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Abstract

This paper generalizes existing connections between automata and logic to a coalge-
braic level.

Let F : Set — Set be a standard functor that preserves weak pullbacks. We intro-
duce various notions of F-automata, devices that operate on pointed F-coalgebras. The
criterion under which such an automaton accepts or rejects a pointed coalgebra is for-
mulated in terms of an infinite two-player graph game. We also introduce a language of
coalgebraic fixed point logic for F-coalgebras, and we provide a game semantics for this
language. Finally we show that any formula p of the language can be transformed into
an F-automaton A, which is equivalent to p in the sense that A, accepts precisely those
pointed F-coalgebras in which p holds.

Keywords coalgebra, automata, modal logic, fixed point operators, game semantics, bisim-
ulation, parity games

1 Introduction

There is a long and respectable tradition in theoretical computer science linking the research
fields of automata theory and logic. This link becomes particularly strong when automata are
used to classify infinite objects like words, trees or graphs. Interestingly, this research area has
provided not only fundamental theoretical results, such as Rabin’s decidability theorem [19],
but also quite concrete applications in computer science, such as tools for the automatic
verification of reactive systems, see for instance [6] on model checking. Over the last ten
years, the links between logic and automata theory have only grown stronger, to the effect
that in many cases, the distinction between automata and formulas has almost disappeared.
Of the many interesting results that have been obtained we just mention the connection that
JANIN & WALUKIEWICZ [12] established between modal fixed point logics, such as the modal
p-calculus, and alternating parity automata operating on labeled transition systems. For an
up to date introduction to the world of automata, logic and infinite games, we refer the reader
to GRADEL, THOMAS & WILKE [7].

Although this has to our knowledge never been exploited, or even made explicit, much
of the work relating logic and automata theory has a strong coalgebraic flavor. In itself this
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should not come as a surprise since both (modal) logic and automata theory admit a lucrative
coalgebraic perspective.

This certainly applies to logic, and to modal logic in particular. Since coalgebra can
be seen as a very general model of state-based dynamics, and modal logic as a logic for
dynamic systems, there are interesting links between the two fields. One of the first to
realize this, in the late 1980s, was ABRAMSKY [1]. BARWISE & Moss [4], a rich source of
material on a great variety of circular systems, contains the outline of Moss’ general approach
towards coalgebraic logic, discussed in more detail by Moss [15]. Over subsequent years, the
development and study of modal languages for the specification of properties of coalgebras
has been actively pursued and studied by various authors, including JAcoss [9], Kurz [13],
PATTINSON [18], and ROSSIGER [20]. However, given the intended application of coalgebraic
modal languages as specification formalisms restricting the behavior of state-based systems, it
is rather surprising that until now no languages have been developed that incorporate explicit
fixed point operators. In addition, the only work on coalgebraic modal languages in which
specimens of fixed point formulas are admitted, or in which the need for coalgebraic modal
fixed point logics is discussed, seems to be by JacoBs ([11] and [10], respectively).

The coalgebraic perspective on automata may not have been developed so systematically,
automata theory contains some of the paradigmatic examples of coalgebras, as any intro-
duction to the field of coalgebra witnesses. As examples we confine ourselves to mentioning
Rutten’s work on automata for finite and infinite words ([21] and [23], respectively).

Summarizing the above discussion, we find that the relation between automata theory
and (modal) logic has been investigated intensively and successfully, but not uniformly or
systematically. Various modal languages have been developed, in a uniform fashion, for
coalgebras of arbitrary type, but none of these languages admit explicit fixed point operators.
And lastly, we see that certain kinds of automata have been studied from a coalgebraic
perspective, but automata for arbitrary coalgebras have not been developed. It thus seems
that there is a clear gap here, and it is precisely this gap that we intend to start filling with
this paper.

We believe that the connections between automata and logic could and perhaps should
be studied from a general, coalgebraic perspective, and it is the main purpose of this paper
to introduce a framework for doing so. We confine our attention to functors F : Set — Set
which are standard and preserve weak pullbacks — such functors will be called R-standard.
For each such functor F, we will define the notion of an F-automaton; the purpose of these
devices is to classify pointed F-coalgebras (pairs consisting of an F-coalgebra and an element
of the carrier set of the coalgebra). The criterion under which such an automaton A accepts
or rejects such a pointed coalgebra (S, s) is formulated in terms of an infinite two-player game,
to be played on a certain graph induced by A and S.

We also introduce a language pL" of coalgebraic fixed point logic for F-coalgebras. This
language is finitary in the sense that every formula comes with a finite set of subformulas.
Combining ideas from the game semantics for the modal p-calculus as formulated by JANIN
& WALUKIEWICZ [12], and the semantic games for coalgebraic languages introduced by BAL-
TAG [3], in Theorem 1 we provide a game-theoretic semantics for this language uLF. Finally,
the resemblance between these games and the acceptance games for F-automata leads to the



main result of the paper: Theorem 2 states that any puLF-formula can be transformed into a
certain kind of F-automaton that accepts precisely those pointed F-coalgebras in which the
formula is true. However, we do not put much focus on technical results, since we believe
that the main contribution of the paper is of a conceptual nature.

It should be mentioned that there are other approaches in which the notion of automaton
is lifted to a category-theoretic level. For instance, there is a series of articles by Arbib and
Manes and a theory of functorial automata developed by Addmek, Trnkova and others, see [2]
(also for further references). Although this work bears some resemblance to ours, there are
at least two differences: first, the mentioned research focuses on an algebraic rather than a
coalgebraic framework, and second, it generalizes automata for finite rather than for infinite
objects. Nevertheless, it would be useful to investigate the precise connection with this line
of research.

Overview We first fix notation and terminology on Set-based functors and coalgebras,
and define R-standard functors; we also give a brief introduction to two-person infinite parity
games. In section 3 we introduce our coalgebraic perspective on automata theory by reviewing
some of the more familiar kinds of automata. Section 4 provides the general definition of F-
automata for R-standard functors, and gives a detailed description of the acceptance games
for F-automata. Then we move to logic: in section 5 we introduce the syntax and semantics of
the coalgebraic fixed point logic uLF for coalgebras over an R-standard functor F. The next
section provides the details of the game-theoretic approach to the semantics of this language.
Section 7, the briefest section of the paper, states the above-mentioned main result of the
paper. We finish the paper with a list of ideas for further research.

2 Preliminaries

This paper presupposes some familiarity with the basic concepts of category theory and
universal coalgebra. The main purpose of this section is to fix notation and terminology. We
also give a very brief introduction to so-called graph games.

2.1 Set-based functors and coalgebras

Basics We let Set denote the category of sets with functions. For an endofunctor F : Set —
Set, an F-coalgebra is a pair S = (S, 0) consisting of a set S and a function o : S — FS. A
pointed F-coalgebra is a pair (S, s) such that S is an F-coalgebra and s is an element of (the
underlying set of) S. Given two F-coalgebras S = (S,0) and T = (T, 7), a function f : S — T
is an F-coalgebra morphism or F-homomorphism if F(f) o o = 7o f. The category Coalg(F)
has the F-coalgebras as objects and the F-homomorphisms as arrows. A relation Z C S x T
is an F-bisimulation if we can impose coalgebra structure ( : Z — FZ on Z in such a way
that the two projections m; : Z — S and 7 : Z — T are F-coalgebra morphisms. We write
Z:S,s < T,tif Z is a bisimulation between S and T that links s € Stot € T, and S,s < T, ¢
if there is such a Z.



Functors and relators Let Rel denote the category with sets as objects and binary re-
lations as morphisms. Identity arrows in this category are given, for any set S, by Ag =
{(s,s) | s € S}; composition of arrows in this category is ordinary relation composition, but
we will write composition as is usual for functions. A functor Q : Rel — Rel is called a relator.

It is well-known that Set can be embedded in Rel by the graph functor ¢ which is the
identity on sets and maps a function f : S — T to its graph o(f) = {(s, f(s))|s € S}. We
say that a relator Q : Rel — Rel extends a functor F' : Set — Set if it satisfies (i) QS = FS
for all sets S, and (ii) Q(¢(f)) = @(F(f)) for all functions f : S — T. Extensions need not
always exist, but are unique if they do; we denote the extension of the functor F by F. It can
be proved that an endofunctor on Set can be extended to a relator if and only if it preserves
weak pullbacks. This result is usually attributed to CARBONI, KELLY & WoOD [5], but
it also follows as a special case of an earlier result by Trnkova, see [24, Observation 2.10],
or [2, section V.2.10] for a proof. In the sequel we will need the following fact; for details,
consult RUTTEN [22].

Fact 2.1 Let F: Set — Set be a functor that preserves weak pullbacks. Then
1. The unique relator F extending F is given, for RC S x S, by F(R) = F(n) o F(x/) L.
2. F is monotone, that is, if R C Q then F(R) C F(Q).
3. Z is a bisimulation between S and T iff (s,t) € Z implies (0(s),7(t)) € FZ, for all s,t.

The image F(R) C FS x FT of a relation R C S x T is called the relation lifting of R under F.

R-standard functors A functor F : Set — Set is called standard if it preserves inclusions;
that is, whenever f : A — B is an inclusion, then so is F(f) : FA < FB. We need the
following property, proved in ADAMEK & TRNKOVA [2].

Fact 2.2 Let F be a standard endofunctor on Set. Then F preserves finite intersections, that
is: F(ANB) =FANFB.

Through most of this paper we will be working with endofunctors on Set that are both
standard and preserve weak pullbacks. Hence, it is convenient to introduce terminology.

Definition 2.3 A functor F : Set — Set is called R-standard if it is standard and preserves
weak pullbacks. pe

2.2 Graph games

Two-player infinite graph games, or graph games for short, are defined as follows. For a
more comprehensive account of these games, the reader is referred to GRADEL, THOMAS &
WILKE [7].

