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1 Institute for Logic, Language and Computation, Universiteit van Amsterdam, Plantage Muidergracht 24,
1018 TV Amsterdam, The Netherlands; bloewe@science.uva.nl

Key words Blackwell determinacy, Determinacy, Axiom of Choice
MSC (2000) 03E25 03E60 91A15

We de£ne a parametrised choice principle PCP which (under the assumption of the Axiom of Blackwell Deter-
minacy) is equivalent to the Axiom of Determinacy. PCP describes the difference between these two axioms
and could serve as a means of proving Martin’s conjecture on the equivalence of these axioms.

1 Blackwell Determinacy and Martin’s Conjecture

Tony Martin proved in [Mar98] that the Axiom of Determinacy AD implies the Axiom of Blackwell Determinacy
Bl-AD, and conjectured that the converse holds as well:

Conjecture 1 The Axiom of Blackwell Determinacy Bl-AD implies the Axiom of Determinacy AD.

Although Martin, Neeman and Vervoort in their [MarNeeVer03] have made considerable progress on Martin’s
Conjecture 1, the full conjecture remains open. In this note, we investigate a fragment of the Axiom of Choice
that we shall call the Parametrised Choice Principle PCP which captures the difference between the two axioms
(if there is one). Our result is that (in the base theory ZF+Bl-AD), AD and PCP are equivalent (Theorem 3). So,
showing Martin’s Conjecture 1 is tantamount to proving the choice principle from Bl-AD.

We will not go into details of the motivation and de£nition of the Axiom of Blackwell Determinacy Bl-AD

here and refer the reader to [Mar98], [Lö02a], [Lö02b], and [Lö04]. Our de£nition is equivalent to Vervoort’s
original de£nition in [Ver95]; cf. [Lö04, Theorem 2.5 (b)].

Let us denote by ωEven the set of £nite sequences of natural numbers of even length, by ωOdd the set of such
sequences of odd length, and by Prob(ω) the set of probability measures on ω.

We call a function σ : ωEven → Prob(ω) a (mixed) strategy for player I and a function σ : ωOdd → Prob(ω)
a (mixed) strategy for player II. A mixed strategy σ is called pure if for all s ∈ dom(σ) the measure σ(s) is a
Dirac measure, i.e., there is a natural number n such that σ(s)({n}) = 1. This is of course equivalent to being a
strategy in the usual (perfect information) sense. We denote the class of all mixed strategies with Smix.

If σ and τ are strategies for player I and II, respectively, then they completely describe a play of the game
between these two players: Player I randomizes to choose his £rst move a0 according to the probability measure
σ(∅), then player II looks at a0, consults his strategy about the measure τ(〈a0〉) and plays according to that
probability measure.

Let

ν(σ, τ)(s) :=

{

σ(s) if lh(s) is even, and
τ(s) if lh(s) is odd.

Then for any s ∈ ω<ω, we can de£ne

µσ,τ ([s]) :=

lh(s)−1
∏

i=0

ν(σ, τ)(s¹i)({si}).

The author thanks Tony Martin (Los Angeles CA) for suggestions and remarks.



2 B. Löwe: Parametrized choice & Blackwell determinacy

This generates a Borel probability measure on ωω which can be seen as a measure of how well the strategies σ
and τ performs against each other. If B is a Borel set, µσ,τ (B) is interpreted as the probability that the result of
the game ends up in the set B when player I randomizes according to σ and player II according to τ .

Let S be a class of strategies, σ a mixed strategy for player I, and τ a mixed strategy for player II. We say that
σ is S-optimal for the payoff set A ⊆ ωω if for all τ∗ ∈ S for player II, µ−σ,τ∗(A) = 1, and similarly, we say that
τ is S-optimal for the payoff set A ⊆ ωω if for all σ∗ ∈ S for player I, µ+

σ∗,τ
(A) = 0.1

We call a set A ⊆ ωω Blackwell determined if either player I or player II has an Smix-optimal strategy, and
we call a pointclass Γ Blackwell determined if all sets A ∈ Γ are Blackwell determined. We write Bl-Det(Γ) for
this statement and Bl-AD for full axiom claiming Blackwell determinacy for all sets.

If the payoff set A is universally measurable, every winning strategy is Smix-optimal (by an easy measure
theoretic argument due to Vervoort [Ver95]) and at most one of the two players can have an Smix-optimal strategy.

