (see Figure 4)

Theorem 6.2. TPL is complete with respect to T6,2,2.

Proof. A straightforward generalization of the proofs of Theorem 2.1 and Proposi-
tion 2.9. For details see the forthcoming [15]. ¤

Theorem 6.3. TPL is complete with respect to Q×Q.
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Proof. Our strategy is similar to that of the proof of Theorem 5.1. By Theorem
6.2, TPL is complete with respect to T6,2,2 = 〈W,R, R1, R2〉. We view T6,2,2 as
equipped with three Alexandroff topologies defined from R, R1, and R2. So for
completeness of TPL with respect to Q×Q it is sufficient to show that there exists
a total 3-topo-bisimulation between (a homeomorphic copy of) Q × Q and T6,2,2.
To achieve this, we label a subset of Q × Q recursively with the nodes of T6,2,2 as
follows (see Figure 6):

Stage 0: Label (0, 0) with the root r of the tree T6,2,2.
Stage 1: Label (−1, 0) with the immediate left R1-successor, and (1, 0) with the

immediate right R1-successor of r; also label (0,−1) with the immediate
left R2-successor, and (0, 1) with the immediate right R2-successor of r.
With one of the remaining immediate R-successors of r we label the corners
(−1,−1) and (1, 1); and with the other we label the corners (−1, 1) and
(1,−1). Call these eight points environmental points at distance 1

30 from
(0, 0).

Stage n: The environmental points labelled at stage n− 1 are at distance no smaller
than 1

3n−1 . Now for each of labelled points, (p, q), we create four environ-
mental points at the distance 1

3n –two at the vertical distance 1
3n and two

at the horizontal distance 1
3n –and label them with respective immediate

R1- and R2-successors in the tree. In addition, we create four corner points
(p+ 1

3n , q + 1
3n ), (p− 1

3n , q− 1
3n ), (p+ 1

3n , q− 1
3n ), and (p− 1

3n , q + 1
3n ). The

first two we label with one of the remaining immediate R-successors, and
the last two with the other.

Define the partial function l : Q × Q → T6,2,2 by letting l(p, q) to be the node in
T6,2,2 assigned to (p, q) by some stage of the labelling. The same argument as in
the proof of Theorem 5.1 guarantees that no point ever gets labelled twice. Thus,
l is a well-defined partial function.

We recall that P = {p ∈ Q : (p, 0) is labelled at some stage} and Q = {q ∈ Q :
(0, q) is labelled at some stage} are both dense unbounded subsets of Q. Moreover,
it follows from the above labelling that P × Q is the set of all labelled points of
Q×Q. We view P ×Q as equipped with the three subspace topologies, which we
also denote by τ, τ1, and τ2. Then P ×Q is homeomorphic to Q×Q with respect
to all three topologies.

Claim 6.4. l is a open and continuous map from P ×Q onto T6,2,2 with respect to
all three topologies τ, τ1, and τ2.

Proof. That l : P × Q → T6,2,2 is onto is obvious. The argument that l is open
and continuous with respect to τ1 and τ2 carries over directly from Claim 5.2. The
same technique can be used to show that l is open and continuous with respect to
τ . To see this, we observe that

{(p− 1
2n

, p +
1
2n

)× (q − 1
2n

, q +
1
2n

) : (p, q) is labelled at some stage m < n}

form a basis for τ on P ×Q. We also observe that a basis for the topology on T6,2,2

defined from R is B = {Bt}t∈T6,2,2 where Bt = {s ∈ T6,2,2 : tRs}.
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Figure 5. The second labelling of Q × Q. If w ∈ T6,2,2 labels
(p, q) ∈ Q×Q, then the points lying around the bigger dashed box
are the points labelled at stage n, while the points lying around
the smaller dashed boxes are the points labelled at stage n + 1.
There are eight environmental points of (p, q) labelled at stage n;
two horizontal ones are labelled with the immediate R1-successors
of w, two vertical ones with the immediate R2-successors of w, and
the remaining four corner ones with the remaining two immediate
R-successors of w. This pattern repeats itself.

(i) (Openness.) Let (p − 1
2n , p + 1

2n ) × (q − 1
2n , q + 1

2n ) be a basic open for τ .
Then the same argument as in Claim 5.2 guarantees that

l((p− 1
2n

, p +
1
2n

)× (q − 1
2n

, q +
1
2n

)) = Bl(p,q).