First some preliminaries on sequences. Given a set A, let A*, A“ and A* denote the
collections of finite, infinite, and all, sequences over A, respectively. (Thus, A* = A* U A¥.)
Given a € A* and 8 € A* we define the concatenation of a and § in the obvious way, and we
denote this element of A* simply by juxtaposition: af. Given an infinite sequence a € A%,
let Inf(c) denote the set of elements a € A that occur infinitely often in a.



A graph game is played on a board B, that is, a set of positions. Each position b € B
belongs to one of the two players, 3 (Eloise) and ¥ (Abélard). Formally we write B = B3U By,
and for each position b we use P(b) to denote the player i such that b € B;. Furthermore,
the board is endowed with a binary relation E, so that each position b € B comes with a set
E[b] C B of successors. Formally, we say that the arena of the game consists of a directed
bipartite graph B = (B3, By, F).

A match of the game consists of the two players moving a pebble around the board,
starting from some initial position bg. When the pebble arrives at a position b € B, it is
player P(b)’s turn to move; (s)he can move the pebble to a new position of their liking, but
the choice is restricted to a successor of b. Should E[b] be empty then we say that player
P(b) got stuck at the position. A match or play of the game thus constitutes a (finite or
infinite) sequence of positions bpb1by ... such that b;Eb;11 (for each i such that b; and b;4q
are defined). A full play is either (i) an infinite play or (ii) a finite play in which the last
player got stuck. A non-full play is called a partial play.

The rules of the game associate a winner and (thus) a looser for each full play of the
game. A finite full play is lost by the player who got stuck; the winning condition for infinite
games is given by a subset Ref of B* (Ref is short for ‘referee’): our convention is that 3
is the winner of 3 € B“ precisely if 8 € Ref. A graph game is thus formally defined as a
structure G = (B3, By, E, Ref). Sometimes we want to restrict our attention to matches of a
game with a certain initial position; in this case we will speak of a game that is initialized at
this position.

Various kinds of winning conditions are known. In a parity game, the set Ref is defined
in terms of a parity function on the board B, that is, a map ) : B — w with finite range.
More specifically, the set Ref is of the form

Bg :={p € BY | max{Q(b) : b € Inf(B)} is even}. (1)

A strategy for player ¢ is a function mapping partial plays § = by --- b, with P(b,) = i
to admissible next positions, that is, to elements of E[b,]. In such a way, a strategy tells i
how to play: a play (8 is conform or consistent with strategy f for ¢ if for every proper initial
sequence by - - - b, of B with P(by,) = i, we have that b, 11 = f(bo---bn). A strategy is history
free if it only depends on the current position of the match, that is, f(3) = f(8') whenever 3
and 3" are partial plays with the same last element (which belongs to the appropriate player).
A strategy is winning for player i from position b € B if it guarantees ¢ to win any match
with initial position b, no matter how the adversary plays — note that this definition also
applies to positions b for which P(b) # i. A position b € B is called a winning position for
player i, if ¢ has a winning strategy from position b; the set of winning positions for i in a
game G is denoted as Win;(G).

Parity games form an important game model because they have many attractive proper-
ties, such as history-free determinacy.

Fact 2.4 Let G = (B3, By, E,Q) be a parity graph game. Then
1. G is determined: B = Winz(G) U Winy(G).
2. Each playeri has a history free strategy which is winning from any position in Win;(G).



The determinacy of parity games follows from a far more general game-theoretic result
concerning Borel games, due to MARTIN [14]. The fact that winning strategies in parity
games can always be taken to be history free, was independently proved in MOSTOWSKI [16]
and EMERSON & JuTLA [8].

3 Automata on infinite objects

In this section we intend to supply a gentle introduction to our general definition of an
automaton operating on coalgebras, by discussing the shape of some finite automata that are
well known from the literature. While we subsequently increase the (conceptual) complexity
of these machines, their overall shape will be fixed as a quadruple A = (A,ar, A, Acc), with
A some finite set of objects called states, a;y € A the initial state, A some kind of transition
function, and Acc C A% the acceptance condition.

There are in fact quite a few dimensions along which one may classify such automata. For
instance, an important criterion, and one that we will encounter here as well, concerns the
flavor of the transition function; this flavor makes whether we call the automaton determin-
istic, non-deterministic, or alternating. A second useful criterion is based on the acceptance
condition of the device; examples that we will encounter here are the Biichi and the parity
condition (both are defined elsewhere in this paper).

However, both of these criteria are fairly orthogonal to the aim of this paper. Our purpose
here is to start with a classification of finite automata according to the kind of object on which
the device operates (words, trees, or graphs). We hope that our presentation will convince
the reader that the obvious similarities in the definition of an automaton accepting an object,
are essentially coalgebraic in nature. This naturally leads to the general definition of an
automaton that operates on pointed coalgebras of type F, where F is an arbitrary R-standard
endofunctor on Set.

Let us first fix some terminology and notation. Throughout this section, we will work
with a fixed alphabet, or color set, C.

Definition 3.1 Let F be an endofunctor on the category Set, and C' an arbitrary finite
set of objects that we shall call colors. We let Fo denote the functor FoS = C x FS;
that is, Fo maps a set S to the set C' x FS (and a function f : S — S’ to the function
ide X Ff : C x FS — C x FS"). Fg-coalgebras will also be called C-colored F-coalgebras.

We will usually denote Fo-coalgebras as triples S = (S, v, 0), with v : S — C the coloring
and o : § — FS the F-coalgebra map. <

Infinite words over an alphabet ¥ can thus be seen as (special) ldy-coalgebras, where Id
is the identity functor on Set. Likewise, infinite 3-labeled binary trees are special coalgebras
for the functor (Id x Id)y.. The third and last kind of objects for which we will consider finite
automata in this section are the C-colored coalgebras for the power set functor P. Recall
that there are plenty of examples of P-coalgebras in the literature, since any binary relation
R C S x S can be presented as the P-coalgebra map sending a point s € S to the collection
{t € S| (s,t) € R} of its R-successors. As particular examples we mention graphs and Kripke



frames; Kripke models, say, over a collection Prop of proposition letters, can be seen as Kripke
frames that are colored by the collection of subsets of Prop.

The process of an automaton traversing and scanning a coalgebra structure needs a start-
ing point: the first letter of a word, the root of a tree. In general, it is pointed coalgebras
(see section 2.1) rather than coalgebras per se that are the objects of investigation for our
automata.

Automata on infinite words

To start with, consider simple automata operating on infinite words. In the deterministic
flavor, these are objects A = (A, ay, d, Acc) where the transition function is of the form

d:AxC —C.

If we let such a device operate on an infinite C-word v = cgcica . . ., the result is a so-called
run, that is, a sequence p = agajas ... such that ap = ay and a;41 = §(a;, ¢;) for all i € w.
Now A is defined to accept ~ if and only if this run, which is uniquely determined by A and -,
belongs to the set Acc. (In the case of a standard finite automaton, the acceptance condition
is given by a subset ' C A of final, or more appropriately, accepting states. An infinite word
is accepted by such a machine if at least one of these accepting states occurs infinitely often
in the run. This relatively simple concept is called Biichi acceptance.)

In the non-deterministic variant of a word automaton, we are dealing with a transition
function

A:AxC—PC.

Runs of such machines are no longer uniquely determined: a run of A on an infinite word
v = cpcicy . .. may be any w-word p = apajas . .. over A satisfying agp = ay and a,11 € A(a;, ¢;)
for all i € w. A accepts 7y if at least one of these runs meets the acceptance condition. A good
way to envisage this is to think of the automaton traversing v and at each time choosing a
new state a;y; from the set A(a;, ¢;).

It is completely straightforward to generalize these notions from infinite words over C'
to arbitrary ldc-coalgebras. For instance, in the non-deterministic variant, a run of A on a
ldc-coalgebra S = (S,~,0) starting at s € S is an w-word p = agpajas ... such that ag = ay
and a;y1 € A(a;,v(0™(s))). A accepts (S, s) if one of these runs is accepting.

Automata on binary trees

Changing the type of the coalgebra functor, we move on to automata that operate on C-
labeled binary trees (or on arbitrary structures that can be represented as coalgebras for the
functor (ldx1d)s;). The basic new idea here is that an automaton which scans such a structure,
starting at the root of the tree, at each node splits into two copies, each of which continues
the investigation of the tree at one of the two successors of the current node. Formally, we
denote a binary tree as a structure T = (2*,~), where 2* denotes the set of finite words over
the alphabet 2 = {0,1} and ~ : 2* — C is the coloring of the tree. A (deterministic) tree
automaton A = (A, ay,d, Acc) has a transition function

d:Ax(C — A x A.



A run of such an automaton on a C-labeled binary tree T = (2%, ) is now an A-labeled binary
tree p = (2*,L : 2* — A) such that for all nodes s € 2%, (L(s0), L(s1)) = d(L(s),~(s)). The
automaton is defined to accept the tree 3 if each path of the run p, seen as an infinite word
over A, belongs to A.

Deterministic tree automata, just like deterministic word automata, have a unique run on
each input tree. And similarly as for word automata, we obtain a non-deterministic variant
by taking, as the transition map of the automaton, a function

A:AxC—PAxA).

Acceptance for such automata may again be formulated in terms of the existence of an
accepting run, where an accepting run is now defined as an A-labeled binary tree p satisfying
(L(s0),L(s1)) € 0(L(s),7y(s)) for every node s € 2*. It is more convenient however, to
rephrase the definition of acceptance within the framework of game theory. The combination
of the existential (‘for some run ...’) and universal quantification (‘for all paths ...”) can be
explained quite naturally in terms of the interaction of two players.

