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Summary 
There is a gap between two different modes of computation: the symbolic mode and the 
subsymbolic (neuron-like) mode. The aim of this paper is to overcome this gap by viewing 
symbolism as a high-level description of the properties of (a class of) neural networks. 
Combining methods of algebraic semantics and nonmonotonic logic, the possibility of 
integrating both modes of viewing cognition is demonstrated. The main results are (a) that 
certain activities of connectionist networks can be interpreted as nonmonotonic inferences, and 
(b) that there is a strict correspondence between the coding of knowledge in Hopfield networks 
and the knowledge representation in weight-annotated Poole systems. These results show the 
usefulness of nonmonotonic logic as a descriptive and analytic tool for analyzing emerging 
properties of connectionist networks. Assuming an exponential development of the weight 
function, the present account relates to optimality theory – a general framework that aims to 
integrate insights from symbolism and connectionism. The paper concludes with some 
speculations about extending the present ideas. 
 

1 Introduction 
 
A puzzle in the philosophy of mind concerns the gap between symbolic and subsymbolic 
(neuron-like) modes of computation/processing. Complex symbolic systems like those of 
grammar and logic are essential when we try to understand the general features and the 
peculiarities of natural language, reasoning and other cognitive domains. On the other hand, 
most of us believe that cognition resides in the brain and that neuronal activity forms its basis. 
Yet neuronal computation appears to be numerical, not symbolic; parallel, not serial; 
distributed over a gigantic number of different elements, not as highly localized as in symbolic 
systems. Moreover, the brain is an adaptive system that is very sensitive to the statistical 
character of experience. Hard-edged rule systems are not suitable to deal with this aspect of 
behavior.  

The methodological position pursued in this article is an integrative one, which looks 
for unification. In the case under discussions the point is to assume that symbols and symbol 
processing are a macro-level description of what is considered as a connectionist system at the 
micro level. This position is analogous to the one taken in theoretical physics, relating for 
example thermodynamics and statistical physics (or, in a slightly different way, Newtonian 
mechanics and quantum mechanics). Hence, the idea is that the symbolic and the subsymbolic 
mode of computation can be integrated within a unified theory of cognition. If successful, this 
theory is able to overcome the gap between the two modes of computation and it assigns the 
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proper roles to symbolic, neural and statistical computation (e.g. Smolensky 1988, 1996; 
Balkenius & Gärdenfors 1991; Kokinov 1997).  
 It should be stresses that the integrative methodology is not the only one. Alternatively, 
some researchers like to play down the neuronal perspective to a pure issue of implementation. 
Representatives of this position are, inter alias, Fodor and Pylyshyn (1988), who insist that the 
proper role of connectionism in cognitive science is merely to implement existing symbolic 
theory. On the other extreme, there is a school that Pinker & Prince (1988) and Smolensky et 
al. (1992) call eliminative connectionism. The approach to the gap taken by these researchers is 
simply to ignore it and to deny the existence of the symbolic perspective and higher-level 
cognition. Many connectionist research falls into this category and some of its representatives 
make a major virtue out of this denial. Finally, there is a movement towards hybrid systems 
(e.g. Hendler 1989, 1991; Boutsinas & Vrahatis 2001). According to this approach two 
computationally separate components are assumed, one connectionist and the other symbolic, 
and an interface component has to be constructed that allows the two components to interact.  
 It is not unfair to say the hybrid approach is an eclectic one. In particular, it requires 
extra stipulations to construct the interface.  In my opinion, it is not a good idea to develop 
models where separate modules correspond to separate cognitive processes and are described 
within separate paradigms, like a connectionist model of perception (and apperception) 
combined with a symbolic model of reasoning. Instead, both aspects should basically be 
integrated and contribute at every level to every cognitive process. Qualifying the hybrid 
approach as an eclectic one, I cannot consider the eliminative position to be especially helpful, 
either. It is evident that such a complex object as the human mind (and human reasoning in 
particular) is too complex to be fully described by a single formal theory or model, and 
therefore several different and possibly contradicting perspectives are needed.  

Downplaying connectionism as a pure issue of implementation is a point that deserves 
careful attention. I think there are two different reactions that prove this position as untenable. 
The first one is to show that non-classical cognitive architectures may emerge by assuming 
connectionist ideas at the micro-level. The development of optimality theory (Prince & 
Smolensky 1993) may be a case in point, and likewise it is the demonstration of the close 
correspondence between certain kinds of neural networks and belief networks (e.g. Glymour 
2001). The second possible reaction is to demonstrate that aspects of possibly old-fashioned, 
“classical” architectures can be explained by assuming an underlying (connectionist) micro-
level. If this is achievable we have got much more than what usually is connected with the 
conception of implementation. In this article, I wish to demonstrate both lines of 
argumentation.  
 In a nutshell, the aim of this paper is to demonstrate that the gap between symbolic and 
neuronal computation can be overcome when we view symbolism as a high-level description 
of the properties of  (a class of) neural networks. The important methodological point is to 
illustrate that the instruments of model-theoretic (algebraic) semantics and nonmonotonic logic 
may be very useful in realizing this goal. In this connection it is important to stress that the 
algebraic perspective is entirely neutral with respect to foundational questions such as whether 
a “content” is in the head or is a platonic abstract entity (cf. Partee 1997, p. 18). Consequently, 
the kind of "psycho-logic" we pursue here isn't necessarily in conflict with the general setting 
of model-theoretic semantics. 
 Information states are the fundamental entities in the construction of propositions. In 
the next section a reinterpretation of information states is given as representing states of 
activations in a connectionist network. In section 3 we consider how activation spreads out and 
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how it reaches, at least for certain types of networks, asymptotically stable output states. 
Following and extending ideas of Balkenius & Gärdenfors (1991), it is shown that the fast 
dynamics of the system can be described asymptotically as an non-monotonic inferential 
relation between information states. Section 4 introduces the notion of weight-annotated Poole 
systems, and section 5 explains how these systems bring about the correspondence between 
connectionist and symbolic knowledge bases. Finally, in section 6 we relate the present 
account to optimality theory (Prince & Smolensky 1993) – a general framework that aims to 
integrate insights from symbolism and connectionism. The paper concludes with some 
speculations about some extensions of the integrative story. 
 

