
Minimality, Non-Determinism, and Absent

Information in Multi-Context Systems

Floris Roelofsen
Institute for Logic, Language, and Computation

Amsterdam, Netherlands

February 1, 2005

Abstract

Multi-context systems (MCS) can be used to represent contextual
information flow. We show that the semantics of an MCS is completely
determined by the information that is obtained when simulating the
MCS, in such a way that a minimal amount of information is deduced
at each step of the simulation.

The MCS framework implicitly presupposes that information flow
is deterministic. In many natural situations, this is not a valid as-
sumption. We propose an extension of the framework to account for
non-determinism and provide an algorithm to efficiently compute the
meaning of non-deterministic systems.

In MCS, the acquisition of new information is based on the presence
of other information only. We give a generalized account to model
situations in which information is obtained as a result of the absence
of other information.

1 Introduction

The representation of contextual information and inter-contextual informa-
tion flow has been formalized in several ways. Most notable are the propo-
sitional logic of context developed by McCarthy, Buvač and Mason [9, 10],
and the multi-context systems devised by Giunchiglia and Serafini [7, 8],
which later have been associated with the local model semantics introduced
by Giunchiglia and Ghidini [6]. Serafini and Bouquet [13] have argued from
a technical point of view that multi-context systems constitute the most gen-
eral formal framework. This conclusion is supported by a more conceptual
argument of Benerecetti et.al. [2].

1

A multi-context system describes the information available in a number
of contexts (i.e., to a number of people / agents / databases, etc.) and
specifies the information flow between those contexts. The local model se-
mantics defines a system to entail a certain piece of information in a certain
context, if and only if that piece of information is acquired in that con-
text, independently of how the information flow described by the system is
accomplished.

The first contribution of this paper is based on the observation that the
local model semantics of a multi-context system is completely determined
by the information that is obtained when simulating the information flow
specified by the system, in such a way that a minimal amount of information
is deduced at each step of the simulation. We define an operator which
suitably implements such a simulation, and thus determines the information
entailed by the system. This operator constitutes a first constructive account
of the local model semantics.

The second contribution of this paper is based on the observation that,
in its original formulation, the multi-context system framework implicitly
rests on the assumption that information flow is deterministic. In many
situations, this is not a suitable assumption. In a multi-agent scenario,
for example, upon establishing a certain piece of information, an agent
may decide to pass this information on to either one of a group of other
agents. His choice as to which agent he will inform could be made non-
deterministically. Another typical situation in which information flow is
inherently non-deterministic is when the information channels between dif-
ferent contexts are subject to temporary failure or unavailability. Consider
the case of online repositories. If information is obtained in one repository,
the protocol may be to pass this information on to any one of a number of
associated “mirror repositories”: if the communication channel with one of
these is defective or temporarily unavailable, another one is tried, until at
least one successful communication is established.

The local model semantics can easily be adapted to account for non-
deterministic systems. However, if a system describes a non-deterministic
information flow, then the minimal information entailed by the system can-
not be determined unequivocally. We provide a way to generate from a
non-deterministic system a number of deterministic systems, the semantics
of which can be determined constructively, and which, together, completely
determine the semantics of the original non-deterministic system.

The third contribution of this paper is based on the observation that
in multi-context systems, new information is derived based on the presence
of other information only. However, in many natural situations (concrete

2

examples will be given below), new information is obtained due to a lack of
other information. We propose a generalized framework so as to account for
such situations. Non-monotonic reasoning techniques are applied to formu-
late a suitable semantics for this framework.

We proceed, in section 2, with a brief review of multi-context system
syntax and local model semantics. Minimality, non-determinism, and absent
information are discussed in section 3, 4, and 5, respectively. We conclude,
in section 6, with a concise recapitulation of our main observations and
results.

2 Preliminaries

Mr.1 Mr. 2

Figure 1: A magic box.

A simple illustration of the main intuitions underlying the multi-context
system framework is provided by the situation depicted in figure 1. Two
agents, Mr.1 and Mr.2, are looking at a box from different angles. The box is
called magic, because neither Mr.1 nor Mr.2 can make out its depth. As some
sections of the box are out of sight, both agents have partial information
about the box. To express this information, Mr.1 only uses proposition
letters l (there is a ball on the left) and r (there is a ball on the right), while
Mr.2 also uses a third proposition letter c (there is a ball in the center).

In general, we consider a set of contexts I, and a language Li for each
context i ∈ I. Henceforward, we assume I and {Li}i∈I to be fixed, unless
specified otherwise. Moreover, for the purpose of this paper we assume
each Li to be built over a finite set of proposition letters, using standard
propositional connectives.