With any tree automaton A and tree T we associate an acceptance game G(A,T), which
has two players, 3 (Eloise) and V (Abélard). For an intuitive understanding of this game,
think of 3 as aiming for the automaton to accept the tree, and of V as trying to prevent this.
Basically, a position of the game is a pair (a,s) € A x 2*, which codes the situation of the
automaton being in state a, inspecting node s of the tree. In such a position, 3 chooses a
pair (ag,a1) € A(a,v(s)), after which V chooses to move either left or right, thus determining
the next node of the tree to be either sO or sl, and the next state of the automaton to be
either ag or a;. Any full match of the game thus provides an infinite sequence a = agaias ...
of states in A (with a9 = ay), which in its turn determines the winner of the match: it is
Jif a € Ace, and V otherwise. The automaton accepts the tree T in case 3 has a winning
strategy for the associated game initiated at the pair (as,€), where € is the root of the tree.

Formally, we may represent this game as the graph game (see section 2.2) of which the
game positions are given in the following table, and the acceptance condition is given as
before.

Position: b P(b) | Admissible moves: E[b]
(a,s) € Ax2* 3 {(&,s) e P(Ax A) x 2| £ € Ala,v(s))}
((ag,a1),8) e P(Ax Ay x2* | VvV | {(ap,s0),(ar,sl)}

This game theoretic perspective on acceptance opens up various ways to generalize the
notion of a tree automaton. A standard way to do so proceeds as follows. First, read the
pair (ag,a1) € A(a,7(s)) as a conjunction of the statements ‘go left, and switch to state ag’,
and ‘go right, and switch to state a;’. Abbreviate this as L:ag A R:a1. Similarly, read the set
Aa,c) = {(a,a}) | i € I} disjunctively, that is, as the formula \/,(L:a) A R:a}). The concept
of alternation then naturally arises if we allow arbitrary conjunctions and disjunctions over
the set LRy := {L:a,R:a | a € A} in the range of the transition function of the automaton.
That is, we let the transition function be of the form

A:AxC —DL(LR,A),



where, for any set X, we let DL(X) denote the set of (distributive) lattice terms over X, that
is, the smallest collection of objects that includes X and contains the expressions A P and
\/ P for any finite set P of objects in DL(X). The board of this graph game looks as follows.

Position: b

(a,s) e Ax S

(VP s)e DL(AXx A) x S
(ANP,s) e DL(AXx A)x S
(L:a,s) € LRy x S
(R:a,s8) € LR x S

) | Admissible moves: E[b]
{A(a,7(s))}

{(p,s) e DL(Ax A)x S |p€ P}
{(p,s) e DL(Ax A) x S|pe€ P}
{(a,50)}

{(a,s1)}

i}
\\<EU_I\/§

Note that in the cases where we do not associate a player with a position, the next position of
the game is uniquely determined by the current one, and thus it does not matter which player
owns this position. Special attention is needed for positions of the form (\/ P, s) and (A P, s)
in case P is the empty set. In a position (\/ &, s), 3 gets stuck since there is no move available
for her. Thus, in accordance with the definition of parity games, 3 immediately looses the
match. Intuitively, this is correct since the disjunction over an empty set of propositions is
usually taken to be the falsum formula L. Likewise, V looses any match ending at a position
of the form (/A &, s), which is in accordance with the convention that /\ @ is equivalent to the
formula T. In any case, it is important to note that in the acceptance game for alternating
tree automata, full matches may be finite. The winner and looser of an infinite match are
provided by the acceptance condition of the automaton. Given an infinite match g, consider
the infinite sequence of ‘basic’ positions (ag, so)(a1, s1)(ag, s2) ... occurring in B. The match
[ is won by 3 if the induced infinite word agajas ... belongs to Acc, and by V, otherwise.

For our purposes however, it is more convenient to define the notion of an alternating tree
automaton in a slightly different (but equivalent) way. We require the transition function to
be of the form

A:AxC —DLAXA),

with the board of the acceptance game looking as follows.

Position: b P(b) | Admissible moves: E[b]

(a,8) € AxS — [ {Ala,(s))}

(VP s)eDL(AxA) xS | 3 {(p,s) e DL(Ax A) x S| pe P}
(ANP,s) e DL(AxA) xS | V |{(p,s) e DL(AxA)xS|pe P}
((ag,a1),8) e (Ax Ay xS | V | {(ao,s0),(a1,s1)}

In order to see why these two approaches are equivalent, recall that the pair (ap,a1) € A x A
can be represented as the conjunction L:ag A R:a;. In the other direction, the atomic formula
L:a can be represented by the pair (a,aT) where at is a special ‘true’ state, that is, it has
A(aT,c) = {@} for all colors c.

It is not hard to show that the distributive laws (between \/ and /) apply to this kind
of game, in the sense that replacing a position (p,s) with (¢',s), in case ¢ and ¢ are
propositionally equivalent formulas, makes no essential change to the game. From this it
follows that instead of allowing arbitrary formulas as the value of the transition function, we
may confine ourselves to formulas in distributive normal form. This enables the following



set-theoretic, ‘logic-free’, presentation of alternating tree automata, namely, in which the
transition map has the form
A:AxC—PPAxA).

Under this definition of the automaton we may present the board of the acceptance game as in
the table below. Here we have also made the amendments necessary to enable the automaton
to operate on arbitrary (Id x ld)c-coalgebras.

Position: b P
(a,8) € Ax S

(E,5) e P(FA) x S
((ap,a1),(s0,51)) € FA X FS

—~

b) | Admissible moves: E[b]

{(E,5) e P(FA) x S|E € A(a)}

{(¢,7) eFAXFS|{eEand T =0o(s)}
{(a0’50)>(a1751)}

< <C W

Automata on graphs/amorphous trees

The last kind of objects for which we consider finite automata are the C-colored coalgebras for
the power set functor P. It is important to realize that P-coalgebras differ from coalgebras
for the functor Id* (which sends a set X to its k-ary Cartesian power) in one important
aspect. In a P-coalgebra, the collection of successors of a point s is amorphous in the sense
that one does not have explicit access to the individual points of this set. This means that
whereas it is completely trivial to modify the definition of binary tree automata to the case
of k-ary trees, some new ideas are required to extend the definition to capture automata for
amorphous trees.

There is in fact more than one way to go here. Probably the most intuitive solution
generalizes the first-mentioned approach towards alternation for tree automata, i.e., the one
in which the transition function takes values in the set of lattice expressions over the set LR 4
of ‘atomic formulas’. Think of the atomic formula L:a as a modal expression stating that
a applies to the L-successor of the current node of the tree. In the case of the power set
functor P, without explicit reference to individual successors, one may use the formulas <a
and Oa as the basic building blocks of the distributive lattice expressions. The meaning of
these formulas would then be to send a copy of the automaton, switched to state a, to some
successor of the current point of the graph or tree. Here the difference is of course that in
the case of a diamond formula <a, this successor is chosen by 3, while it is V who chooses
the next node in the case of a box formula Oa. Thus the net effect is that in the case of a
diamond formula, a single copy of the automaton is sent out to one successor of the current
point in the tree, whereas in the case of a box formula, a copy of the automaton is moving to
each successor node.

The perspective on graph automata that we discuss now is equivalent but different. Our
approach roughly follows JANIN & WALUKIEWICZ [12], but we have streamlined the presen-
tation quite a bit in order to bring out the coalgebraic aspect of the definition more clearly.
This facilitates the generalization towards arbitrary coalgebras.

The basic idea of this second approach is to use sets of states of A as ‘descriptions’ of sets
of nodes of the colored graph S under inspection. Such a ‘description’, say, by a set B C A of
a set T C S, needs to be substantiated by a relation Z C A x S which is full on B and T, in
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the sense that for every b € B there is a t € T such that (b,t) € Z, and for every t € T there
is a b € B such that (b,t) € Z.
In the case of a deterministic automaton then, we may simply take the transition map to
be of the form
60:AxC — PA,

and the idea is that when the automaton, in state a € A, inspects a node s € S, the set
0(a,~(s)) provides a description of the collection o(s) of successors of s. It is the task of 3
to come up with a full relation Z C §(a,(s)) X o(s) to substantiate the claim that d(a,~(s))
is an adequate description of o(s). After she has chosen such a relation Z, it is V’s turn to
pick a pair (b,t) € Z. The automaton then switches to state b and moves to successor ¢ of s,
and the acceptance game continues. Thus, different from the case of bounded trees, here even
the acceptance game associated with a deterministic automaton witnesses some nontrivial
interaction between the two players.

In passing we note that the equivalence of both approaches can be seen quite easily in
terms of coalgebraic modal logic. For, our notion of a set P C A ‘describing’ the set o(s) of
successors of s, can be very succinctly formulated by the formula

vP = o\/[{p|lpe P} A N{Op|pe P} (2)

holding at s, whereas both the standard modal operators O and < can be expressed using
the V operation. And conversely, the standard modal operators can be expressed using the
V operation: Cp = V{T,¢} and Op = V& V V{p}. Thus, at least in the cases where we
have conjunctions and disjunctions at our disposal, we may freely switch between V on the
one hand, and <& and O on the other.

Given the above description of the deterministic graph automata, it is straightforward
to come up with the definition of its nondeterministic and alternating variants. Concerning
the latter, one could define the transition function of an alternating automaton A to take
values in the set DL(PA) of lattice expressions over the set P A, but it seems cleaner to take
the equivalent set-theoretic formulation that is based on the disjunctive normal form of such
expressions. That is, the transition function of an alternating graph automaton has the form

A:AxC— PPPA.

The triple occurrence of the power set operation may seem rather confusing at first sight.
Probably the best way to understand this feature is by recalling that there is one P for 3,
one for V, and one for the functor. A better way to type this transition function is as

A:AxC — PPFA.