2   Information states in Hopfield networks 
 

Connectionist networks are complex systems of simple neuron-like processing units (usually 
called "nodes") which adapt to their environments. In fact, the nodes of most connectionist 
models are vastly simpler than real neurons. However, such networks can behave with 
surprising complexity and subtlety. This is because processing is occurring in parallel and 
interactively. In many cases, the way the units are connected is much more important for the 
behaviour of the complete system than the details of the single units. There are different kinds 
of connectionist architectures. In multilayer perceptrons, for instance, we have several layers 
of nodes (typically an input layer, one or more layers of hidden nodes, and an output layer). A 
fundamental characteristics of these networks is that they are feedforward networks, that means 
that units at level i may not affect the activity of units at levels lower than i. In typical cases 
there are only connections from level i to level i+1. In contrast to feedforward networks, 
recurrent networks allow connections in both directions. A nice property of such network is 
that they are able to gather and utilize information about a sequence of activations. Further, 
some types of recurrent nets can be used for modelling associative memories. If we consider 
how activation spreads out we find that feedforward networks always stabilize. In contrast, 
there are some recurrent networks that never stabilize. Rather, they behave as chaotic systems 
that oscillate between different states of  activation.  
 One particular type of recurrent networks are Hopfield networks (Hopfield 1982). Such 
networks always stabilize, and Hopfield proved that by demonstrating  the analogy between 
this sort of networks and the physical system of spin glasses and by showing that one could 
calculate a very useful measure of the overall state of the network that was equivalent to the 
measure of energy in the spin glass system. A Hopfield net tends to move toward a state of 
equilibrium that is equivalent to a state of lowest energy in a thermodynamic system.  
 For a good introduction into connectionist networks the reader is referred to the two 
volumes Rumelhart, McClelland, & the PDP group (1986) which are still a touchstone for a 
wide variety of work on parallel distributed networks. Other excellent introductions are Bechtel 
(2002) and Smolensky & Legendre (to appear). 
 For the following we start with considering neural networks as systems of connected 
units. Each unit has a certain working range of activity. Let this be the set [-1, +1] (+1: 
maximal firing rate, 0: resting, -1: minimal firing rate). A possible state s of the system 
describes the activities of each neuron: s∈ [-1, +1]n, with n = number of units. A possible 
configuration of the network is characterized by a connection matrix w. Hopfield networks are 
defined by symmetric configurations and zero diagonals (-1 ≤ wij ≤ +1, wij = wji , wii = 0). That 
means node i has the same effect on node j as node j on node i, and nodes don't affect 
themselves. The fast dynamics describes how neuron activities spread through that network. In 
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the simplest case this is described by the following update function: 
 

(1) f(s)i = θ(Σj wij sj)  (θ a nonlinear function, typically a step function or a sigmoid 
function). 

 

Equation (1) describes a linear threshold unit. This activation rule is the same as that of 
Rosenblatt’s perceptron. It is applied many times to each unit. Hopfield (1982) employed an 
asynchronous update procedure in which each unit, at its own randomly determined times, 
would update its activation (depending on its current net input).1  
 For the following it is important to interpret activations as indicating information 
specification: the activations +1 and -1 indicate maximal specification; the resting activation 0 
indicates (complete) underspecification. It is this interpretation of the activation states that 
allows introducing the notation of information as an observer-dependent notion. Though this 
interpretation is not an arbitrary one, from a philosophical point of view it is important to stress 
the idea that information is not a purely objective, observer-independent unit. Instead, the 
observer of the network decides, at least in part, which aspects of the network are worth our 
consideration and which abstractions are appropriate for the observer’s aims.  
 Generalizing an idea introduced by Balkenius & Gärdenfors (1991), the set S =            
[-1, +1]n  of activation states can be partially ordered in accordance with their informational 
content:   
 
(2) s≥t  iff  si≥ti≥0 or si≤ti≤0, for all 1≤i≤n.  
 
s≥t can be read as  s is at least as specific as t. The poset <S, ≥> doesn't form  a lattice. 
However, it can be extended to a lattice by introducing a set ⊥  of impossible activation states: 
⊥  = {s: si =nil for 1≤i≤n}, where nil designates the "impossible" activation of an unit.2  It can 
be shown that the extended poset of activation states <S∪⊥ , >> forms a DeMorgan lattice 
when we replace the former definition of the informational ordering as follows: 
 
(3) s≥t  iff si = nil or si≥ti≥0 or si≤ti≤0, for all 1≤i≤n).   
 
The operation  s◦t = sup{s,t} (CONJUNCTION) can be interpreted as the simultaneous realization 
of two activation states; the operation s⊕ t =  inf{s,t} (DISJUNCTION) can be interpreted as some 
kind of generalization of two instances of information states. The COMPLEMENT s* reflects a 
lack of information. The operations come out as follows:  
 
   max(si, ti),  if si,ti≥0 
(4) (s◦t)i     =  min(si, ti),  if si,ti≤0  
   nil,  elswhere   
 

                                                 
1 The use of asynchronous updates helps to prevent the network from falling into unstable oscillations, see section 
3. 
2 Intuitively, impossible activation states express clashes between positive and negative activation. 

{ 
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   min(si, ti), if si,ti≥0 

max(si, ti), if si,ti≤0 
(5) (s⊕ t)i   =  si,  if ti=nil      ti, if si=nil 

0,  elsewhere' 
 
 

 1-si, if si>0 
-1-si,  if si<0 

(6) (s*)i      =   
   nil, if si=0 

  0, if si=nil 
 
The fact that the extended poset of activation states forms a DeMorgan lattice gives the 
opportunity to interpret these states as propositional objects ("information states"). 
 

3 Asymptotic updates and nonmonotonic inference 
 

In general, updating an information state s may result in an information state f...f(s) that doesn't 
include the information of s. However, in what follows it is important to interpret updating as 
specification. If we want s to be informationally included in the resulting update, we have to 
"clamp" s somehow in the network. A technical way to do that has been proposed by Balkenius 
& Gärdenfors (1991). Let f designate the original update function (1) and f the clamped one, 
which can be defined as follows (including iterations): 
 

(7) f(s) = f(s) ◦ s;  
(8) fn+1(s) = f(fn(s)) ◦ s  
 

Hopfield networks (and other so-called resonance systems) exhibit a desirable property: for 
each given input state s the system stabilizes in a well-defined output state (it is of no 
importance here whether the dynamics is clamped or not). 
 The notion of resonance is a very universal one and can be defined for a dynamic 
system [S, f] in general (here S denotes the space of possible states and f denotes the dynamics 
of the system, i.e., the activation function with regard to a specific configuration w of the 
network). 
 

(9) A state s ∈  S is called a resonance of a dynamic system [S, f] iff 
 

(i)  f(s) = s    
 (Equilibrium) 
 
(ii) For each ε>0  there exists a 0<δ≤ε such that for all n≥ 1   
 |fn (s’)-s| < ε  whenever |s’-s| < δ   
 (Stability) 
 
(iii) For each ε>0 there exists a 0<δ≤ε such that limn→∞ fn(s’) = s whenever |s’-s| < δ 
 (Asymptotic stabilility)  

{ 
{
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Figure 1: Stable, asymptotically stable, and unstable temporal developments of 
information states.  

 
 
The existence of resonances is an emergent collective effect in neural nets. Intuitively, 
resonances are the stable states of the network and they attract other states. When each state 
develops into a resonance, then the system produces a content-addressable memory. Such 
memories have emergent collective properties (capacity, error correction, familiarity 
recognition; for details see Hopfield 1982). 