To state that the information expressed by a formula ϕ ∈ Li is estab-
lished in context i we use so-called labeled formulas of the form i : ϕ (if
no ambiguity arises, we simply refer to labeled formulas as formulas, and
we even use capital letters F , G, and H to denote labeled formulas, if the
context label is irrelevant). A rule r is an expression of the form:

F ← G1 ∧ . . . ∧Gn (1)

3

where F and all G’s are labeled formulas; F is called the consequence of r
and is denoted by cons(r); all G’s are called premises of r and together make
up the set prem(r). Rules without premises are called facts. Rules with at
least one premiss are called bridge rules. A multi-context system (system
hereafter) is a finite set of rules. A fact describes information that is estab-
lished in a certain context, independent of which information is obtained in
other contexts. A bridge rule specifies which information is established in
one context, if other pieces of information are obtained in different contexts.
So a system can be seen as a specification of contextual information available
a priori plus an inter-contextual information flow.

Example 1 The situation in figure 1 is modeled by the following system S:

1 : ¬r ←
2 : l ←
1 : l ∨ r ← 2 : l ∨ c ∨ r
2 : l ∨ c ∨ r ← 1 : l ∨ r

Mr.1 knows that there is no ball on the right, Mr.2 knows that there is a ball
on the left, and if any agent gets to knows that there is a ball in the box,
then he will inform the other agent about it.

A classical interpretations m of language Li is called a local model of con-
text i. A set of local models is called a local information state. Intuitively,
every local model in a local information state represents a “possible state
of affairs”. If a local information state contains exactly one local model,
then it represents complete information. If it contains more than one local
model, then it represents partial information: more than one state of affairs
is considered possible. A distributed information state is a set of local infor-
mation states, one for each context. In conformity with the literature, we
will refer to distributed information states as chains.

Example 2 The situation in figure 1, in which Mr.1 knows that there is
no ball on the right but does not know whether there is a ball on the left,
is represented by a chain whose first component {{l,¬r} , {¬l,¬r}} contains
two local models. As such, the chain reflects Mr.1’s uncertainty about the
left section of the box.

A chain c satisfies a labeled formula i : ϕ (denoted c |= i : ϕ) if and
only if all local models in its ith component classically satisfy ϕ. A rule r is
applicable with respect to a chain c if and only if c satisfies every premiss
of r. Notice that facts are applicable with respect to any chain. A chain c

4

complies with a rule r, if and only if, whenever r is applicable with respect
to c, then c satisfies r’s consequence. We call c a solution chain of a system
S if and only if it complies with every rule in S. A formula F is true in S
(denoted S |= F) if and only if every solution chain of S satisfies F .

For convenience, we introduce some auxiliary terminology and notation.
Let C denote the set of all chains. Notice that, as each Li is assumed to be
built over a finite set of proposition letters, C is assumed to be finite. Let c⊥

denote the chain containing every local model of every context (c⊥ does not
satisfy any non-tautological expression); let c> denote the chain containing
no local models at all (c> satisfies all expressions). If C is a set of chains,
then the component-wise union (intersection) of C is the chain, whose ith

component consists of all local models that are in the ith component of some
(every) chain in C. If c and c′ are chains, then c\c′ denotes the chain, whose
ith component consists of all local models that are in ci but not in c′i. Finally,
let us sometimes say that a local model m is (not) in c, when we actually
mean that m is (not) in some (any) component ci of c.

3 Minimality

We order chains according to the amount of information they convey. Intu-
itively, the more local models a chain component contains, the more possi-
bilities it permits, so the less informative it is. Formally, we say that c is less
informative than c′ (c � c′), if for every i we have ci ⊇ c′i. If, moreover, for
at least one i we have ci ⊃ c′i, then we say that c is strictly less informative
than c′ (c ≺ c′).

Lemma 1 Let C be a set of chains. Let cu (ci) denote the component-
wise union (intersection) of all chains in C. Then cu (ci) is less (more)
informative than any chain in C.

Proof. We proof the union part. Let c′ be a chain in C. Then for every
i, every local model m in c′i is also in cu

i . So cu
i ⊇ c′i, and thus cu � c′. �

Lemma 2 (C,�) forms a complete lattice.