Formally, the acceptance game of such an automaton is played on the following graph:

Position: b

(a,5) e Ax S
(E2,5) e P(FA) x S
(&,7) e FAXFS
ZePAxS)

) | Admissible moves: E[b]

{55 € PFA) x 5| Z€ A[@, ()]
{(§,7) eFAXFS|{e€Zand 7 =0(s)}
{ZeP(AxS)|Zisfull on (§,7)}

Z

e
<(LIJ<(U.I€
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As always, the winning conditions of the game are completely determined by the acceptance
condition Acc of the automaton. That is, each match of the game induces, in the most obvious
way, a sequence of states of the automaton, and (at least, in case we talking about an infinite
match), the winner of the match is 3 if this sequence belongs to Acc, and V otherwise.

A coalgebraic perspective

Our presentation of graph automata has provided almost all of the ingredients needed for
generalizing the definition of an automaton to a general, coalgebraic level. The key observation
still to be made is that our fairly vague story of a subset P C A ‘describing’ the set o(s) € PS
is in fact an instance of the coalgebraic notion of relation lifting (see section 2.1). More
precisely, a relation Z C A x S is full on P C @ and 7' C S if and only if the pair (P,T) €
FA x FS belongs to the relation lifting FZ.

Also in the cases of word and tree automata, it is relation lifting that determines how a
match of the game proceeds. In these cases however, there is no real choice for 3 when it
comes to the ‘witnessing relation’ Z. For instance, given ((ag,a1), (s0,$1)) € FA x FS, where
F is the binary tree functor, any relation Z C FA x FS satisfies ((ag, a1), (s0,51)) € FZ if and
only if Z contains both (ag, so) and (a1, s1). But since 3 will always choose the witnessing
relation Z as small as possible, this means she will always pick the set {(ao, o), (a1, s1)}, and
thus effectively, has no choice at all. The reader is invited to check how this is reflected in
the definition of the acceptance game of tree automata.

Thus we have arrived at a natural notion of an automaton operating on pointed Fg-
coalgebras — at least, for any functor F for which relation lifting ‘works’. In the deterministic
case, the transition function could be defined to be of the form

0:AxC — FA.

The acceptance game for such an automaton A operating on an Fo-coalgebra S = (S,~v: S —
C,o: S — FS) is given by the following table:

Position: b P(b) | Admissible moves: E[b]
(a,8) € Ax S 3 {ZeP(AxS)]|(6(a,v(s)),0(s)) € FZ}
ZePAxS)| ¥V | Z

In the acceptance game for the alternating version such an automaton, the players first
play, at a position (a,s) € A xS, a little ‘subgame’ in order to arrive at a position («, o(s)) €
FAXxFS. From there, play proceeds as in the deterministic version. In general, it is interesting
to observe that the alternating game proceeds in rounds, and that each round witnesses two
fairly different kinds of interaction between 3 and V.

Finally, it turns out that we can simplify our discussion somewhat by disposing of the col-
ors. In the following section, we develop a framework of F-automata as devices for inspecting
coalgebras based on an arbitrary functor, rather than colored coalgebras only. This enables
us to work with transition functions that are of the form

A:A— PPFA.
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Obviously, this theory applies to functors of the form F¢ as well, and, hence, it does provide us
with a notion of an Fo-automaton that will operate on C-colored F-coalgebras, see section 4.5
for more details.

4 Automata for Coalgebras

4.1 Basic definition

The following definition concerns the most important notion of the paper: F-automata.

Definition 4.1 Let F be an R-standard endofunctor on Set. An (alternating) F-automaton
is a quadruple A = (A, ay, A, Acc), with A some finite set of objects called states, a; € A the
initial state, A : A — PPFA the transition function, and Acc C A% the acceptance condition.

An F-automaton is called solitary (or non-deterministic) if all members of each A(a) are
singletons. An F-automaton is called deterministic if for each a € A there is an element
d(a) € FA such that A(a) = {{0(a)}} (in particular, such an automaton is solitary). <

The meaning of this definition should become clear below when we discuss the acceptance
games. In the sequel we may drop the adjective ‘alternating’” when referring to such an
automaton: in our terminology, the generic automaton is alternating, and deterministic and
solitary automata are special instances of alternating ones.

There are various kinds of acceptance conditions known from the literature. For almost all
of these, the criterion, whether an infinite sequence o € A“ belongs Acc or not, is formulated
in terms of the set Inf(«). For instance, a Biichi condition puts « € Acc if and only if Inf(«)
contains at least one of a set of special acceptance states. In the remainder of this paper we
will work exclusively with parity automata.

Definition 4.2 Let F be an R-standard endofunctor on Set. A parity F-automaton is an
F-automaton A = (4, ar, A, Acc), such that Acc = A§ for some parity map Q : A — w,
see (1). Such an automaton is usually presented as A = (4,ar,A,Q2). The map Q is called
the parity function of the automaton. <

4.2 Acceptance game

F-automata are supposed to operate on pointed F-coalgebras. Basically, the idea is that an
F-automaton will either accept or reject a given pointed F-coalgebra. The best way to express
the evaluation process leading to either acceptance or rejection, is in terms of a two-player
infinite graph game, or graph game, see section 2. However, it is useful to first consider
another example of a graph game.

Example 4.3 There are various ways to put the notion of bisimulation into this game-
theoretic framework. At this stage it is instructive to consider the following approach from
BALTAG [3].

Let S = (S,0) and S’ = (5’,0) be two F-coalgebras for some endofunctor F on Set which
preserves weak pullbacks. The bisimulation game B(S,S') between S and §' is defined as the
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graph game (B3, By, E, Ref ) with B3 := S x S’, By := P(S x 5’), Ref := B¥ (i.e., all infinite
matches are winning for 3), while the edge relation E' is given as follows:

e in position (s,s’), 3 may choose any set Z C S x S’ satisfying (o(s),0’(s')) € FZ;
e in position Z C S x S, V may choose any element (¢,t') of Z.

We leave it to the reader to verify that
(s,s") € Wing(B) iff S,s < §', .

The key observation for the direction from left to right is that the relation Wing(B) itself is a
bisimulation between S and S. For the other direction, let 3 choose, at an arbitrary position
(t,t'), any bisimulation between S and S’ that links ¢ to ¢/, cf. Fact 2.1(3).

Definition 4.4 Let A = (A,ar,A,Q) be an F-automaton, and let S = (S,0) be an F-
coalgebra. The acceptance game G(A,S) associated with A and S is the parity graph game
(Ba, Bv, E, ﬁ) with

By = AxS U FAXFS

By = P(FA) xS U PAxS),

while E and  are given by the table below:

Position: b P(b) | Admissible moves: E[b] Q(b)
(a,5) € Ax S 3 | {(E,s) e P(FA) x S|E € Ala)} Q(a)
(5,s) e P(FA) xS | V {(§,7) eFAXFS|¢€Zand T =0(s)} 0
(€,7) € FA x FS 3 | {ZePAxS)| (&) eFZ) 0
ZeP(AxS) v |z 0

Finally, A accepts the pointed F-coalgebra (S, s) if (as, s) is a winning position for 3 in
the game G(A,S). <

In order to get an understanding of this game, consider an F-automaton A and an F-
coalgebra S. Of all the positions in the game G = G(A,S), those in A x S are the basic
ones — the other positions are just intermediate stages. Roughly, one should see a pair
(a,s) € A x S as a situation in which the automaton is in state a, inspecting the point s of
the coalgebra. The aim of 3 is to show that this description ‘fits’; while the aim of V is to
convince her that this is not the case. Going into detail we first look at two special cases.

First suppose that the automaton A is deterministic. That is, there is a map 6 : A — FA
such that A(a) = {{0(a)}} for each a € A. Now at any position (a,s) € A x S of the game G,
3 can only make one move, namely, to the position {(d(a), s)} € P(FA) x S; after that, V has
no choice either: he has to move the pebble to (§(a),o(s)) € FAxFS. Note that this position
is completely determined by the first position — hence the name ‘deterministic’. A position
of the form (§(a),o(s)) is like the position (a, s) of the bisimulation game of Example 4.3: 3
chooses a relation Z C A x S such that (6(a),o(s)) € FZ, after that, V chooses a new pair
(b,t) € Z, and we are back in one of the basic positions. So in the deterministic case, a parity
automaton itself can be represented as a ‘decorated’ F-coalgebra: apart from an initial state
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it also carries an acceptance condition Q : A — w. Likewise, the acceptance game G(A,S) for
such an automaton is like a ‘decorated’ bisimulation game. Note however, that much of the
power of automata working on infinite objects precisely stems from the intricacies of these
‘decorations’.

Now take the more general case in which we only know that A is solitary, and consider a
position (a,s) € A x S. Here 3 has a real choice: she can pick any singleton {«} from A(a)
and move the pebble to position {(a,s)} € P(FA x S). After that, Vs choice is forced: he
must move the pebble to position («,0(s)) € FA x FS. Effectively then, at position (a,s) it
is 3 on her own who determines the later position (a, o (s)) € FA x FS - this explains why we
call such an automaton ‘solitary’. Note that at positions of the form (o, o(s)) € FA x FS the
game proceeds as in the deterministic case, until another central position is reached.

Finally, we consider the most general case, in which A is an arbitrary automaton. Here it is
still the aim to arrive, starting from a position (a,s) € Ax S, at a position (a, o(s)) € FAXFS,
but now 4 and V play a little ‘subgame’ in order to get there. In the version presented here,
first 4 makes a preselection, that is, she chooses some subset = C FA; then V picks an element
¢ € 2, and the new position is (£, 0(s)); from here, play proceeds as before. Note that any
match of the game is over as soon as the responsible player gets stuck, in the sense that (s)he
reaches a position in which no moves are admissible. This happens for instance in a position
(a,s) such that A(a,s) = @; in this case 3 gets stuck and immediately looses the match.
Likewise, if 3 can choose @ € A(a,s) then she wins the match since V will get stuck in the
next move.