A neural network is called a resonance system iff lim n→∞ (fn (s)) exists and is a 
resonance for each state s∈ S and each activation function f (relative to any network 
configuration w∈ W). Cohen & Grossberg (1983) were the first who proved that Hopfield 
networks are resonance systems. The same proves true for a large class of other systems: The 
McCulloch-Pitts model (McCulloch & Pitts 1943), the Cohen-Grossberg model (1983), 
Rumelhart's Interactive Activation model (Rumelhart et al. 1986), Smolensky's (1986) 
Harmony networks etc. (for details see Grossberg (1989). 
 In the present context, the classical results can be borrowed to establish that the 
following set of asymptotic updates of s is well-defined: 
 

(10) ASUPw(s) = {t: t = lim n→∞  fn(s)} 
 
In case of asynchronous (non-deterministic) updates, the function E(s) = −∑i>j wij si sj  is  a 
Ljapunov function (energy function) of  the dynamic system (Hopfield 1982). I.e., when the 
activation state of the network changes, E can either decrease or remain the same. Hence, the 
output states lim n→∞ fn(s) can be characterized as the local minima of the Ljapunov-function.  
 



 7

 
 
 
 
 
 

 
 
 
 
Figure 2: Local and global minima of the Ljapunov function. Local minima can be 
realized by asynchronous updates with a deterministic activation function while 
reaching the global minima often requires an stochastic activation function.   

 
Usually, the stable state is not the state that would yield the lowest possible values of E (the 
global minima). The Boltzman machine (Hinton & Sejnowski 1983, 1986) is an adaptation of 
the Hopfield net that realizes the global minima, i.e. their output states lim n→∞ fn(s) can be 
characterized as the global minima of the Ljapunov-function.  Like the Hopfield net, the 
Boltzman machine updates its units by means of an asynchronous update procedure. However, 
it employs a stochastic activation function rather than a deterministic one. This activation 
function can be considered to realize some stochastic noise (“faults”), in a decreasing rate 
during the processing of a single pattern.3 The latter observation enables us to characterize the 
asymptotic updates of s as the set of all specifications of s that minimize the energy E of the 
system:  
 
(11) ASUPw(s) = minE(s). 
 
The propositional objects called information states are related by the partial ordering ≥. It is 
obvious that this relation can be interpreted as a strict entailment relation. In any case it 
satisfies the Tarskian restrictions for such a relation: 
 
(12) (i) s ≥ s     (REFLEXIVITY) 

(ii) if s ≥ t and s ◦ t ≥ u, then s ≥ u  (CUT) 

(iii) if s ≥ u, then s ◦ t ≥ u   (MONOTONICITY) 
 
More interesting, Balkenius & Gärdenfors (1991) have made clear that it is possible to define a 
nonmonotonic inference relation that reflects asymptotic updating of information states. Let 
<S, ≥> be a poset of activation states, and w the connection matrix. Then the notion of 
asymptotic updates naturally leads to a nonmonotonic inferential relation between information 
states: 
 
(13) s |∼ w t  iff  s' ≥ t  for each  s' ∈  ASUPw(s). 
 
                                                 
3 The procedure is called "simulated annealing" (based on an analogy from physics). 
 

E start

A

Basynchronous
updates

asynchronous updates with faults
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It is with the help of the equivalence  (11) that the usual traits of nonmonotonic consequence 
relations can be shown:  
 
Theorem 1  
 

Let |∼ w  be a relation between information states as defined in (13). Then we have 
 
(14) (i)  if s  ≥ t, then s |∼ w t    (SUPRACLASSICALITY) 
 (ii)  s |∼ w s      (REFLEXIVITY) 
 (iii) if s |∼ w t and s ◦ t |∼ w u, then  s |∼ w u   (CUT) 
 (iv)  if s |∼ w t and s |∼ w u, then s ◦ t |∼ w u.  (CAUTIOUS MONOTONICITY)  
 
The proofs for SUPRACLASSICALITY and REFLEXIVITY (clampedness!) are obvious. For CUT, 
suppose all E-minimal specifications of s are specifications of t and all E-minimal 
specifications of s ◦ t are specifications of u. Let s' be an E-minimal specification of s. s' 
specifies both s and t; consequently, it specifies s ◦ t. Since s ◦ t ≥ s, it follows that s' is also an 
E-minimal specification of s ◦ t. Consequently, it is a specification of u. 

For CAUTIOUS MONOTONICITY, suppose all E-minimal specifications of s are 
specifications of t and u. We have to prove v≥u for each E-minimal specification v of s ◦ t. Let 
ν be any E-minimal specification of s ◦ t. Of course, ν is a specification of s. We shall prove 
now that ν is an E-minimal specification of s. If this were wrong, there would be an E-minimal 
specification ν’ of s such that E(ν’) < E(ν). But all E-minimal specifications of s are 
specifications of t, therefore ν’≥t and ν' ≥ s ◦ t. This contradicts the E-minimality of ν with 
respect to the specifications of s ◦ t. Therefore ν must be an E-minimal specification of s. Since 
all E-minimal specifications of s are specifications of u, one concludes that ν ≥u. 

The results found so far correspond to the findings of Balkenius & Gärdenfors (1991), 
who have considered information states for cases where they form a Boolean algebra. The 
inferential notion that is adequate to describe the fast dynamics of the neural system (how 
neuron activities spread through the network) can be characterized in terms of the general 
postulates that Gabbay (1985) and Kraus, Lehmann, and Magidor (1990) have seen as 
constituting a cumulative (nonmonotonic) consequence relation.  

A simple example may help to illustrate the ideas introduced so far and to simplify the 
subsequent explanations. Let’s consider a Hopfield network with a set of states S = [-1, +1]3 
and the connection matrix (15). 
 

(15) 
















−
−=
011.0
102.0
1.02.00

w  

 
Figure 3 shows the activation states of the network before and after updating. For the input 
state it is assumed that node 1 is activated and the other two nodes are resting (indicating 
underspecification). Clamping node 1, the fast dynamics yields an output state where node 2 is 
activated and node 3 is inhibited (minimal firing rate).  
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Figure 3: Activation states of a network with connection matrix (15) before and after 
updating. White, gray, black nodes indicate activation, resting, and inhibition, 
respectively. 
 

In table 1 nine different possible specifications of the initial state <1 0 0> are shown, and their 
energy is calculated with regard to the connection matrix (15). The energy-minimal state is 
indicated by . It corresponds to the output state represented in figure 3.  

 
 

s [states] E(s) [energy]  
<1 0 0> 
<1 0 1> 
<1 0-1> 
<1 1 0> 
<1 1 1> 
<1 1-1> 
<1-1 0> 
<1-1 1> 
<1-1-1> 

0 
-0.1 
 0.1 
-0.2 
0.7 
-1.1    
0.2 
-0.9 
1.3 

 
 
 
 
 

 
 
 

 
Table 1: States and their energy in a network with connection matrix (15).  indicates 
the energy-minimum state. 

 
Using definition (13) and the equivalence (11) it is obvious that the following inferences are 
valid: 
 
(16) (i) <1 0 0> |∼ w <1 1-1> 

(ii) <1 0 0> |∼ w <1 1 0> 
(iii) <1 0 0> |∼ w <0 1 0> 

 
The latter two inferences can be derived from the first one by taking into account that 
<1 1-1> ≥ <1 1 0> ≥ <0 1 0>. 
 