Proof. We should prove that every finite subset of C has both a greatest
lower bound and a least upper bound in C. Let C be a subset of C (note that

5

C is finite, so C must be finite as well). Let cu (ci) denote the component-
wise union (intersection) of all chains in C. Then, by lemma 1, cu is a lower
bound of C. Now consider a chain c′, such that cu ≺ c′. For this to be the
case, there must be a local model m, which is in cu but not in c′. But then
m must also be in some chain cm in C, which makes c′ � cm impossible. So
c′ cannot be a lower bound of C, which implies that cu is the greatest lower
bound of C. Analogously, it is shown that ci is least upper bound of C. �

Note that c⊥ is strictly less informative than any other chain, whereas
c> is strictly more informative than any other chain. If c � c′ we say that
c′ is an extension of c. So, intuitively, extending c corresponds to adding
information to it. More technically, to extend c is to remove local models
from it. We say that c is minimal among a set of chains C, if c is in C and
no other chain c′ in C is strictly less informative than c. In particular, we
say that c is a minimal solution chain of a system S, if it is minimal among
the set of all solution chains of S.

Lemma 3 Let c and c′ be two chains, such that c � c′. Then any formula
that is satisfied by c is also satisfied by c′.

Proof. Suppose c |= i : φ. Then, per definition, m |= φ for every m ∈ ci.
As c′i is contained in ci, we also have m′ |= φ for every m′ ∈ c′i. So c′ |= i : φ.

�

Lemma 4 Let C be a set of chains and let cu denote the component-wise
union of all chains in C. Then a formula is satisfied by cu if and only if it
is satisfied by every chain in C.

Proof.
(⇒) Follows directly from lemma 1 and lemma 3.
(⇐) Suppose all chains in C satisfy i : φ. Then all local models in the ith

component of every chain in C must satisfy φ. These are exactly the local
models that make up the ith component of cu. So cu also satisfies i : φ. �

Lemma 5 Let S be a system. Then the set of all solution chains of S is
closed under component-wise union. That is, if C is a set of solution chains
of S, then the component-wise union cu of all chains in C is again a solution
chain of S.

6

Proof. Let C be a set of solution chains of S. Let cu be the component-
wise union of C. Let r be an arbitrary rule in S. Then all c′ in C comply
with r. Suppose, towards a contradiction, that cu does not comply with r,
i.e., cu satisfies all of r’s premises, but does not satisfy r’s consequence. By
lemma 4 all c′ in C satisfy all of r’s premises, and therefore, by assumption,
they all satisfy r’s consequence as well. But then, again by lemma 4, cu

must also satisfy r’s consequence, which contradicts the assumption that cu

does not comply with r. So cu must comply with r, and as r was arbitrary,
cu must be a solution chain of S. �

Theorem 1 Every system S has a unique minimal solution chain cS.

Proof. Every system has at least one solution chain, namely c>. Now, let
S be a system and let CS be the set of all its solution chains. Then, by
lemma 5, the component-wise union cS of CS is itself in CS . Moreover, by
lemma 1, cS is less informative than any other chain in CS . So cS is minimal
among CS and, moreover, any chain c′ in CS which is minimal among CS ,
must be equal to cS . In other words, cS is the unique minimal solution chain
of S. �

Theorem 2 The meaning of a system S is completely determined by its
unique minimal solution chain cS. For any formula F we have:

S |= F ⇔ cS |= F

Proof. Let S be a system and let F be a formula. Then F is true in S if
and only if F is satisfied by all solution chains of S. By lemma 4, this is the
case if and only if F is satisfied by the component-wise union of all solution
chains of S. By the proof of theorem (1) this union constitutes the minimal
solution chain cS of S. �

Theorem (1) and (2) are extremely useful, because they establish that,
to answer queries about a system S, it is no longer necessary to compute all
solution chains of S; we only need to consider the system’s minimal solution
chain cS .

7

3.1 Computing the Minimal Solution Chain

Recall that a system S can be thought of as a specification of inter-contextual
information flow. It turns out that the minimal solution chain of S can be
characterized as the �-least fixpoint of an operator TS , which, intuitively,
simulates the information flow specified by S.

Let S∗(c) denote the set of rules in S that are applicable w.r.t. c. Then:

TS(c) = c \ {m | ∃r ∈ S∗(c) : m 2 cons(r)} (2)

For every rule r in S that is applicable w.r.t. c, TS removes from c all
local models that do not satisfy cons(r). Intuitively, this corresponds to
augmenting c with the information expressed by cons(r). In this sense, TS

simulates the information flow described by S. Clearly, TS(c) is obtained
from c only by removing local models from it. As a result, TS(c) is always
more informative than c.

Lemma 6 For every chain c and every system S: c � TS(c). �

We now prove that, starting with the least informative chain c⊥, TS will
reach its �-least fixpoint after finitely many iterations, and that this �-least
fixpoint coincides with the minimal solution chain of S. The first result is
typically established using Tarski’s fixpoint theorem [14]. In order to apply
this theorem, we first need to show that TS is monotone and continuous
with respect to �.