4.3 Variation: chromatic F-automata

Familiar automata, such as the ones discussed in section 3, operate on coalgebras that are
colored by some set C', and have a transition function A taking input from the set A x C
(with A the state set of the automaton). Now obviously, our definition 4.1, when applied to a
functor of the form F¢, does provide automata that will scan C-colored F-coalgebras, but the
reader may worry that their transition function A : A — PP(C x FA) has the wrong shape
since it seems to take input only from A. In this section we will show that the notion of an
F-automaton is flexible enough to encode the technicalities involving colors, so that we may
work in the simpler framework without making concessions to its scope of applicability.

Let us first introduce a coalgebraic generalization of the notion of automaton that seems
to be more in line with standard usage in automata theory. As before, we represent Fc-
coalgebras as triples of the form S = (S,v,0) withv: S — C and o : S — C x FS.

Definition 4.5 Let F be an R-standard endofunctor on Set. A chromatic F-automaton over
C'is a quintuple A = (A, a7, C, A, Acc) such that A : A x C — PPFA (and A, aj, and Acc
are as before).

Given such an automaton and an Fo-coalgebra S = (S,7,0), we define the acceptance
game Go(A,S) in a very similar way as before, witnessed by the following table:
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Position: b P(b) | Admissible moves: E[b] Q(b)
(a,8) € Ax S 3 [ {(E,s) e P(FA) x S| E € Ala,(s))} Q(a)
(E,s) e P(FA) xS | V {((,7) eFAXFS|¢€Zand T =0(s)} 0
(€,7) € FAXFS 3 | {ZePAxS)| (1) cFZ} 0
ZeP(AxS) v |z 0

<

We will now show that the differences between the two kinds of automata for recognizing
C-colored F-coalgebras are only superficial. That is, we will provide very simple constructions
for transforming Fo-automata into equivalent chromatic F-automata over C'; and vice versa.

Definition 4.6 Let A = (A,ar,C, A, Acc) be a chromatic F-automaton over C. We define
its Fo-companion AC as the automaton (A, a;, A®, Acc), with A® : A — PP(C x FA) given
by

AC(a) :={{c} xE|Z € Ag,¢),c€ C}.

(Note that if == {&,...,&}, then {c} x Zis the set {(¢,&1),...,(¢,&n)}).
Conversely, given an Fo-automaton B = (B, by, ©, V), the structure (B, by, C, ©¢, ¥) with

Oc(b,c) :={E€FB|{c} xE€O()}.
is called the chromatic F-companion of B, notation: B¢. <

The following claim shows that the two kinds of automata for Fo-coalgebras are merely
variants of one another.

Proposition 4.7 Let A be a chromatic F-automaton over C, and B an Fo-automaton. Then
for any pointed Fc-coalgebra (S, s) it holds that

A accepts (S,s) iff AY accepts (S, s), (3)
B accepts (S,s) iff Be accepts (S, s). (4)

Proof. We confine our attention to (4). Fix B and S. We will show that
Win3(G(B,S)) = Wins(Ge(Be, S)), (5)

which clearly suffices to prove the equivalence of B and B¢.

For the inclusion O of (5), note that by Fact 2.4 we may assume that in Go(Bc,S), 3
has a history free strategy f which is winning from every position in Win3(Go (B¢, S)). Now
define the following map f’ on 3’s positions in the other game, G(B,S). For (b,s) € B x S,
let f~(b,s) denote the unique element = € FA such that f(b,s) = (E, s), and put

flb.s) = ({g(s)} x [ (b,s),s),
f/(‘fvT) = f(§77—)
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We first show that f’ is a legitimate strategy for 3 on each of her positions in the set
Win3(Ge(Be,S)). This is obvious for positions of the form (¢,7) € FB x FS. For a po-
sition (b,s) € B x S, from the fact that f(b,s) € O¢(b,v(s)) and the definition of O¢, it is
immediate that f’(b, s) belongs to ©(b), as required.

Now consider an arbitrary match 3 of G(B,S), initiated at a position p that we know to
be winning in the game G (B¢, S), and assume that 3 plays according to her strategy f’. It
is not hard to see that with 3 we may associate a shadow match (' of Go(B¢,S) in which 3
plays according to her winning strategy f, and such that 8 and (3’ pass through exactly the
same basic positions (i.e., in A x S). This immediately implies that 3 wins 3, and so her
strategy f’ must be winning for her in G(B,S). This proves the inclusion D of (5).

For the other inclusion, let f be a history free winning strategy for 3 in G(B,S). The
key observation is that for any position (b,s) € Win3(G(B,S)), f(b,s) must be of the form
({c} x E,s) for some ¢ € C and E € FB. From this observation it is completely straightfor-
ward to define a strategy for 3 in the other game, Go (B¢, S), and to prove, in analogy of the
proof just given, that this strategy is winning from every position in Win3(G(B,S)).

In order to prove the key observation, assume that f(b,s) = (I, s) € P(C x FB) x S, and
suppose for contradiction that IT contains elements (c1,£1) and (co,&2) with ¢; # co. The
point is that this would always enable V to choose, in the next move, a pair ((¢;,&;), s) such
that ¢; is distinct from ~y(s), and thus provide him with an immediate win of the match.
Hence we arrive at the desired contradiction, since we assumed that f was a winning strategy
on (b, s).

This justifies our key observation, and hence, we are done with the proof of (5). QED

4.4 Variation: logical automata

A different perspective on the step function A of an F-automaton A is that for all states
a, A(a) is a disjunction of conjunctions of elements of FA. This suggests the following

generalization. Recall that, given a set X, DL(X) denotes the set of lattice expressions over
X.

Definition 4.8 Let F be an R-standard endofunctor on Set. A logical F-automaton is a
quadruple A = (A, a7, A, Acc) with A, ay and Acc as before, and A : A — DL(FA). <

The acceptance game for this A is defined in a completely obvious way (see section 3),
making 3 choose between disjuncts, moving from (\/ P,s) to (p,s) for some p € P, and
making V choose between conjuncts, moving from (A P, s) to a position (p,s) with p € P,
until a position (a, s) is reached with o € FA. Play then continues as in the game for the
standard automaton.

This generalization to logical automata is nice and useful, but it does not add any recog-
nizing power to our automata:

Proposition 4.9 F-automata and logical F-automata recognize the same classes of pointed
F-coalgebras.
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The proposition can be proved using some standard game-theoretical argumentation, see
for instance MULLER & ScHUPP [17, Appendix C]. (Basically, it just involves applying the
distributive laws of disjunction over conjunction, and vice versa).

4.5 Variation: delayed F-automata

The automata of Definition 4.1 all have the property that in the acceptance game, the play
basically switches from positions in A x S to ones in FA x FS, perhaps with some alternation
between \//3 and A /V. For many purposes this is rather restrictive; it would be more
convenient to allow moves from a position (a,s) € A x S to another position (b,s) € A x S.
That is, while the automaton switches state, it would stay in the same node of the coalgebra.
We will call such automata delayed because the move to successors of the coalgebra node is
delayed.

Definition 4.10 Let F be an R-standard endofunctor on Set. A delayed F-automaton is a
quadruple A = (A, ay, A, Acc), with A, ay and Acc as usual, and transition function A : A —
PP(AUFA). <

The acceptance game G(A,S) associated with A and an F-coalgebra S is the parity graph
game given by the following table.

Position: b P(b) | Admissible moves: E[b] Q(b)
(a,8) € Ax S 3 | {(E,s) e PLAUFA) x S |E€ Aa)} | Q(a)
(E,s) e PLAUFA) xS | ¥V | {(§s)e(AxS)U(FAXxS)|EcE} 0
(&,s) e FAx S 3 [ {ZeP(AxS9)|(&a(s)) eFZ} 0
Z e P(AxS) vV | Z 0

Note the minor change in notation with respect to the games for ordinary F-automata: For
the sake of a smoother notation, positions of the form (£,0(s)) € FA x FS are now given as
(&,s) e FAXS.

Once more, it can be shown that delayed F-automata have the same expressive power as
ordinary ones. The proof of this result, which requires a bit more sophistication than earlier
results, is left to a future paper.

5 Coalgebraic fixed point logic

5.1 Syntax

Definition 5.1 Let F be an R-standard endofunctor on Set, and let X be a set of objects
to be called variables. Inductively we define, for each natural number n, the set uLh(X) of
coalgebraic fixed point formulas over X of depth n:

e 1LF(X) is the smallest set S which contains T, L, and all variables in X and satisfies
(i) if p and ¢ belong to S, then so do p A ¢ and p V ¢; and (ii) if p belongs to S, then so
do px.p and vx.p, for each x € X.
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e puLf 1 (X) is the smallest superset of uLf (X) containing the formula Vr for each 7 that
belongs to FQ for some finite @ C pLf(X), which is closed under the same formation
rules (i) and (ii).

The union pL7(X) = U,c,, #LE(X) is the set of all coalgebraic fixed point formulas over X.
<

The set X in uLF(X) refers to all variables that occur in the formulas, not just the free
ones (to be defined later). Quite often we have no reason to make the set X of variables
explicit and so we will frequently write uL" rather than uCF(X).

Example 5.2 Our definition is intended to generalize that of the modal p-calculus to ar-
bitrary R-standard endofunctors on Set. Recall that the modal p-calculus is a language for
coalgebras for the functor FS = P(Prop) x P(S)A, where Prop is some set of propositional
variables and Act some set of atomic actions. In the formulation of the modal p-calculus
of JANIN & WALUKIEWICZ [12], the modal operators (a) and [a] are replaced with a single
connective ‘a — -’ operating on finite sets of formulas: if ® is a finite set of formulas, then
a — ® is a formula. The meaning of a — ® can be expressed in terms of (a) and [a]: a — @ is
equivalent to A{(a)p | p € ®}A[a] V{p | p € ®}, cf. the V-operator from (2). This is of course
quite familiar in coalgebraic logic, and it would not be difficult to rephrase the language of
Janin & Walukiewicz in such a way that a family of modal operators remains, each expressing

a condition of the form
/\ +q A /\ (a — D,)
q€Prop a€Act

with 4¢q denoting either g or —¢. Doing so, we would have brought the language of the modal
p-calculus exactly in the format of our definition.