4 Weight-annotated Poole systems 
 

In connectionist systems “knowledge” is encoded in the connection matrix w (or, alternatively, 

1

2 3

0.2 0.1

-1

1

2 3

0.2 0.1

-1

Input Output
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the energy function E). Symbolic systems usually take default logic and represent knowledge 
as a database consisting of expressions having default status. A prominent example of such a 
framework has been proposed by Poole (e.g. Poole 1988, 1996). In this section, we introduce a 
variant of Poole's systems, which we call weight-annotated Poole systems. This variant will be 
proven to be useful for relating the different types of coding knowledge (see section 5). 
 Let's consider the language ℒAt of propositional logic (referring to the alphabet At of 
atomic symbols). A triple T = <At, ∆, g> is called a weight-annotated Poole system iff (i) ∆ is a 
set of consistent sentences built on the basis of At (the possible hypotheses); (ii) g: ∆ ⇒ [0,1]  
(the weight function).  A scenario of a formula α  in T is a subset ∆’ of ∆ such that ∆’∪ {α}  is 
consistent. The weight of a scenario ∆’ is   
 
(17) G(∆’) = ∑δ∈∆ ’ g(δ) - ∑δ∈ (∆-∆’) g(δ). 
 
Hence, the weight of a scenario takes into account both the beliefs that are included in the 
scenario  ∆’ and the beliefs that are not included in ∆’. The included beliefs give a positive 
contribution to the overall weight, and the missing beliefs give a negative contribution. This is 
different from a penalty function (Pinkas 1995) where only the missing beliefs count (i.e. the 
beliefs that are not included in the scenario/theory).  
 A maximal scenario of α  in T is a scenario the weight of which is not exceeded by any 
other scenario (of α in T). With regard to a weight-annotated Poole system T, the following 
cumulative consequence relation can be defined:   
 

(18) α ~>T β iff β is an ordinary consequence of each maximal scenario of α in T.  

 
It is important to give a preference semantics for weight-annotated Poole systems. This 
preference semantics may be seen as the decisive link for establishing the correspondence 
between connectionist and symbolic systems. 
 Let ν denote an ordinary  (total) interpretation for the language ℒAt (ν: At→{-1,1}). 
The usual clauses apply for the evaluation of the formulas of ℒAt relative to ν. The following 
function indicates how strongly an interpretation ν conflicts with the space of hypotheses ∆:   
 

(19) ℰ(ν) = -∑δ∈∆   g(δ) ∥δ∥ν   (ℰ is called the "energy" of the interpretation, or Poole's 
system energy) 

 

An interpretation ν is called a model of α just in case ∥α∥ν = 1. A preferred model of α is a 
model of α with minimal energy ℰ (with regard to the other models of α).  As a semantic 
counterpart to the syntactic notion α ~>T β, let's take the following relation:  
 

(20) α ≈>T β iff each preferred model of α is a model of β.  
 

As a matter of fact, the syntactic notion (18) and the semantic notion (20) coincide: 
 
 
Theorem 2  
 

For all formulae α and β  of ℒAt:  α ~>T β iff α ≈>T β. 
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 For the proof it is sufficient to show that the following two clauses are equivalent: 
 
(A) There is a maximal scenario ∆' of α in T such that {α}∪∆ '∪ {¬β} is consistent. 
 
(B) There is a preferred model of α such that ∥β∥ν  =  -1. 
 
In order  to prove this equivalence we have to state some simple facts which are immediate 
consequences from the corresponding definitions. Let T = <At, ∆, g> be a weight-annotated 
Poole system and let ν be any model. Then we have 
 
(21) G(sc(∆,ν)) = −ℰ(ν), where sc(∆,ν)  =def  {δ∈∆ : ∥δ∥ν  = 1} (the scenario associated 

with the model  ν). 
 
(22) sc(∆,ν) = ∆'  in case ∆' is a  maximal scenario of α in T, and ν is a model of {α}∪∆ '.  
 
Now we are ready to prove the equivalence between (A) and (B).  

(A) ⇒ (B): Let's assume that ∆' is a maximal scenario of α in T  and ν is a model of  
{α}∪∆ '∪ {¬β}. We have to show that ν is a preferred model of α in T, i.e., we have to show 
that for each model ν' of α in T, ℰ(ν') ≥ ℰ(ν). From fact (21)  it follows that  ℰ(ν') = 
−G(sc(∆,ν')), and the facts (21) & (22)  necessitate ℰ(ν) = −G(∆'). Since sc(∆,ν') is a scenario 
of α in T and ∆' is a maximal scenario, it follows  that ℰ(ν') ≥ ℰ(ν). 
 (B) ⇒ (A): We assume a preferred model ν of α and assume ∥β∥ν = −1. Obviously, 
the set sc(∆,ν)∪ {α}∪ {¬β} is consistent (ν is a model of it). We have  to show now that the 
scenario sc(∆,ν) is a maximal scenario of α in T. If it were not, then there would exist a 
maximal scenario ∆' with G(∆') > G(sc(∆,ν). Because we have  G(∆') = −ℰ(ν') for any model  
ν' of {α}∪∆ ' and G(sc(∆,ν) = −ℰ(ν) [facts (21) & (22)], this would contradict the 
assumption that ν is a preferred model of α in T. End of proof. 
 

5 Relating connectionism and symbolism 
 

In investigating the correspondence between connectionist and symbolic knowledge bases, we 
have first to look for a symbolic representation of information states.  Let’s consider again the 
propositional language ℒAt, but now let's take this language as a symbolic means  to speak 
about information states. Following usual practice in algebraic semantics, we can do this 
formally by interpreting  (some subset of the) expressions of the propositional language by the 
corresponding elements of the DeMorgan algebra  <S∪⊥ , ≥>. More precisely, let’s call the 
triple <S∪⊥ , ≥, ↿ ⇂> a Hopfield model  (for ℒAt) iff ↿ ⇂ is a function assigning some element of 
S∪⊥  to each atomic symbol and obtaining the following conditions: 
 
(23) (i)  ↿α∧β ⇂ = ↿α⇂◦↿β⇂ 

(ii) ↿∼β ⇂= −↿β⇂ ("∼ " converts positive into negative activation and vice versa).  
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A Hopfield model is called local (for ℒAt) iff it realizes the following assignments:   
 
(24) ↿p1⇂=  <1 0 ... 0>   
 ↿p2⇂=  <0 1 ... 0> 
  ...   
 ↿pn⇂=   <0 0 ... 1>  
 
An information state s is said to be represented by a formula α of  ℒAt (relative to a Hopfield 
model M)  iff   ↿α⇂ = s. With regard to our earlier example, the following formulae represent 
proper activation states: p1 represents <1 0 0>, p2 represents <0 1 0>, p3 represents <0 0 1>, 
p1∧ p2 represents <1 1 0>, ∼ p1 represents <−1 0 0>, and p1∧ p2∧∼ p3  represents <1 1 −1>. With 
regard to local Hopfield models it is obvious that each state can be represented by a 
conjunction of literals (atoms or their inner negation). In other words, for local models each 
information state can be considered symbolic. 
 Local Hopfield models give us the opportunity to relate connectionist and symbolic 
knowledge bases in a straightforward way and to represent nonmonotonic inferences in neural 
(Hopfield) networks by inferences in weight-annotated Poole systems. The crucial point is the  
translation of the connection matrix w into an associated Poole system Tw. Let's consider a 
Hopfield system (n neurons) with connection matrix w, and let At = {p1, ..., pn} be the set of 
atomic symbols. Take the following formulae αij  of ℒAt :  
 

(25) αij =def  (pi ↔ sign(wij) pj),  for 1≤i<j≤n.  
 