Lemma 7 TS is monotone with respect to �.

Proof. Let c and c′ be any two chains such that c � c′. We need to prove
that TS(c) � TS(c′). Suppose, towards a contradiction that this is not
the case. Then there is a local model m that belongs to TS(c′) but not to
TS(c). Clearly, m must already be present in c′, and therefore also in c.
From the fact that m has been removed from c by TS it follows that there
must be a rule r in S such that c satisfies prem(r), whereas m does not
satisfy cons(r). But then, by lemma 3, c′ must also satisfy prem(r), so TS

should have removed m from c′ as well. We conclude that TS(c) � TS(c′).
So TS is monotone with respect to �. �

Lemma 8 TS is continuous with respect to �.

8

Proof. Let c0 � c1 � c2 � . . . be an infinite sequence of chains, each of
which contains more information than all preceding ones. We need to prove
that TS(

⋃∞
n=0 cn) =

⋃∞
n=0 TS(cn). As C is finite, {c0, c1, c2, . . .} must have

a maximum cm in C. So TS(
⋃∞

n=0 cn) = TS(cm) =
⋃∞

n=0 TS(cn). �

Theorem 3 TS has a �-least fixpoint, which is obtained after a finite num-
ber of consecutive applications of TS to c⊥.

Proof. Follows from lemmas 2, 7, and 8 by Tarski’s fixpoint theorem [14].
�

Lemma 9 Let c be a chain and let S be a system. Then c is a fixpoint of
TS if and only if c is a solution chain of S.

Proof. A chain c is a fixpoint of TS if and only if for every rule r in S, c
satisfies cons(r) whenever c satisfies prem(r). This is the case if and only if
c is a solution chain of S. �

Theorem 4 Let S be a system. Then the minimal solution chain cS of S
coincides with the �-least fixpoint of TS.

Proof. Follows directly from lemma 9. �

From theorems 3 and 4 we conclude that the minimal solution chain cS

of a system S is obtained by a finite number of applications of TS to the
least informative chain c⊥. But we can even prove a slightly stronger result:

Theorem 5 Let S be a system and let |S| denote the number of bridge
rules in S. Then the minimal solution chain cS of S is obtained by at most
|S|+ 1 consecutive applications of TS to c⊥.

Proof. Let c be a chain and let S be a system. Notice that TS(c) is a
fixpoint of TS if and only if S∗(TS(c)) coincides with S∗(c). Lemmas 3 and
6 imply that, in any case, S∗(TS(c)) ⊇ S∗(c). In other words, during each
iteration of TS some (possibly zero) rules are added to S∗. In the case that
S∗ remains unaltered, TS must have reached a fixpoint. Now we observe
that during the first application of TS (to c⊥) all facts in S are added to S∗.

9

Clearly, after that, TS can be applied at most |S| times before a fixpoint is
reached. �

In fact, a slightly more involved, but essentially equivalent procedure was
introduced for rather different reasons in [11]. This procedure was shown to
have worst-case time complexity O(|S|2 × 2M), where M is the maximum
number of propositional variables in either one of the contexts involved in
S. The greater part of a typical computation is taken up by propositional
reasoning within individual contexts, which itself requires exponential time
in the worst case.

Example 3 Consider the system S given in example 1. Applying TS to c⊥

establishes the facts given by the first two rules of the system. But then Mr.2
knows that there is a ball in the box, so the next application of TS simulates
the information flow specified by the third rule of the system: Mr.2 informs
Mr.1 of the presence of the ball. The resulting chain is left unaltered by any
further application of TS, and therefore constitutes the minimal solution
chain of S. The fact that this chain satisfies the formula 1 : l reflects, as
desired, that Mr.1 has come to know that there is a ball in the left section of
the box.

4 Non-Determinism

The original formulation of multi-context systems implicitly rests on the
assumption that information flow is deterministic. However, there are many
natural situations in which information flow is inherently non-deterministic.