Before we turn to the coalgebraic semantics of this language, there are a number of
syntactic issues to be settled.

We start with the important observation that every coalgebraic fixed point formula comes
with a unique construction tree; the key insight here is that every formula p has a unique,
naturally defined set of ‘immediate subformulas’. In case p is of the form Vr € puLF this
insight is based on the fact that for all finite sets Q C pLF, and all 7 € FQ there is a (unique)
smallest set Q' C pLf such that 7 € FQ' — the existence of such a set easily follows from
Fact 2.2. We leave it for the reader to give a formal definition of construction trees; we do
provide an explicit definition of the notion of subformula.

Definition 5.3 We will write ¢ < p if ¢ is a subformula of p. Inductively we define the set
Sfor(p) of subformulas of p as follows:

Sfor(p) = {p} ifpe{T, L}UX,

Sfor(pQq) = {pQq} U Sfor(p) U Sfor(q) if © € {A,V},

Sfor(nz.p) = {nz.p} U Sfor(p) if n € {p,v},

Sfor(Vm) = {Vr}UU,epase(r) Sfor(p),
where Base(m) denotes the smallest set @ such that m € FQ; the elements of Base(w) will be
called the immediate subformulas of V. <
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The following proposition can then be proved by a straightforward induction on the com-
plexity of formulas.

Proposition 5.4 Every formula p € uLF has finitely many subformulas.

Definition 5.5 The fized point operators p and v bind the variable that they occur with,
everywhere in the subformula to which they are applied. This notion of binding is completely
standard, and so are the definitions of the sets FVar(p) and BVar(p) of free and bound
variables, respectively, of a formula p € uLF. The set Var(p) = FVar(p) U BVar(p) denotes
the collection of all variables occurring in p, free or bound. As in first order logic, we will call
a formula without free variables, a sentence.

A formula p € pLF is called clean if no variable occurs both free and bound in p, and
no two distinct occurrences of fixed point operators bind the same variable. Hence, in a
clean formula p, with each z € BVar(p) we may associate a unique subformula of p where
x is bound; we will denote this formula as n,x.p,, and call x a p-variable if n, = u, and a
v-variable if n, = v. A formula p € uLF is called guarded if every subformula nz.q of p has
the property that all occurrences of x inside ¢ are within the scope of a V.

Now let p be a clean formula. Let <, C BVar(p) x BVar(p) denote the relation given by

z <pyif gz Jqy.

Clearly, <, is a partial order on BVar(p); it is called the subformula order of p.

5.2 Semantics

We now introduce the semantics of coalgebraic fixed point logic. Although we are primarily
interested in the interpretation of sentences, we also need to worry about the semantics of
formulas with free variables. For this purpose we define the notion of an F-model over a set
of variables.

Definition 5.6 Let F be an R-standard endofunctor on Set, and let X be a set of variables.
An F-model over X is a triple (S,0,V’) such that S = (S, 0) is an F-coalgebra, and V : X —
P(S) is a valuation on S.

Given such a valuation on S, a variable x € X and a subset T' C S, we define the valuation
V[z — T] as the map given by V[z — T](x) = T while V[z — T](y) = V(y) for all variables
y € X that are distinct from z. <

Of course, it would be more in style with the coalgebraic paradigm to present an F-model
(S,0,V) over X as a coalgebra for the functor Fp(x) (cf. Definition 3.1). We follow the
present approach because it seems to lend itself better towards the treatment of fixed point
operators.

Definition 5.7 Inductively we define the notion of truth, i.e., we define when a ulF(X)-
formula p is true or holds at a state s of a coalgebra S = (S, o) under the valuation V.
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More precisely, we define a relation IFY'C S x uLF(X); when the pair (s, p) belongs to -V,
we say that p is true at or holds in s € S under the valuation V, and usually write S, V| s I p.
We also use [-] for the extension of a formula in a coalgebra: [p]syv :={s€ S |S,V,sl- p}.
The clauses of the inductive truth definition are as follows:

S,V,slF T,

S, V,slf L,

S,V,slFx if seV(x),

S,V,slkpAg if S,V,slkpandS,V, sl g,
S,V,slkpvg if S,V,slFporS,V, sl g,
S,Visl-pzp if se€ ﬂ{T cs ‘ [[p]]S,V[J:HT} - T}7
S,Vislkvep if sc {TCS|TC [plsvp—}
S, VislEVr if (o(s),m) € F(IF] gase(n) )

where, in the last clause, the set II—V[BQSQ(W) C S x puLF(X) is given as H—V[Base(ﬂ) =1V N (8 x
Base(m)).

We say that a formula p is true throughout a model M = (S, V), notation: M I p, if
[plm € S. A formula is wvalid, notation: | p, if it is true throughout every model; two
formulas p and ¢ are called equivalent, notation: p = ¢, if [p]m = [¢]m for every model M. <

All clauses of this truth definition are completely standard, with the possible exception
of the one for Vr. The standard definition from the literature (cf. Moss [15]) would require
that S,V,s I Vr if (o(s),7) € F(IF). However, given our definition of the language, and
the guideline that the truth of a formula should only depend on the interpretation of its
immediate subformulas, the truth definition of V7 seems to be quite natural. We don’t know
whether there are instances in which our definition would really deviate from Moss’.

Concerning the fixed point operators, it will be convenient to introduce some further
terminology.

Definition 5.8 Let S be a set, and ¢ : P(S) — P(S) a map. A subset X C S is called
a pre-fized point of ¢ if ¢(X) C X, a post-fized point if X C ¢(X), and a fized point if
X = p(X). <

It then immediately follows from the definitions that the set [ux.p]m is the intersection of
the collection of all pre-fixed points of the map AX € P(S).[p]mz—x], While [vz.p[y is the
union of the collection of all post-fixed points of this map.

5.3 Basic semantic results

Before we can do anything interesting, there are a few technicalities that we have to get out of
the way. First, we need a Finiteness Lemma stating that the truth of a formula only depends
on its free variables.

Proposition 5.9 (Finiteness) Let F be an R-standard endofunctor on Set, let Y C X be
two sets of variables, and let (S,c) be an F-coalgebra. Now suppose that V and V' are two
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X -valuations on S such that V(y) = V'(y) for ally € Y. Then for all p with FVar(p) CY,
and all s € S it holds that
S,o,VIFpiff S,o,V'IF p.

Proof. The proof is by induction on the complexity of p. All cases are completely standard,
with the possible exception of the case that p = V. Inductively we assume that IFV] Base(r)
= IFY'I Base(my » 50 that F(IFTpase(n)) = FOFY T pase(n) ). From this it is immediate by the
definition that S,o,V |- Vr iff S,0, V' IF V. QED

For sentences in particular, it follows from the previous proposition that it does not matter
which valuation we take into consideration. This inspires the following definition.

Definition 5.10 Let F be an R-standard endofunctor on Set, p a pL"-sentence, S an F-
coalgebra and s a point in S. Then we say that p is true at s in S, notation: S,s IF p, if
S, V, s I p for some valuation V', (or, equivalently, for all valuations V). <

Next we turn to the Monotonicity Lemma.

Proposition 5.11 (Monotonicity) Let F be an R-standard endofunctor on Set, X a set of
variables, and S an F-coalgebra. Now suppose that V and V' are two X -valuations on 'S such
that V(x) C V'(x) for all x € X. Then for all p with FVar(p) C X it holds that

[pls,v < [pls, v,

that is: for all s € S we have that S,o,V |- p only if S,o, V' I p.

Proof. This can be proved by a standard induction on the complexity of p. The proof in the
inductive case of p = Vr is based on the fact that F is monotone (Fact 2.1). QED

Remark 5.12 The Monotonicity Lemma justifies the terminology fized point in the name
of our formalism: by the Knaster-Tarski Theorem in fixed point theory, every monotone
operation ¢ on a complete lattice (such as a full power set) has a least and a greatest fixed
point, and these can be obtained as the intersection of the collections of pre-fixed points
and post-fixed points of ¢, respectively. In particular, for every formula p and every model
M = (S,0,V), the set [uz.p]m is the least fixed point of the operation AX € P(S). [p]mz—x),
and the set [vz.p]y is the greatest fixed point of this operation.

Remark 5.13 It also follows from standard fixed point theory that least and greatest fixed
points of monotone operations on complete lattices (such as full power set algebras) can be
approximated by ordinal unfoldings. This yields a nice connection between our coalgebraic
fixed point logic, and more standard coalgebraic logics.

Let £ (X), the language of infinitary coalgebraic F-logic, be the smallest collection S
of formulas which includes the set {T, L} U X and satisfies (i) if § is some ordinal, and
{pa | @ < B} is a set of formulas in S, then both A,_gpa and V,_5pa belong to S, and (ii)
if m belongs to FQ for some @ C S, then Vr belongs to S. Note that F-models, with the
obvious interpretation for A and \/, form a natural semantics for this language.
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Now for each ordinal « there is a translation t* mapping uLF-sentences to £F_-formulas.
This translation is defined as follows; first, we define, for any £F_(X)-formula p, any variable
x € X, and any ordinal «, the formulas p.p and vyx.p via transfinite induction:

pox.p = 1, wr.p = T,
fo41T-p = Plpa®.p/z], Voy1T.p = plvar.p/r],
AP = Ve aZ-p, nep = NgerVaZ.p.