For each connection matrix w the associated Poole system is defined as Tw = <At, ∆w, gw>,  
where the following two  clauses apply: 
 
(26) (i)  ∆w = {αij: 1≤i<j≤n} 

(ii) gw(αij) = |wij| 
 
Updating information states was treated as a kind of specification in section 3. Under certain 
conditions (viz., where there are no isolated nodes) it can be shown that each (partial) 
information state is completed asymptotically; i.e., in the asymptotic state the corresponding 
node activities are either +1 or –1. Consequently,  ASUPw(s) contains only total information 
states. As a matter of fact, each total information state t corresponds to a total propositional 
interpretation function ν/t where ν/t (pi) = ti.  Now we have the following facts: 
 
(27) (i) ∥pi∥ν/t  = ti 

(ii) ∥∼α ∥ν/t = -∥α∥ν/t , in case α is a literal 
(iii) ∥α↔β∥ν/t = ∥α∥ν/t · ∥β∥ν/t 
(iv)   t ≥ ∥α∥ iff ∥α∥ν/t = 1, in case α is a conjunction of literals 
(v)  ℰ(ν/t) = E(t), where E(t) = −∑i>j wij ti tj is the energy function of a Hopfield 

network with the connection matrix w and ℰ is Poole's system energy for the 
weight-annotated Poole-system Tw; cf. (19)  
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(27)(i-iv) are direct consequences of the corresponding definitions. (27)(v) expresses the 
equivalence between Poole's system energy and the Hopfield energy of an information state. In 
order to prove this equivalence we start with the definitions (25) and (26) and we get  ∆w = 

{(pi ↔ sign(wij) pj: 1≤i<j≤n}. Next we use the definition (19) for  ℰ with regard to ∆w  and we 
employ the results (27)(i-iii). The equality (27)(v) is obvious if we take into account the 
equation |wij| = gw(pi ↔ sign(wij) pj), which results from (26)(ii). 
  Together with theorem 2 (expressing that the proof procedure in weight-annotated 
Poole systems is sound and complete) and the fact that in a local Hopfield  model each state is 
symbolic and can be represented by a conjunction of literals, the statement (27) (v) allows us to 
prove that  nonmonotonic inferences  based upon asymptotic updates can be represented by 
inferences in weight-annotated Poole systems:  
 
Theorem 3  
 

Let α and β be formulas that are conjunctions of literals. Assume further that the Poole 
system T  is associated with the connection matrix w. Then   
 

(28) ↿α⇂ |∼ w ↿β⇂ iff  α  ≈>T β  (iff  α ∼ >T β). 
 
For the simple proof we start with (27)(v) – the equivalence between Poole's system energy 
and the Hopfield energy of an information state. Then it is straightforward that the semantic 
notion α ≈>T β (entailment in preferred models, cf. definition (20)) coincides with the 
nonmonotonic inferential relation s |∼ w t between information states (energy-minimal 
specifications, cf. equation (11) and definition (13)) assumed we have a local Hopfield model 
that realizes the correspondences ↿α⇂=s and ↿β⇂=t.   

The result expressed by theorem 3 shows that we can use nonmonotonic logic to 
characterize asymptotically how neuron activities spread through the connectionist network. In 
particular, a weighted variant of Poole's logical framework for default reasoning has proven to 
be essential. Hence, the usefulness of nonmonotonic logic as a descriptive and analytic tool for 
analyzing emerging properties of connectionist networks has been illustrated.  
 Going back to our earlier example, figure 4 illustrates the close relation between the 
connection matrix in Hopfield systems and the corresponding default system (weight-annotated 
Poole system). Using the connection matrix w as given in (15), the corresponding Poole system 
is given by the following weight-annotated defaults.4   
 
(29)  Tw  =   <At, ∆w, gw>,  where  

(i) At = {p1, p2, p3}  
(ii) ∆w = {p1 ↔ p2, p1 ↔ p3; p2 ↔ ∼ p3} 
(iii) gw =   {[p1 ↔ p2, 0.2], [p1 ↔ p3, 0.1], [p2 ↔ ∼ p3, 1]} 

 
The translation mechanism can be read out from figure 4. It simply translates a node i into the 
atomic symbol pi, translates an activating link in the network into the logical biconditional ↔, 
and translates an inhibitory link into the biconditional ↔ plus an internal negation ∼  of one of 
                                                 
4 In Figure 4 the weights are represented as indexing the biconditionals in the corresponding defauls.  
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its arguments. Furthermore, the weights of the defaults have to be taken as the absolute value 
of the corresponding matrix elements.  
 

 
 
 
 
 
 
 
 
 
Figure 4: The correspondence between the connection matrix and a weight-annotated 
Poole system.  
 

There is another perspective from which one may look at Theorem 3. One possible application 
of the Theorem 3 may be the use of connectionist techniques (such as "simulated annealing") 
to implement nonmonotonic inferences.5 Seen in isolation, the latter point would favour the 
position of implementative connectionism – that connectionist ideas may be used only for the 
implementation of established symbolist systems. In the next section it is argued that already 
by considering local representations (where symbols correspond to single nodes in the 
network) connectionism provides remarkable insights that go beyond what usually is 
associated with the conception of implementation: connectionism is able to explain some 
peculiarities of symbolist systems.  
 

6 Exponential weights and optimality theory  
 
Non-trivial examples of weight-annotated Poole systems may be extracted from intrasegmental 
phonology. Intrasegmental phonology has been a source of inspiration for developing theories 
of markedness (e. g. Chomsky & Halle 1968, Kean 1975, 1981). In the present context it is 
used for demonstrating some aspects of integrative connectionism.  

Table 2 presents a  fragment of the vowel system of English (adapted from Kean 1975), 
which is a bit simplified for the present purpose. It contains a classification of the vowels in 
terms of the binary phonemic features back, high and low. The feature round has to be added in 
order to distinguish the segment /ɔ/ (rounded) from the segment /a/ (not rounded). 

 

 
–back +back  
 /i/  /u/  +high 
 /e/  /o/   –high/–low 
 /æ/  /ɔ/ 

 /a/ 
 +low 

 
Table 2: Fragment of the vowel system of English 

 
                                                 
5 For details  cf. Derthick 1990. 
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For the purpose of formalization, the phonological features may be represented by the atomic 
symbols BACK, LOW, HIGH, ROUND. The knowledge of the phonological agent concerning 
this fragment may be represented explicitly as in table 3 (left hand part) – a list that enumerates 
the feature specifications for each vowel segment.   
 