Example 4 Adriano is on holiday after having submitted his final school
exams. He has promised to call his father or his mother in case his teacher
lets him know that he has passed his exams. This situation can be modeled
by a system S consisting of the following rule:

m : p or f : p← a : p

Notice that Adriano may be conceived of as an agent in a multi-agent sys-
tem, who non-deterministically decides which other agents to inform when
acquiring novel information. Alternatively, Adriano’s parents may be con-
ceived of as mirror repositories of information about Adriano’s well-being
(assuming that they tell each other everything they come to know about
Adriano). Typical telephonic connections may be broken or temporarily

10

unavailable. Analogous to the situation sketched in the introduction, Adri-
ano will try to reach his parents, until at least one of them is informed. In
general, we would like to consider systems in which rules r are of the form:

F1 or . . . or Fm ← G1 ∧ . . . ∧Gn (3)

where all F ’s and G’s are labeled formulas; all F ’s are called consequences of
r and together form the set cons(r); and as before, all G’s are called premises
of r and together constitute the set prem(r). A rule doesn’t necessarily
have any premises (n ≥ 0), but always has at least one consequence (m ≥
1). We call a rule deterministic if it has only one consequence, and non-
deterministic otherwise. We call finite sets of possibly non-deterministic
rules non-deterministic multi-context systems (non-deterministic systems for
short). Systems which consist of deterministic rules only, are from now on
referred to as deterministic systems.

A chain c complies with a non-deterministic rule r if and only if, whenever
r is applicable w.r.t. c, at least one of its consequences is satisfied by c. A
chain is a solution chain of S if and only if it complies with all rules in S.
A formula F is true in S, S |= F , if and only if F is satisfied by all solution
chains of S.

Observation 1 Let S be a non-deterministic system, let c′ and c′′ be two
solution chains of S, and let c be the component-wise union of c′ and c′′.
Then it is not generally the case that c is again a solution chain of S.
Therefore, S does not generally have a unique minimal solution chain.

Example 5 Suppose Adriano’s teacher lets him know that he passed his
exams. The resulting system S is given by the following rules:

a : p ←
m : p or f : p ← a : p

This system has two minimal solution chains:

cm = {{p}m, {p,¬p}f , {p}a}
cf = {{p,¬p}m, {p}f , {p}a}

whose component-wise union {{p,¬p}m, {p,¬p}f , {p}a} is not a solu-
tion chain of S.

Theorem 6 The meaning of a non-deterministic system S is completely
determined by the set CS of all its minimal solution chains. For any formula
F we have:

S |= F ⇔ ∀c ∈ CS : c |= F

11

Proof. Let S be a non-deterministic system and let F be a formula. Then
F is true in S if and only if F is satisfied by every solution chain of S. Clearly,
if F is satisfied by every solution chain of S, then it must in particular be
satisfied by every minimal solution chain of S. Moreover, every solution
chain of S is an extension of some minimal solution chain of S, which implies,
by lemma 3, that F is satisfied by all minimal solution chains of S only if
F is satisfied by all solution chains of S. �

Theorem 6 establishes that the meaning of a non-deterministic system
S is completely determined by the set CS of all its minimal solution chains.
We will now provide a way to compute CS , re-using the method outlined in
section 3.

4.1 Computing Minimal Solution Chains

Inspired by an idea originally developed for disjunctive databases [12], we
generate from a non-deterministic system S a number of deterministic sys-
tems S1, S2, . . . , Sn, in such a way that the minimal solution chains of S
are among the minimal solution chains of S1, S2, . . . , Sn (note that each Si

has a unique minimal solution chain which can be computed as outlined in
section 3). Hereto, we introduce the notion of a generated system. Let S
be a non-deterministic system and let r be a rule in S. Then we say that a
deterministic rule r′ is generated by r if and only if cons(r′) ∈ cons(r) and
prem(r′) = prem(r). We say that a system S′ is generated by S if and only
if it is obtained from S by replacing each rule r in S by some rule r′ gener-
ated by r. Notice that, indeed, a generated system is always deterministic,
and that any non-deterministic system S generates at most

∏
r∈S |cons(r)|

different deterministic systems.

Example 6 The non-deterministic system from example 5 generates two
deterministic systems: {a : p←,m : p← a : p} and {a : p←, f : p← a : p}.
The only system generated by a deterministic system is that system itself.

Lemma 10 A chain c is a solution chain of a non-deterministic system S
if and only if it is a solution chain of some system S′ generated by S.

Proof.
(⇒) Suppose c is a solution chain of S. Then c complies with every rule in
S. For every rule r in S, if c complies with r, then there must be a rule r′

generated by r such that c complies with r′ as well. Let S′ be the system
{r′ | r ∈ S}. Then c is a solution chain of S′.

12

(⇐) Suppose c is a solution chain of a system S′ generated by S. Then c
complies with every rule in S′. Every rule r in S has generated some rule r′

in S′, and clearly, if c complies with r′ then it must also comply with r. So
c is a solution chain of S. �

We call a chain c a potential solution chain of S if and only if c is a
minimal solution chain of some system S′ generated by S.

Lemma 11 Every minimal solution chain of a system S is also a potential
solution chain of S.