The following is a distinctive mathematical difference between pure and mixed strategies in in£nite games:
A winning strategy σ in the game with payoff set A (say, for player I) gives us a function fσ : ωω → ωω that
guarantees that for all x ∈ ωω , we have fσ(x) ∈ A thus essentially picking an element of A.

On the other hand, the analogous de£nition using an Smix-optimal strategy σ gives only a function assigning
a measure µσ,x that gives the set A measure one, but we seem to be lacking a way of picking an element of A
using that measure as input data.

The result of this note is that this technical difference between the two axioms is actually the whole story:
Choosing correctly elements from measure 1 sets is all we need in order to get from Bl-AD to AD. In this note,
we shall introduce a principle which we shall call the “parametrised choice principle” PCP. It is conceivable that
this principle is provable from Bl-AD and it is a worthwhile project to try and show PCP from Bl-AD thereby
proving Martin’s Conjecture 1.

2 Parametrised Choice Principles

Given a set of reals A ⊆ ωω, de£ne two perfect information games, the I-puri£cation game on A and the II-
puri£cation game on A. In order not to confuse players in these games with the usual players in the standard
game with payoff set A, we call the players in the puri£cation games “player 1” and “player 2” (as opposed to
“player I” and “player II”).

We de£ne the the I-puri£cation game for A: Player 1 plays a sequence 〈% 0, 〈%1, y0〉, 〈%2, y1〉, . . .〉 where %i
is a probability measure on ω and yi ∈ ω. Player 2 plays a sequence 〈xi ; i ∈ ω〉. Set x := 〈xi ; i ∈ ω〉 and
y := 〈yi ; i ∈ ω〉. Then player 2 wins if x ∗ y ∈ A.

In the I-puri£cation game, we interpret player 1 as playing both players I and II in a Blackwell game on A,
providing actual moves for player II and playing probability measures for player I. Player 2 on the other hand
tries to pick moves in the same game for player I according to the probability measures that player 1 provided.

We say that player 1 chooses his measure moves Smix-optimally in the I-puri£cation game if there is an
Smix-optimal strategy σ for player I in the game with payoff set A such that %i = σ(x¹i ∗ y¹i).

A strategy π for player 2 in the I-puri£cation game is called a I-puri£cation if π wins against all plays in
which player 1 chooses his measure moves Smix-optimally.

Now de£ne the II-puri£cation game for A: Player 1 plays a sequence 〈〈% i, xi〉 ; i ∈ ω〉 where %i is a
probability measure on ω and xi ∈ ω.

Player 2 plays a sequence 〈yi ; i ∈ ω〉. Again, set x := 〈xi ; i ∈ ω〉 and y := 〈yi ; i ∈ ω〉. Then player 2
wins if x ∗ y /∈ A.

This time, player 1 provides moves for player I and probability measures for player II in the Blackwell game
with payoff set A and player 2 tries to pick the moves for player II according to the measures that player 1 played.

In this game, we say that player 1 chooses his measure moves Smix-optimally in the II-puri£cation game
if there is am Smix-optimal strategy τ for player II in the game with payoff set A such that %i = τ(x¹(i+1)∗y¹i).

1 Here, µ+ denotes outer measure and µ− denotes inner measure with respect to µ in the usual sense of measure theory. If A is Borel,
then µ+(A) = µ−(A) = µ(A) for Borel measures µ.
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A strategy π for player 2 is called a II-puri£cation if π wins against all plays in the II-puri£cation game in
which player 1 chooses his measure moves Smix-optimally.

Using these notions, we de£ne the Parametrised Choice Principle PCP:

“For each A ⊆ ωω there are I-puri£cations and II-puri£cations for A.” 2

Let us look at the following variant of the two puri£cation games: Instead of playing the measures move
by move, player 1 has to present the entire Blackwell strategy before the game starts and then only play the yi
moves. Obviously, it is easier to have a puri£cation in this type of game since the puri£cation needn’t be uniform
for all possible mixed strategies but can depend on the strategy. We shall call this version the non-uniform
Parametrised Choice Principle nuPCP.