/]//a/ /i/ /o/ /u/ /e/ /ae/
_+ _

_
+ +

+
+

+
++ _

_
_

_ ___
_

_ _

+++
+

___

ε1

ε2

−ε4

−ε3

BACK
LOW
HIGH

ROUND

VOC

LOW

HIGH

BACK BACK

ROUND

 
Table 3: Left: Feature specifications for a vowel fragment. Right: Hopfield network 
with exponential weights representing the generic knowledge of a phonological agent.  
 

It is evident that this list contains strong (absolute) and weak (or "probabilistic") redundancies. 
For example, all segments that are classified as +HIGH are correlated with the specification 
−LOW (strong redundancy) and most segments that are classified as +BACK are correlated 
with the specification +LOW (weak redundancy). 6  Let’s assume the following two hard 
constraints: 
 
(30) (i)  LOW → ∼ HIGH 

(ii) ROUND → BACK. 7 
 
The generic knowledge of the phonological agent concerning this fragment may be expressed 
with regard to the hierarchy of features: 
 
(31) <VOC, BACK,  LOW,  HIGH, ROUND> 
 
Markedness conventions in the sense of Kean (1975, 1981), are rules for determining the 
(un)marked value of a feature F for a segment x given its value for a feature G preceding F in 
the feature hierarchy. 

 
(32) (i)  BACK is an unmarked property of the class VOC of vowels 

(ii) LOW is an unmarked property of BACK (the class of back vowels) 

                                                 
6 From the perspective of Universal Grammar, absolute constraints are universal in the sense that they are actually 
inviolate in every language. Weak constraints, on the other hand, embody universality in a soft sense. The idea is 
that each feature has two values or specifications, one of which is marked, the other unmarked. Unmarked values 
are crosslinguistically preferred and basic in all grammars, while marked values are crosslinguistically avoided 
and used by grammars only to create contrasts.  
7 The first constraint is universally valid for obvious reasons. Although the second constraint is satisfied for the 
present vowel fragment, it is not valid generally. Considering it as a hard constraint despite this fact is a rough 
stipulation that makes sense only in order to simplify the subsequent discussion. 
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(iii) ∼ HIGH is an unmarked property of BACK 
(iv) ROUND is an unmarked property of ∼ LOW.8 

 
There is a very general principle that allows to calculate the unmarked values of the 
complements: 
 
(33) If αF is an unmarked property of βG, then ∼ αF is an unmarked property of ∼β G, where 

“∼ “  turns the value of α from + into −, and vice versa 
 

For example, (33) allows us to determine +HIGH as an unmarked property of −BACK. It is 
intuitively clear now how the feature specifications in table 3 can be calculated if the shaded 
elements are taken to be given (marked) explicitly. For instance, in order to calculate the 
specifications for the unmarked vowel /a/ we go stepwise through the feature hierarchy and 
calculate +BACK by applying (32)(i), +LOW by applying(32)(ii), −HIGH by applying the hard 
constraint (30)(i),  −ROUND by applying (32)(iv).   

Taking the feature hierarchy (31) into account, the markedness conventions (32) can be 
represented as the elementary Hopfield network shown on the right-hand site of table 3. The 
technical means of expressing the hierarchy is the use of  exponential weights with basis 0 < ε 
≤ 0.5. 9 It should be mentioned that the implementation of the hard constraints (30) is not 
possible within a localist Hopfield network, and we will simply assume that these constraints 
are  external and restrict the possible activations of the nodes in the network in this way.  

 The assigned Poole-system in the case under discussion has also to make use of 
exponential weights:  
 
(34) (i) VOC ↔ε1 BACK 

(ii) BACK ↔ε2 LOW  
(iii) BACK ↔ε3 ∼ HIGH 
(iv) LOW ↔ε4 ∼ ROUND 

 
Theorem 3 ensures the equivalence between the connectionist and the symbolic treatment. 
Obviously, in the symbolic case the exponential ranking corresponds to a linear ranking of the 
defaults – with the hard constraints (30) on top. Using finite state transducers, the 
computational consequences of this view have been investigated by  Frank & Satta (1998) and 
Karttunen (1998). 

In cognitive psychology, the distinction between automatic processing and controlled 
processing has been demonstrated to be very useful (e.g. Shiffrin & Schneider 1977). 
Automatic processing is highly parallel, but limited in power. Controlled processing has 
powerful operations, but is limited in capacity. The distinction between these two types of 
                                                 
8 Kean (1975, 1981) considers the more general case where more than one feature preceding F in the feature 
hierarchy is necessary to determine the (un)marked value of the feature F. An example is  
 
(iv’) ROUND is an unmarked property of BACK ∧  ∼ LOW 
 
The expression (iv) comes close to the formulation of (iv’) if  the hard constraint (30)(ii) is taken into account (see 
footnote 7).  
9 ε = ½  or smaller is a proper base in case of binary features which can applied only one time.   
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processing has been used, for example, for modelling lexical access, visual perception, 
problem solving and parsing strategies in natural language processing. In the present context it 
may be helpful to assume that the distinction correlates with the shape of the Ljapunov 
function. In a case where the network is built with exponential weights, the energy landscape is 
structured like high mountains with an obvious  path to the valley of the global energy 
minimum. Moreover, the stochastic update procedure yields robust results given some 
fluctuation of the parameters corresponding to attention. Hence we have the tentative 
characterization of automatic processing. In the other case, however, the energy landscape is 
flat and there are  many walls of comparable hight to cross before we see the valley of 
minimum energy. In this case, it is much more difficult for the adiabatic freezing mechanism to 
find the global optimum. Processing is slow and the attentional parameters may become much 
more influential.  That corresponds to the traits of controlled processing. Although the present 
story has several elements of speculation it is obvious that the assumption of exponential 
weights has important consequences for the crucial characteristics of processing.  

Theorem 2 opens a third way to calculate the consequences of activating a structure α, 
namely by determining the preferred (or optimal) model(s) of α. Table 4 shows a so-called OT 
tableau for an input α = Voc, which precisely illustrates this calculation.  
 