Proof. Suppose c is a minimal solution chain of S. Then, by lemma 10, c
is a solution chain of some system S′ generated by S. Let c′ be the minimal
solution chain of S′. Then c must be an extension of c′. By lemma 10 c′

must be a solution chain of S. But then, as c is a minimal solution chain of
S, c′ must be equal to c. So c is a minimal solution chain of S′, and therefore
a potential solution chain of S. �

Observation 2 It is not generally the case that a potential solution chain
of S is also a minimal solution chain of S.

Example 7 Suppose Adriano’s teacher also called Adriano’s mother to tell
her the good news. The resulting system S is given by the following rules:

a : p ←
m : p ←

m : p or f : p ← a : p

This system has two potential solution chains:

cm = {{p}m, {p,¬p}f , {p}a}
cmf = {{p}m, {p}f , {p}a}

But as cmf extends cm only the latter is a minimal solution chain of S.

We call c an essential solution chain of S if and only if c is minimal
among all potential solution chains of S.

Theorem 7 A chain is a minimal solution chain of S if and only if it is
an essential solution chain of S.

13

Proof.
(⇒) Suppose c is a minimal solution chain of S. Then, by lemma 11, c is
a potential solution chain of S. If c is minimal among all potential solution
chains of S, then, per definition, it is essential. Now, towards a contradiction,
suppose that c is not minimal among all potential solution chains of S. Then
there must be another potential solution chain c′ of S, such that c′ ≺ c. But,
by lemma 10, c′ must also be a solution chain of S, which contradicts the
assumption that c is a minimal solution chain of S.
(⇐) Suppose c is an essential solution chain of S. Furthermore, towards a
contradiction, suppose that c is not a minimal solution chain of S. Then
there must be a minimal solution chain c′ of S, such that c′ ≺ c. By lemma
11, c′ is a potential solution chain of S. But this contradicts the assumption
that c is minimal among all potential solution chains of S. �

Theorem 7 establishes that, in order to compute the meaning of a non-
deterministic system S it suffices to compute the meaning of all deterministic
systems generated by S. This can be done re-using the method developed in
section 3. Given that S generates at most

∏
r∈S |cons(r)| different systems,

and that computing the meaning of each of these systems takes at most time
O(|S|2 × 2M), we conclude that, in the worst case, computing the meaning
of S takes time O(

∏
r∈S |cons(r)| × |S|2 × 2M).

5 Absent Information

Rules of the form (1) only allow us to model a rather restricted kind of
information flow, namely one in which new information is established based
on the presence of other information only. There are many natural situa-
tions in which information is obtained as a result of the absence of other
information. Such situations cannot be modeled by the present formalism.

Example 8 (Coordination) Let d1, d2 be two meteorological databases,
which collect their respective data from sensors located in different parts
of the country. At the end of the day each database produces a weather fore-
cast based on its own data but also on the information obtained by the other
database. For example, d1 predicts rain, if that follows from its own data
and if, moreover, d2 does not maintain that it won’t rain:

1 : r ← 1 : r ∧ not 2 : ¬r

Example 9 (Integration) Let d1 and d2 be as in example 8 and let d3

be a third database, which integrates the information obtained in d1 and

14

d2, respectively. Any piece of information that is established by d1 and not
refuted by d2 (or vice versa) is included in d3:

3 : ϕ ← 1 : ϕ ∧ not 2 : ¬ϕ

3 : ϕ ← 2 : ϕ ∧ not 1 : ¬ϕ

Example 10 (Trust) Let d1, d2, and d3 be as in example 9. It would be
natural for d3 to regards d1 as more trustworthy than d2 (or vice versa). In
this case any piece of information that is established in d1 is automatically
included in d3, but information obtained in d2 is only included in d3 if it is
not refuted by d2:

3 : ϕ ← 1 : ϕ

3 : ϕ ← 2 : ϕ ∧ not 1 : ¬ϕ

In general, to model situations in which new information is obtained based
on the absence of other information we need rules r of the form1:

F ← G1 ∧ . . . ∧Gm ∧ not H1 ∧ . . . ∧ not Hn (4)

where F , all G’s, and all H’s are labeled formulas. As before, F is called
the consequence of r (cons(r)). G1, . . . , Gm are called positive premises of
r and together constitute the set prem+(r). H1, . . . ,Hn are called negative
premises of r and make up the set prem−(r). A rule does not necessarily
have any premises (m,n ≥ 0). In analogy with commonplace terminology in
deductive database and logic programming theory, we call such rules normal
rules, and finite sets of them normal multi-context systems (normal systems
for short). If a rule only has positive premises, we call it a positive rule.
Note that a system, which consists of positive rules only conforms with
the original definition of multi-context systems. From now on we call such
systems positive systems.