Suppose that σ and τ are strategies for player I or II, respectively, in the game on A, that π is a strategy for
player 2 in the I-puri£cation game, and that π∗ is a strategy for player 2 in the II-puri£cation game (or their
non-uniform variants). Let the function purI(π, σ) : ω

ω → ωω be de£ned by mapping a real y to the answer of
player 2 in the I-puri£cation game if player 1 plays y and chooses his measure moves according to σ. Clearly,
purI(π, σ) is a Lipschitz function. Analogously, we can de£ne a Lipschitz map purII(π

∗, τ).
If now σ and τ are Smix-optimal, π is a I-puri£cation, and π∗ is a II-puri£cation (or their non-uniform vari-

ants)3, then we have

purI(π, σ)(y) ∗ y ∈ A for all y ∈ ωω , and

x ∗ purII(π
∗, τ)(x) /∈ A for all x ∈ ωω .

Thus, a different way of describing PCP is the following:
Suppose that A is a set of reals, set Ax := {y ; y ∗ x ∈ A} for every real x, and suppose that we have a

Lipschitz function (in the codes) µ : x 7→ µx assigning Borel probability measures to reals with the property that
for each x, µx(Ax) = 1. Then we can construct a Lipschitz function that computes from the function µ and x an
element of Ax.

This principle is called “Parametrised Choice Principle” because it is an effective variant of the following
fragment of the Axiom of Choice (which follows from the Axiom of Real Determinacy ADR):

Let 〈Ax ; x ∈ ωω〉 be any family of nonempty sets of reals. Then
∏

x∈ωω Ax 6= ∅.

Observation 2 Assume AD. Then PCP holds.

P r o o f. Note that by AD every set of reals is universally measurable, hence all winning strategies are Smix-
optimal, and furthermore if one player has a winning strategy, the other player can have no Smix-optimal strategy.

Let A ⊆ ωω be £xed. By AD, either player I or player II has a winning strategy in the game on A. Without
loss of generality, let player I have a winning strategy σ. Then for any sequence % := 〈%i ; i ∈ ω〉 and any
y ∈ ωω, σ wins as a strategy for player 2 in the I-puri£cation game against 〈%, y〉 by just ignoring the measure
moves, so σ is a I-puri£cation. But if σ is a winning strategy for player I there cannot be a Smix-optimal strategy
for player II, so every strategy in the II-puri£cation game is a II-puri£cation because the condition is vacuously
true.

2 Note that the symmetry of PCP is arti£cial: Whenever player I has an Smix-optimal strategy in the game on A, player II can’t have
one, hence the premiss of the de£nition of a II-puri£cation (existence of an Smix-optimal strategy for player II) is false and thus by ex falso
quodlibet every strategy in the II-puri£cation game is a II-puri£cation. In the context of Bl-AD, an equivalent way of stating PCP is: “If
player I has an Smix-optimal strategy in the game on A, there is a I-puri£cation; if player II has an Smix-optimal strategy in the game on A,
there is a II-puri£cation.”

3 The difference between PCP and nuPCP is in the way the strategies σ or τ get involved in the construction of the Lipschitz maps
purI(π, σ) and purII(π

∗, τ): Using PCP, we get that the functions depends on the strategy continuously in the code. In our equivalence
result Theorem 3 we show that under the assumption of Bl-AD, the difference doesn’t really matter.
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3 The Equivalence

Theorem 3 Assume Bl-AD. Then the following are equivalent:

1. nuPCP,

2. PCP, and

3. AD.

P r o o f. The direction “(3.) ⇒ (2.)” is just Observation 2 and “(2.) ⇒ (1.)” is obvious. So let’s prove “(1.)
⇒ (3.)”:

By a theorem of Blass [Bl73], it is enough to show that for every set A ⊆ ωω×ωω there is either a continuous
function f such that

∀y(〈f(y), y〉 ∈ A),

or a continuous function f such that
∀x(〈x, f(x)〉 /∈ A).

Take any set A ⊆ ωω × ωω. Set A∗ := {x ∗ y ; 〈x, y〉 ∈ A}. By nuPCP we have a I-puri£cation π and a
II-puri£cation π∗ for A∗. Using Bl-AD, we either get an Smix-optimal strategy σ for player I for the game on A∗

or an Smix-optimal strategy τ for player II for the game on A∗.
If σ is Smix-optimal for player I, then purI(π, σ) is the required continuous function; if τ is Smix-optimal for

player II, then purII(π
∗, τ) is the required continuous function.

Note that Theorem 3 can be localized: If Γ is a boldface pointclass that is closed under £nite unions and
contains all Borel sets4, then Blackwell Determinacy for all sets in Γ and the non-uniform Parametrised Choice
Principle for all sets in Γ imply Determinacy for all sets in Γ.
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