 
Input:  + VOC 
 

  +  + −−−−  +     * 
  +  + −−−− −−−−     

  −−−− −−−−  + −−−−  *    * 
  +  −−−−  +  +   *  *  
  + −−−−  + −−−−   *  *  * 
  + −−−− −−−−  +   *   
  + −−−− −−−− −−−−   *   * 
  −−−−  + −−−− −−−−  *  *  *  
 −−−− −−−− −−−− −−−−  *   *  * 

  
BACK 
 

 
LOW 
 

 
HIGH 
 

 
ROUND
 

VOC 
↕  

BACK 

BACK 
↕  

LOW 

BACK 
↕  

∼ HIGH 

LOW 
↕  

∼ ROUND 
 

Table 4: OT tableau for calculating the optimal vowels  
 

As with weight-annotated Poole systems, OT looks for an optimal satisfaction of a system of 
conflicting constraints. Most importantly, the exponential weights of the constraints result in a 
strict ranking of the constraints, meaning that violations of many lower ranked constraints 
invariably count less than one violation of a higher ranked constraint (Prince & Smolensky 
1993). The candidates can be seen as information (activation) states (left hand site of table 4). 
The Harmony (or NegEnergy H = -E) can be recognized immediately from the violations of the 
(strictly ranked) constraints. Violations are marked by * (right hand site of table4) and the 
optimal candidate is indicated by .  The nonmonotonicity of the OT framework corresponds 
to the fact that the optimal candidate(s) for a subset may be different from he optimal 
candidate(s) of the original set. This is demonstrated in table 5.  
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Input:  + VOC ∧  +HIGH 

  −−−− −−−−  + −−−−  *    * 
LLLL   + −−−−  + +   *  *  

  + −−−−  + −−−−   *  *  * 
  

BACK 
 

 
LOW 
 

 
HIGH 
 

 
ROUND
 

VOC 
↕  

BACK 

BACK 
↕  

LOW 

BACK 
↕  

∼ HIGH 

LOW 
↕  

∼ ROUND 
 
 Table 5: OT tableau for calculating the optimal high vowels 
 
Whereas in table (4) the segment /a/ comes out as the optimal vowel, in table 5 the segment /u/ 
comes out as the optimal high vowel.  

Table 4 shows that all constraints are satisfied for the optimal candidate. Table 5 
demonstrates a case where two constraints conflict. The conflicting constraints are: VOC ↔ 
BACK and BACK↔LOW. Whereas the first candidate /i/ violates the first constraint and 
satisfies the second constraint, the second candidate /u/ satisfies the first constraint and violates 
the second. The constraint conflict is resolved via a notion of differential strength. The second 
candidate wins because the first constraint is stronger (ranked higher) than the second.10  

Optimality theory was originally proposed by Prince & Smolensky (1993) as a kind of 
symbolic approximation to the patterns of activation constituting mental representation in the 
domain of language. It relates to Harmony Theory (Smolensky 1986), a mathematical 
framework for the theory of connectionist computation. This framework makes it possible to 
abstract away from the details of connectionist networks.  

The present study contrasts with this approach. It is based on a particular type of 
network, which exhibits simple attractive mathematical properties: Hopfield networks. Hence, 
it cannot be our aim to contribute to the explanation of the general correspondence between 
connectionism and optimality theory. Instead, the present study brings about the 
correspondence in a very singular case only. Using the idea of local representations (Hopfield 
models), we were able to provide an explicit connection between Hopfield networks and 
particular system of constraints and their ranking (Poole systems). 

The present study gives a concrete model that may be helpful in deciding which 
defining principles of OT are derivable from connectionism and which are not. Following the 
general exposition in Smolensky (2000), it is obvious that the following principles can be 
derived from the connectionist setting: 
 
• Optimality: The correct output representation is the one that maximizes Harmony. This can 

be derived by taking harmony as H = - E, where E is the Ljapunov-function of the 
connectionist system. 

 

                                                 
10 The third candidate violates the same constraints as the second one plus the additional constraint  
LOW ↔ ROUND. It can be seen as irrelevant for determining the optimal candidate. 
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• Containment: Competition for optimality is between outputs that include the given input.  
This point is derived from the idea that clamping the input units restricts the optimization in 
a network to those patterns including the input. 

 
• Parallelism: Harmony measures the degree of simultaneous satisfaction of constraints. This 

is clearly expressed by definition (19). 
 
• Conflict: Constraints conflict: it is typically impossible to simultaneously satisfy them all. 

This point is derived from the fact that positive and negative connections typically put 
conflicting pressures on a unit=s activity. 

 
• Domination: Constraint conflict is resolved via a notion of differential strength: stronger 

constraints prevail over weaker ones in cases of conflict (consider the expression (19) 
again). 

 
As it is made clear in Smolensky (2000), all these principles hold independently of the 
particular connectionist networks that have been considered.  

The present treatment demonstrates that there is at least one principle that is derivable 
from the peculiarities of Hopfield networks only. This principle concerns the observation that 
all weak (violable) constraints have the form of bi-conditionals. As already mentioned, this 
principle follows from the symmetry of the weight matrix (section 2) and from the idea of local 
representations (section 5). Keans (1975, 1981) general principle (33) is a consequence of this 
fact. This principle is crucial for giving Kean’s markedness theory its restrictive power, and it 
is amazing that it is motivated by the general structure of the underlying neural network.  

Finally, there are at least two principles that are not derivable from connectionism but 
need some extra motivation.  
 
• Strictness of domination: Each constraint is stronger than all weaker constraints combined. 

This principle makes it possible to determine optimality without numerical computation. 
As we have seen this principle may be motivated by the assumption of an automatic 
processing mode.  

 
• Universality: The constraints are the same in all human grammars. This principle 

corresponds to a strong restriction on the content of the constraints. At the moment, it 
expresses an empirical generalization and it is absolutely unclear how to explain it 
(Smolensky 2000). 

 
In section 1 the implementationalist position was mentioned –  the position that downplays 
connectionism as a pure issue of the implementation of existing symbolic systems. Without 
doubt, connectionism can be used to implement existing symbolic systems. In the present 
context, for example, the Boltzman machine can be used in order to implement nonmonotonic 
inferences in weight-annotated Poole systems. However, connectionism is much more than a 
device to implement existing systems. Assuming connectionist ideas at the micro-level, the 
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development of optimality theory (Prince & Smolensky 1993) has shown that non-classical 
cognitive architectures may emerge with broad applications in linguistics.11  

Another important point is the demonstration that aspects of possibly old-fashioned, 
“classical” architectures can be explained by assuming an underlying (connectionist) micro-
level.  In one case we have demonstrated that the underlying symmetric architecture of the 
Hopfield networks helps to motivate the general form of the symbolic system (principle (33)). 
Furthermore, an underlying connectionist system may help motivate the connection between 
the automatic processing mode and the strictness assumption of  domination in ranked default 
systems). Hence, there are good reasons to accept the integrative methodology elucidated in 
section 1. 
 

7 Related work  
 
In the introduction to this paper I stressed the integrative methodology the present account is 
pursuing. Due to the pioneering work by Balkenius & Gärdenfors (1991) the results of such a 
programme can be useful both for traditional connectionist and for traditional symbolists. On 
the one hand, the results can help the connectionist better to understand their networks and to 
solve the so-called extraction problem (e.g. d'Avila Garcez, Broda & Gabbay 2001). On the 
other hand, the outcomes of the integrative methodology can help the symbolist to find more 
efficient implementations, for instance by using connectionist methods for solving "hard" 
problems such as optimization problems and constraint satisfaction problems. 