Our aim is to generalize the result obtained section 3, i.e. to define the
semantics of a normal system S in terms of a single canonical chain cS of S,
such that, whenever S is a positive system, cS coincides with the minimal
solution chain of S.

A first naive attempt would be to say that a chain c complies with a
normal rule r if and only if it satisfies r’s consequence, whenever it satisfies
every positive premise of r and does not satisfy any negative premise of r.

1For now, we take deterministic systems as a starting point. The results in this section
are not straightforwardly generalized to the case of non-deterministic systems.

15

The (minimal) solution chains of a normal system S can then be defined
as for positive systems. However, as the following example shows, a normal
system does not generally have a unique minimal solution chain, and worse,
minimal solution chains of a normal system do not generally correspond
with the intended meaning of that system.

Example 11 Let a system S be given by the following rule:

1 : p ← not 2 : q

Then S has two minimal solution chains:

cp = {{p}, {q,¬q}}
cq = {{p,¬p}, {q}}

Intuitively, S provides no ground for deriving q in context 2. Thus, p should
be derived in context 1, and every “proper” canonical chain of S should
satisfy 1 : p. As cq fails to do so, it should be rejected as such.

But how, then, should the canonical chain of a normal system be char-
acterized?

Extensive research efforts have been involved with an analogous question
in the setting of logic programming, when, in the late 80’s / early 90’s, a
proper semantics for normal logic programs was sought. In motivating our
characterization of canonical chains for normal multi-context systems, we
will recall some important intuitions and adapt some crucial definitions that
have resulted from these efforts.

A first desired property of canonical chains, first introduced in the set-
ting of logic programming by Apt, Blair, and Walker [1] and Bidoit and
Froidevaux [3], is termed supportedness. Intuitively, a chain c is a supported
solution chain of a normal system S if and only if, whenever c satisfies a
formula F , then S provides an explanation for why this is so.

Definition 1 We call a chain c a supported solution chain of a normal
system S if and only if, whenever c satisfies a formula F , then S contains
a set R of rules, such that:

• ∀r ∈ R :
{
∀G ∈ prem+(r) : c |= G
∀H ∈ prem−(r) : c 2 H

•
⋃

r∈R cons(r) |= F

16

Example 12 In example 11, as desired, cp is a supported solution chain of
S, while cq is not. But both cp and cq are supported solution chains of the
following extension S′ of S:

1 : p ← not 2 : q

2 : q ← 2 : q

Intuitively, cp should be accepted as a canonical chain of S′, but cq should
be rejected as such, because the explanation provided by S′ for the fact that
cq satisfies 2 : q is circular, i.e., it relies on the very fact that cq satisfies
2 : q. So, in general, the concept of supportedness does not satisfactorily
characterize the canonical chain of a normal system.

The notion of well-supportedness, first introduced for logic programs by
Fages [4], refines the notion of supportedness to avoid the counter-intuitive
result obtained in example 12. Intuitively, a chain c is a well-supported
solution chain of a normal system S if and only if, whenever c satisfies a
formula F , then S provides a non-circular explanation for why this is so.

Fages also proved this notion to be equivalent to the notion of stability,
which had been defined somewhat earlier by Gelfond and Lifschitz [5]. The
results obtained in section 3 pave the way for a straightforward adaptation
of the notion of stability to our present setting.

Definition 2 Let c be a chain and S a normal system. Define:

S′(c) = {r ∈ S | ∀H ∈ prem−(r) : c 2 H}
S′′(c) = pos(S′(c))

where pos(S′(c)) is obtained from S′(c) by removing all negative premises
from its rules. Then, c is a stable solution chain of S, iff it is the unique
minimal solution chain of S′′(c).

Intuitively, a solution chain c of a system S is stable if, whenever the
information represented by c is assumed, then the information flow spec-
ified by S reproduces exactly c. Namely, if c is assumed to contain valid
information, then any rule in S, one of whose negative premises is satisfied
by c, is certainly not applicable. Negative premises which are not satisfied
by c can be removed from the remaining rules, because they do not have
any influence on whether those rules are applicable or not. Thus, S can be
reduced to S′′(c), and c is stable if and only if it corresponds exactly to the
meaning of S′′(c), i.e., by Theorem 2, to its minimal solution chain.

17

Example 13 In example 12, as desired, cp is a stable solution chain of S′,
while cq is not.

For many systems, stability suitably characterizes a unique canonical
chain. There are still some special cases, however, in which it fails to do so.
We give some typical examples.