Using these formulas, one puts

t*p = p forpe {T,L}UX,
t*(pQOq) = t*pQOt% for © € {A,V},
t*(mr.p) = Nartp for n € {u, v},
t4(Vm) = V(FtY)(m).

Observe that t* translates L -sentences into variable-free £f_-formulas.
One can show that these translations locally embed uLF inside £F_, in the following sense:

Iplm = [t*p]m, for any F-model M = (5,0, V) and any ordinal a > |S|*. (6)

Note however, that in general, the ‘unfolding ordinal’ o of (6) depends on the size of the
model M. Coalgebraic fixed point logic cannot be embedded in infinitary coalgebraic logic,
as is known from the modal p-calculus.

An important property of our coalgebraic fixed point logic is that truth is bisimulation
invariant. Using the appropriate notion of bisimulation for F-models this can be proven for
arbitrary pLF-formulas, but here we state it just for sentences.

Proposition 5.14 Let S and S' be two F-coalgebras. Then for any bisimulation Z C S x S’
and any two points s € S, s' € S" with (s,s') € Z, and any pLF-sentence p it holds that

S,slFpiff S, s IFp.

Proof. A simple proof for this proposition uses the ordinal unfolding of Remark 5.13, and
the easily established fact that truth of LF -sentences is a bisimulation invariant property.
QED

We are now ready to state our last basic semantic result.

Proposition 5.15 (Normal Form) Let F be an R-standard endofunctor on Set. Then ev-
ery formula p € pLF is equivalent to some clean, guarded formula p'.

Proof. It is easy to rewrite an arbitrary uL"-formula into a clean equivalent, by consistently
renaming bound variables.

The second part of the proposition is proved by a completely standard induction on the
complexity of formulas. We confine ourselves to a proof sketch for the case that p is of the
form pz.q.
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By the inductive hypothesis we may assume that ¢ is guarded. Hence, if we replace
every fixed point subformula ny.r(x,y) of ¢ with its unfolding r(z, ny.r(x,y)), we obtain an
equivalent ¢’ of ¢, in which the only unguarded occurrences of x are outside the scope of fixed
point operators. Then, using laws of classical propositional logic, it is not hard to rewrite
¢ (z) in an equivalent form ¢”(z) = (z V r(z)) A s(z), where all occurrences of x in r(x) and
s(z) are guarded. It can subsequently be shown that px.(z V r(z)) A s(x) is equivalent to the
formula px.r(z) A s(x). QED

6 Game semantics

In this section we develop a game-theoretic characterization of the semantics of our coalge-
braic fixed point logics, generalizing results on for instance the modal u-calculus to a general
coalgebraic framework.

6.1 Evaluation games

Given an F-model M = (S,0,V) and a coalgebraic fixed point formula ¢, we will define the
evaluation game € = E(M, p) as the following infinite two-player graph game.

Definition 6.1 Let F be an R-standard endofunctor on Set. Given an F-model M = (S,0,V)
and a clean coalgebraic fixed point formula ¢, we first define the arena of the evaluation game
E=EM,q).

The board of £ is given as the set

B = Sfor(q) x SUP(Sfor(q) x S).

The partition of B into positions for 3 and V, respectively, and the edge relation E of the

graph are given by the table of Figure 1. <
Position: b Player: P(b) | Admissible moves: E[b]
(L,s) 3 1%}
(T,s) v %)
(pl/\p275) v {(pl,S),(pQ,S)}
(pl\/p2vs) 3 {(plvs)v(ans)}
(x,s) with & BVar(q), s € V(z) v @
(z,s) with « € BVar(q), s € V(x) 3 1]
(z,s) with x € BVar(q) - (gz, )
(nz.p, s) - (p, ) _
(Vr,s) 3 {Z C Base(m) x S| (w,0(s)) € F(Z)}
Z C Sfor(q) x S v Z

Figure 1: Admissible moves in the evaluation game

Note that positions of the form (z,s) or (nz.p,s) have a unique successor, whence the
moves that are made at such positions are completely determined. Thus it does not matter
to which player these positions are assigned.
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In order to get some intuitions for this kind of game, the reader is advised to assign the
following aims to the players. Basically, in a position (p, s) it is the aim of 3 to show that
p is actually true at s, while V tries to convince her that this is not the case. This already
explains the rules for positions of the form (p, s) with p an atomic constant, a conjunction,
or a disjunction. For instance, in (p; V pe, s), 3 may win by winning either (p1, s) or (p2, ),
because p1 V ps holds at s if either p; or po does.

Each time during a match when the pebble moves from a position (z, s) to its successor
(qz,s), we say that the fixed point variable z is unfolded. Roughly spoken, the intuition
behind this is that the formula 7,.q, (represented by z) is equivalent to the formula g,[1;.q, /]
(represented by ¢,). This applies to both p and v-variables. The difference between the two
kinds of fixed point variables, which only comes out in infinite matches, can be put in the
following slogan: all fixed points mean unfolding, and least fixed points mean finite unfolding.
In order to make this more precise, we need the following observation.

Proposition 6.2 Let F be an R-standard endofunctor on Set, q a clean pLF-formula and M
an F-model. Then in any infinite match [ of the game E(M, q), the set of variables that are
unfolded infinitely often during B contains a mazimal member (in the subformula order).

Proof. Let U be the set of variables that are unfolded infinitely often during 3. Since ( is
an infinite game, and ¢ has only finitely many subformulas, U is non-empty. We claim that
U is in fact directed (with respect to the subformula order <;). The claim of the Proposition
is then immediate by the fact that U is finite.

Suppose for contradiction that x and y are in U while & and y are incomparable with
respect to <,, that is, neither ¢, < ¢, nor g, < ¢g,. Since both x and y get unfolded infinitely
often during (3, the match can never go into one of the formulas, say, ¢, and stay there. But
then the only way to get back, from a position inside g, to a position where y can be unfolded,
is through unfolding a variable z such that both ¢, and ¢, are subformulas of g,. Since this
must happen infinitely often, one such variable z must be in U. Hence U is directed. = QED

Definition 6.3 Let F be an R-standard endofunctor on Set. Given an F-model M = (S,0,V)
and a clean coalgebraic fixed point formula ¢, we now define the winning conditions of the
evaluation game € = E(M, q).

Let 3 be a full match played on the arena of £.

e If 3 is finite then it is lost by the player who got stuck (and thus, won by their adversary).

e If 3 is infinite, let = be the highest ranking fixed point variable that got unfolded
infinitely often during 5. Now g is won by 3 if z is a v-variable, and by V if x is a
v-variable.

6.2 Adequacy of game semantics

The following theorem states that the evaluation games as introduced above, indeed constitute
an equivalent characterization for the semantics of coalgebraic fixed point formulas.
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Theorem 1 (Adequacy) Let F be an R-standard endofunctor on Set. Then for any clean
pLF-formula q, any F-model M = (S, 0,V) and any state s € S it holds that

M, s Ik q iff (q,s) € Wing(E(M, q)).

Proof. The proof of this theorem proceeds by induction on the complexity of the formula q.
We leave the base step (p € {T, L} or p is a variable), the boolean cases, and the greatest
fixed point case of the inductive step as exercises for the reader.

‘case q=px.q, = ‘ Let W be the set of states w € S such that (w,q) is a winning position
for 3in & = E(M, ¢). In order to show that [¢]p C W it suffices to prove that W is a prefixed
point of the map AX.[¢'|mz—x]. Abbreviate V' := V([z — X] and M’ := (S,0,V’), and let
t € S be an arbitrary state in [¢/]yr, that is, M, ¢ I+ ¢/. It suffices to show that t € W; in
other words, we have to provide 3 with a winning strategy in £(M, ¢) starting from position
(¢, 1)

First, note that it follows inductively from M',¢ I ¢’ that 3 has a winning strategy f’
from position (¢/,t) in the evaluation game & = (M, ¢'). Now observe that £ and £’ are in
fact very similar games: apart from the fact that £ has no positions of the form (g, u), the
only difference between the two games concerns positions of the form (x,u). In &', z is a free
variable, so in a position (z,u), the match is over, and the winner of such a match depends
on whether u belongs to V/(z) = W or not. In £ on the other hand, z is a bound variable, so
at a state (z,u), the variable x will get unfolded.

Second, observe that by definition of W, for every state w € W, 3 has a winning strategy
fuw for the game & initialized at (w, q). Note that in this initialized game, the second position
invariably will be (w,q’). So 3 could not have spoiled her chances in this first round, and
hence f,, is winning for 3 in & at (w, ') as well.

Now suppose that 3 plays £ from (g, t) according to the following strategy g:

e after the initial move, the pebble is in position (¢',t);
e J first plays her strategy f;
e as soon as a position (x,u) is reached, distinguish the following two cases:

1. if w € W then 3 continues with f;
2. if u ¢ W then 3 continues with a random strategy.

We now claim that this strategy g is in fact a winning strategy for 3 in the game £ initialized
at (q,t). To see why this must be so, make the following case distinction concerning an
arbitrary full play 8 which is consistent with g:

No state (z,u) is ever reached. This means that § doubles as an £-match and an £’-match.
As an &-match, 3 is won by J. Since £ and £ only differ when it comes to z, this
means that 3 is also a win for 3 in £. Note that it does not matter here whether 3 is
finite or infinite.
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At some stage a position (x,u) is reached. In the £'-perspective on 7, the match would have
reached a final position here. Since f’ was a winning strategy for 3, this can only happen
if u e V'(x) = W. (In other words, case 2 mentioned above will never occur.) So 3
consequently plays according to f,; the first position after (z,u) is (¢/,u). We know
that f, is a winning strategy for 3 in the game & initialized at (¢’,u). It is then easy to
see that any continuation of the match in which 3 plays f,, is won by .