(ii) (Continuity.) It suffices to show that for each t ∈ T6,2,2, the inverse image of
Bt belongs to τ . Let (p, q) ∈ l−1(Bt). Consider (p− 1

2n , p+ 1
2n )×(q− 1

2n , q+ 1
2n ) ∈ τ ,

where n is greater than the stage at which (p, q) was labelled. Then by the above
reasoning

l((p− 1
2n

, p +
1
2n

)× (q − 1
2n

, q +
1
2n

)) = Bl(p,q) ⊆ Bt.

¤
To complete the proof, if TPL 6` ϕ, then by Theorem 6.2, there is a valua-

tion ν on T6,2,2 such that 〈T6,2,2, ν〉, r 6|= ϕ. Define a valuation ν′ on P × Q by
ν′(p) = l−1(ν(p)). Since l is continuous and open with respect to all three topolo-
gies and l(0, 0) = r, we have that (0, 0) and r are 3-topo-bisimilar. Therefore,
〈P ×Q, ν′〉, (0, 0) 6|= ϕ. Now since P ×Q is homeomorphic to Q × Q with respect
to all three topologies, it follows that ϕ is also refutable on Q×Q. ¤
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Corollary 6.5. In the language L2,21,22 , TPL is the logic of products of arbitrary
topologies.

Incidentally, (using Kripke semantics) it is easy to show that TPL is a conser-
vative extension of S4⊕ S4, and that S4⊕ S4 is a conservative extension of S4.
Therefore, Theorem 2.4 becomes a corollary of Theorem 5.1, while Theorem 5.1
becomes a corollary of Theorem 6.3.

7. Conclusions and further directions

We introduced the horizontal and vertical topologies on the product of two topo-
logical spaces and we showed that the modal logic of products of topological spaces
with two horizontal and vertical topologies is the fusion S4 ⊕ S4. In addition, we
axiomatized the modal logic of products of topological spaces with three horizontal,
vertical, and standard product topologies. We conclude by mentioning several open
questions that arise naturally from this study.

7.1. Special spaces. Although we showed that S4⊕ S4 is complete with respect
to 〈Q×Q, τ1, τ2〉, and that TPL is complete with respect to 〈Q×Q, τ, τ1, τ2〉, it is
still an open question what the logics of 〈R× R, τ1, τ2〉 and 〈R× R, τ, τ1, τ2〉 are.

Since Alexandroff spaces correspond to reflexive and transitive frames, it follows
from Gabbay at al. [9] that the modal logic of the class

{X × Y : X and Y are Alexandroff}
is S4 × S4. On the other hand, it is still unknown what the modal logics of the
following two classes are:

K1 = {X × Y : X is Alexandroff} and K2 = {X × Y : Y is Alexandroff}.
We conjecture that the modal logic of K1 is S4⊕S4+com←+ chr, and that the

modal logic of K2 is S4⊕S4+com→+chr. We also conjecture that in the language
enriched with the third modality (for the standard product topology), the logics of
these two classes are TPL + com← + chr and TPL + com→ + chr, respectively.

7.2. Enriching the language. It is only natural to look at various language ex-
tensions of L2122 . In adding 2 we have made the first step in this direction, but
there are several others that can be taken. For instance, adding the universal
modality or nominals.

A very natural extension of the language would be with the common knowledge
operator. In the standard Kripke setting, there are several ways of defining common
knowledge that all turn out to be equivalent (see [3]). In [4] we examine two most
prominent such ways and show that in the topological setting the two are in fact
distinct. The first defines the common knowledge as an infinite conjunction of
claims in the original language, and the second takes common knowledge to be the
greatest fixed point of an operator. Thus in our setting the two are:

(1) C1,2ϕ := an infinite conjunction of all finite nestings of 21 and 22:

ϕ ∧21ϕ ∧22ϕ ∧2122ϕ ∧ . . .

(2) K1,2ϕ := the greatest fixed point of the operator λX.([|φ|] ∩ I1X ∩ I2X),
as in the following formula of the modal µ-calculus:

νp.(ϕ ∧21p ∧22p)



MODAL LOGICS FOR PRODUCTS OF TOPOLOGIES 19

We argue in [4] that the common knowledge as the greatest fixed point is most
interesting from the topological perspective.

7.3. Further exploration of the connection with Kripke semantics. We
have shown that the topological setting has greater power of discrimination than the
relational setting. In particular, topological products validate less principles than
products of Kripke frames, and the true product interior modality is not definable
in terms of the horizontal and vertical modalities. However, we can generalize
products of Kripke frames by restricting the universe of admissible product subsets
(see, e.g., [5]). The latter is a well-known strategy in relational algebra and arrow
logic (see Chapter 7 of [6]). In particular, over such generalized relational products
we have:

(1) com and chr are no longer valid.
(2) The product 2 is no longer definable as 2122.

This similarity suggests a connection between topological products and generalized
relational products.
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