Most of the authors that aim to bridge the gap between connectionism and symbolism 
are concentrated either on the extraction problem or on the problem of implementation. An 
example for the first approach is d'Avila Garcez, Broda & Gabbay (2001). These authors 
investigate feedforward networks and provide a complete and sound algorithm for extracting 
the underlying logical function that maps each vector of input activation to the corresponding 
output vector.  

The second approach is pursued by Derthick (1990) and Pinkas (1995), inter alias. The 
work by Pinkas (1995) is particularly relevant. Very similarly to the present account, it maps 
preferred models into the minima of an energy function. However, there are also important 
differences. The first difference concerns the symbolic reasoning systems. Pinkas introduced 
penalty logic. Likewise to knowledge representation in weight-annotated Poole systems, a 
positive real number is assigned (the penalty) to every propositional formula representing 
domain knowledge. Importantly, these weighted beliefs are used differently in the two 
reasoning systems. In the case of weight-annotated Poole systems both the beliefs that are 
included in the scenario and the beliefs that are not included count, cf. the expression (17) 
repeated here: 
 
(17)  G(∆') = ∑δ∈∆ ’ g(δ) - ∑δ∈ (∆-∆’) g(δ). 
 
In contrast, in penalty logic, a penalty function F is constructed that counts the missing beliefs  
only (i.e. the beliefs that are not included in the scenario/theory):  
 
                                                 
11 Obviously, optimality theory has markedness theory as one of its predecessors. However, OT goes far beyond 
classical markedness theories. It includes a powerful learning theory (Tesar & Smolensky 2001) and applies to the 
phenomenon of gradedness (e.g. Boersma and Hayes 2001). 
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(35) F(∆') = ∑δ∈ (∆-∆’) g(δ). 
 
Another important difference concerns the mapping between the expressions of the 
propositional default logic and the assigned symmetric (Hopfield) network.  Pinkas seeks a 
connectionist implementation of his penalty logic. Most importantly, he is able to define a 
function that translates every set of standard propositional formulas (paired with penalties) into 
a strongly equivalent symmetric network. However, this function is not one-to-one since 
different logical systems can be connected with the same network. For instance, the two 
penalty logical systems ψ1 = {<1: p→q>} and ψ2 = {<1: q→p>, <1: q>, <1: ¬p>} realize the 
same (two nodes) network – a network that can be characterized by the energy function  E = 
p−pq. 

Surely, this fact isn't relevant when it comes to the connectionist implementation of 
penalty logic since in this case a unique symmetric network can be constructed for each set of 
expressions in penalty logic. The fact, however, becomes highly relevant when it comes to deal 
with the extraction problem and we have to extract the corresponding system of expressions in 
penalty logical for a given symmetric net. Usually, there is no unique solution to this task, and 
this leads to a complication of the extraction procedure since it isn't clear now which system 
should be extracted. This contrasts with the unique translation procedure proposed in the 
present article. In this case the proposed mapping between Hopfield nets and (a subset of) 
weight-annotated Poole systems is one-to-one. The mapping is a very transparent one and 
simply translates the links in the network to biconditionals in the logic. 

From the view of implementation, of course, it is a disadvantage that the present default 
system is restricted to simple biconditionals α↔β  where α and β are literals. However, such 
expressions seem to have a privileged status in certain cognitive systems, for example in 
theories of markedness in intrasegmental phonology (see section 6). This raises two important 
questions: the first asking to justify the special status of such a restricted systems; the second 
asking to overcome the restrictions by introducing hidden units and/or distributed 
representations. 

  

8 Conclusions  
 
Hopfield networks are, for (integrative) connectionists, to some extent what harmonic 
oscillators are for physicists and what propositional logic is for logicians. They are simple to 
study; their mathematical properties are pretty clear, but they have very restricted applications. 
The main advantage of concentrating on this simple type of network is a methodological one: it 
helps to clarify the important notions, it sharpens the mathematical instruments, and it  
provides a starting point for extending and modifying the simplistic framework.  

In this vein, it has to be stressed that the primary aim of the present investigation is a 
methodological one: the demonstration that model-theoretic semantics may be very useful for 
analyzing (emerging properties of) connectionist networks. The main finding was that certain 
activities of connectionist networks can be interpreted as nonmonotonic inferences. In 
particular, there is a strict correspondence between Hopfield networks and particular 
nonmonotonic inferential systems (Poole systems). The relation between nonmonotonic 
inferences and neural computation was established to be of the type that holds between higher 
level and lower level systems of analysis in the physical sciences. (For example, statistical 
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mechanics explains significant parts of thermodynamics from the hypothesis that matter is 
composed of molecules, but the concepts of thermodynamic theory, like “temperature” and 
“entropy,” involve no reference whatever to molecules.) Hence, our approach is a reductionist  
one – understanding reductionism in a way that sees unification as the primary aim and not 
elimination (cf. Dennett (1995) for a philosophical rehabilitation of reductionism).  

Admittedly, the results found so far are much too simplistic to count as a real 
contribution for closing the gap between symbolism and connectionism. There are two main 
limitations. The first concerns the consideration of local representations only, where symbols 
correspond to single nodes in the network. Further, the present paper didn't make use of hidden 
nodes, which considerably restricts the capacity of knowledge representation. The second 
limitation concerns the rather static conception of node activity studied here, which precludes 
the opportunity to exploit the idea of coherent firing of neurons (temporal synchrony).  As a 
consequence, we are confronted with a very pure symbolic system that fails to express 
constituent structure, variable binding, quantification, and the realization that consciousness 
and intentionality are prerequisites  for cognition and knowledge (cf. Bartsch 2002).  

There are several possible ways to overcome these shortcomings. First, a 
straightforward extension is to incorporate Pinkas' ideas concerning the role of hidden units 
into the present framework. Another aspect is to introduce distributed representations for 
realizing constituent structures and binding (e.g. Smolensky’s (1990) tensor product 
representation12). An alternative possibility is to adopt the so-called coherence view, where a 
dynamic binding is realized by some sort of coherence (e.g., coherent firing of neurons – 
temporal synchrony: Shastri & Ajjanagadde 1993, Shastri & Wendelken 2000; circuit activity 
organized by attractors: Grossberg 1996, Bartsch 2002).  

Optimality Theory (OT) has proposed a new computational architecture for cognition 
which claims to integrate connectionist and symbolic computation. Though too simple to give 
a full justification of OT's basic principles, the present account of unifying connectionism and 
symbolism can help to understand them. Especially, it may help to understand the hierarchical 
encoding of constraint strengths in OT. The solution to this particular problem "may create a 
rapprochement between network models and symbolic accounts that triggers an era of dramatic 
progress in which alignments are found and used all the way from the neural level to the 
cognitive/linguistic level." (Bechtel 2002, p. 17) 

Concluding, it is important to get an active dialogue between the traditional symbolic 
approaches to logic, information and language and the connectionist paradigm. Perhaps, this 
dialogue may stimulate the present discussion of founding the basic principles of Optimality 
Theory, and likewise it may shed new light on the old notions like partiality, underspecific-
ation, learning, genericity, probabilistic logic, and prototypicality. 
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