Altogether this shows that indeed, g is a winning strategy for 3.

lcase q=px.q, < ‘ Assume that 3 has a winning strategy f in the game & = E(M, pz.q'),

and suppose for contradiction that M, s I px.q’. Abbreviating @ := [ux.q¢'Jm, this means
that s € Q.

First consider an arbitrary point ¢ € Q. It follows from S, ¢ I px.q’ that there is a prefixed
point U C S of the map AX C S.[¢']mz—x) to which ¢ does not belong. That is, ¢ ¢ U while
[¢'IMz—v) € U. It follows that ¢ & [¢'Tpm—r, or, equivalently, that Mlz +— U], ¢ If ¢'. By
the inductive hypothesis then, 3 does not have a winning strategy in E(M[z +— U], ¢’) from
(¢';t). But since @ C U (because U is a prefixed point of the map AX C S.[q'Twpx], and
@ is the intersection of all such prefixed points), it easily follows from the rules of the game
that 3 does not have a winning strategy in the game &' := E(M[z — @, ¢') from (¢, t) either.
That is, for each strategy g of 3 starting at (¢,t), V has a counter strategy g; such that the
match of & determined by g and g, is won by V.

Furthermore, observe that because of the resemblance between the games £ and £, any
strategy g of 3 in £, as a map restricted to partial £'-matches, uniquely determines a strategy
in &’; this strategy will be denoted as g as well.

Now consider the matches of &, starting at (uz.q’,s), in which 3 plays according to her
supposedly winning strategy f. Suppose that V counters the strategy f as follows:

e V starts with the strategy f,;

e from that moment on, V sticks to the current strategy, unless a position (x, u) is reached;
now distinguish cases:

1. if u € @ then V continues with a random strategy;

2. if u ¢ @ then V plays as follows. Let (8 be the match this far (including (z,u)),
and let fg denote the strategy of 3 for the £-game starting at (¢/,u) given by
fs(7v) = f(B7). Then by our earlier discussion, fg can be seen as an &'-strategy

for matches starting at (¢',u), and so V may adopt his counter strategy (fg), from
this moment on.

Consider the &-match (3 starting at (ux.q’,s) determined by 3 playing her strategy f and V
using the strategy defined above. First observe that § can pass through positions of the form
(z,u) only finitely many times, for otherwise, the u-variable z would be the highest fixed
point variable unfolded infinitely often, contradicting the assumption that f is winning for 4.
Second, note that the first case of passing a state (z,u) will never occur; since arriving at a
position (x,u) with u € @ would mean that, contrary to our earlier conclusion, 3 would have
a successful strategy in £ at a point v € @Q after all.
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This means, however, that after a certain initial partial play /3, ending in a position (z,u)

with u ¢ @, V will stick to his strategy (fg),, while no further position (v, z) is ever reached.

It follows from our assumptions on (fg), that the match v resulting from 3 playing fs against

V playing (fg),, is winning for V in &', and from this it is not hard to derive that the £-match
& = [y is won by V. This provides the desired contradiction, since it shows that the strategy
f is not winning for 3 after all.

‘case q=Vrm, =>‘ Suppose that M, s |- V7, and consider the game &€ = £(M, ¢). Let 3, in
the game & initialized at (V,s), choose the set Z := IH pyse(r) as her first move. Note that
it follows by definition from M, s |- V7 that (o(s),7) € I, so this is a legitimate move. Now
suppose that V moves at position Z, choosing (p,t) € Z as the next position. It follows from
(p,t) € Z and the inductive hypothesis that in the game £(M, p), 3 has a winning strategy
starting from (p,¢). But then it is easy to see that this strategy will also guarantee her winning
E(M, V) from (p,t). All in all we have provided her with a strategy winning £ from (V, s).

‘case q=Vm, <:‘ Suppose that 3 wins the game & = £(M], ¢) starting at position (V7, s).
Let’s say that her choice at position (V,s) is the set Z C Base(w) x S. Since, at position
Z, ¥ may choose any (r,t) € Z, we may assume that each such (r,t) is winning for 3 in
EM,r). It thus follows from the inductive hypothesis that Z C IF, whence we see that
Z C IH Base(r) - Hence by monotonicity of F we obtain that F(Z) C F(IHBase(w) ). But we
know that (m,0(s)) € Z, for if not, then Z would have been illegitimate. So we find that
(m,0(s)) € f(ll—[Base(Tr) ), precisely what is needed to show that M, s IF V7. QED

7 Automata and fixed point logic

The reader will have noticed the similarity between the evaluation game of a formula and
the acceptance game of an automaton. But the connection is much tighter than a mere
resemblance, witness the Theorem below, which forms the main result of the paper:

Theorem 2 (Formulas are automata) Let F be an R-standard endofunctor on Set. Then
any pLF-sentence ¢ can be transformed into a delayed parity F-automaton A, such that for
any pointed F-coalgebra (S, s):

S,s 1k q iff Ay accepts (S, s).

Proof. By Proposition 5.15 we can assume without loss of generality that p is clean, and by
Proposition 4.9 (or, more precisely, by its variant dealing with delayed automata), it suffices
to construct a logical F-automaton A,. The structure of A, will closely resemble that of the
set Sfor(p) of subformulas of p.

In fact, we can identify the states of A, with the subformulas of p, and let p := a; be
the initial state of A,. Now define the following transition function A on Sfor(p) (where in
order to avoid confusion, we use LI and M to denote the disjunction and conjunction for the
automaton):

AL) = o
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A(T) = Mo
AlgVvdq) = qud
Algng) = qnd
AMr.gr) = G

A(Vr) == 7

A(z) = g

With this definition, we have established that for any F-coalgebra S, the boards of the accep-
tance game G = G(A,,S) and of the evaluation game £ = £(p,S) are in fact identical. Hence
in particular, the matches of the two games coincide.

The only thing left is to define a parity function on A that takes proper care of the winning
conditions of the evaluation game £. Using the finiteness of the set Sfor(p, it is easy to define
a function € : Sfor(p) — w such that

e Q(q) =0if ¢ & BVar(p),

e ((x) is odd if z is a p-variable, and even if x is a v-variable,

o Qx) <Qy) if z <py (e, if npx.pr Inyy.py).

It is then straightforward to verify that 3 is the winner of a match 3 in G if and only if she is
the winner of 3, seen as a match of £. From this it is immediate that Win3(G) = Winz(€),
and hence the theorem follows by the Adequacy Theorem of the game semantics of uLF. QED

Since any delayed automaton can be transformed into an equivalent standard one, a corol-
lary of Theorem 2 is that uLF-formulas can in fact be represented by standard F-automata.
Conversely, one can show that, given a parity F-automaton A, one can construct a pulF-
formula g, that holds precisely at those pointed F-coalgebras that are accepted by A. This
means that the F-automata have the same expressive strength as the logical formalism pCF
when it comes to describing pointed F-coalgebras. We intend to come back to the details of
these constructions in a future paper.

8 Further research

We believe that it is interesting and useful to develop the automata theory for coalgebras on an
(almost) arbitrary functor F : Set — Set, and to apply this theory to the study of coalgebraic
fixed point logics. It also seems that our notion of F-automaton is a natural one, given its
stability under a number of natural variations, and its equivalence to a natural coalgebraic
fixed point logic. It is obvious that in this paper we have only scratched the surface of these
topics. Of the many questions that naturally arise we just mention the following.

1. In our opinion, the most interesting line of research concerns the study of the recog-
nizing power of automata from a coalgebraic perspective. The point here is that many
familiar theorems concerning the expressivity of automata as mechanisms for recogniz-
ing structures, can now be parametrized by the coalgebraic functor type. It is thus a
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natural problem to find out whether (the analogs of) these theorems hold for coalgebras
of arbitrary type F. If so, it might be of interest to find a uniform, coalgebraic proof for
the result, and if not, we have arrived at an interesting property that an endofunctor
on Set could or could not have.

To be a bit more specific, recall that some of the most important results in automata
theory concern the following kinds of questions:

simplification Given an automaton of a certain type (say, a nondeterministic automa-
ton), can it be transformed into a equivalent automaton of a simpler kind (say, a
deterministic one)?

Such questions can now be formulated as questions about the functor F. To men-
tion one example: Which functors have the property that that there is, for every
alternating parity F-automaton, an equivalent non-deterministic one?

closure properties Call a class C of pointed F-coalgebras A-recognizable, where A is a

class of F-automata, if there is some automaton A in A such that C is the class of
pointed F-coalgebras that are accepted by A. Is the collection of A-recognizable
classes closed under natural operations such as union, intersection, complementa-
tion, projection?
Again, varying the functor type adds a new dimension to this problem. To mention,
again, a specific question: for which functors F can we prove a Complementation
Lemma? That is, for which functors F can we always find, given a non-deterministic
F-automaton A, another non-deterministic F-automaton A, with the property that
a pointed F-coalgebra is accepted by A iff it is rejected by A?

. Our parity F-automata have a coalgebraic shape themselves: the automaton A =
(A,ar, A, Q) can, at least object-wise, be represented as a pointed coalgebra over the
functor FaS = P(P(FS)) x w. This perspective clearly needs investigation — recall
that the coalgebraic perspective on ordinary automata (operating on finite words) has
already proven to be very enlightening, see RUTTEN [21].

. Our definition of coalgebraic fixed point logic is only one out of many. In fact, fixed point
operators may be added to any kind of language of coalgebraic logic. It would be good
to see more case studies on coalgebraic fixed point logics from an automata-theoretic
perspective. Related to one of the above questions, one would like to understand what
happens if we add negation to the language pL" discussed in section 5. But also, the
relation between the modal p-calculus and a fixed point extension of the coalgebraic
modal logics developed in PATTINSON [18] might be an interesting object of study.

. As already mentioned in the introduction, there are earlier studies of automata that
are based on categories and functors, see for instance ADAMEK & TRNKOVA [2]|. This
connection clearly has to be investigated further.
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