Example 14 Both cp and cq from example 11 are stable solution chains of
the system given by the following rules:

1 : p ← not 2 : q

2 : q ← not 1 : p

Example 15 The following system does not have any stable solution chains.

1 : p ← not 1 : p

In both cases we think it is most reasonable to conclude that no information
is derived at all, i.e. to regard c⊥ as the proper canonical chain.

Example 16 The following system does not have any stable solution chains
either.

1 : p ← not 1 : p

1 : t ← not 2 : q

2 : r ← 1 : t

Example 16 illustrates that, even if the rest of the system is unproblematic,
one single rule (in this case the first one) can cause the system not to have
any stable solution chain at all. In this case, t and r should be derived in
context 1 and 2, resp.

The well-founded semantics, first proposed for logic programs by van
Gelder, Ross, and Schlipf [15] avoids the problems encountered in the above
examples. The well-founded model of a program is defined as the least
fixpoint of an operator, which, given an interpretation, determines the atoms
that are necessarily true and those that are necessarily not true with respect
to the program and the interpretation. It assigns true to the former set
of atoms, and false to the latter. As a result, more atoms may become
necessarily true or necessarily not true. Corresponding truth values are
assigned until a fixpoint is reached. All atoms that have not been assigned
a definite truth value, are interpreted as unknown.

18

Our approach shares an important intuition with the well-founded se-
mantics for logic programs, namely, that while constructing the canonical
chain of a system, it is not only important to accumulate the information
that can certainly be derived from the system, but also to keep track of
information that can certainly not be derived from the system.

But the two approaches are also fundamentally different. The well-
founded semantics constructs a 3-valued interpretation I, which is minimal
with respect to a truth order v (i.e. I v I ′ iff I makes less atoms true and
more atoms false than I ′), whereas we seek a chain which is minimal with
respect to an information order � (i.e. c � c′ iff c makes less expressions
either true or false than c′). This particularly results in a different treatment
of expressions that are found not to be true. To regard these expressions
as false, as the well-founded semantics does, would be to introduce redun-
dant information. Instead, in our setting, such expressions should simply be
recorded as not being derivable.

5.1 Constructing the Canonical Chain

The canonical chain of a normal system S, henceforward denoted by cS , is
constructed by an iterative transformation of a datastructure 〈c, a〉, where:

• c is the “canonical chain under construction”. Initially, c = c⊥. Every
transformation of c removes from it those local models that are found
not to be in cS . So at any phase of the construction of cS , c contains
those local models that are possibly in cS , and as such represents the
information that is necessarily conveyed by cS .

• a is the “anti-chain”. Initially, c = c>. Every transformation of a
adds to it those local models that are found to be in cS . So at any
phase of the construction of cS , a contains those local models that
are necessarily in cS , and as such represents the information that is
possibly conveyed by cS .

Observation 3 By construction, we have c � cS � a. Therefore, by lemma
3, for any formula F :

c |= F ⇒ cS |= F

a 2 F ⇒ cS 2 F

�

19

We call a chain-anti-chain pair 〈c, a〉 less evolved than another such pair
〈c′, a′〉 (denoted as 〈c, a〉 ≤ 〈c′, a′〉) if and only if c is less informative than c′

and a is more informative than a′. If, moreover, c is strictly less informative
than c′ or a is strictly more informative than a′, then we say that 〈c, a〉 is
strictly less evolved than 〈c′, a′〉.

Lemma 12 (C×C,≤) forms a complete lattice.

Proof. Let CA be a set of chain-anti-chain pairs. Let cu and au (ci and
ai) denote the component-wise union (intersection) of all chains c and a,
respectively, such that 〈c, a〉 is in CA. Then 〈cu, ai〉 is the greatest lower
bound of CA and 〈ci, au〉 is the least upper bound of CA. The proof of this
statement is completely analogous to that of lemma 2. �

We say that 〈c, a〉 is minimal among a set CA of chain-anti-chain pairs,
if and only if 〈c, a〉 ∈ CA and no other chain-anti-chain pair 〈c′, a′〉 in CA is
strictly less evolved than 〈c, a〉. Notice that, if 〈c, a〉 is minimal among CA,
then c is minimal among {c | 〈c, a〉 ∈ CA}.

Given a certain chain-anti-chain pair 〈c, a〉, the intended transformation
ΨS first determines which rules in S will (not) be applicable w.r.t. cS ,
and then refines 〈c, a〉 accordingly. The canonical chain cS of S will be
characterized as the first component of the ≤-least fixpoint of ΨS .

We first specify how ΨS determines which rules will (not) be applicable
w.r.t. cS . Let 〈c, a〉 and a rule r in S be given. If r has a positive premise
G, which is satisfied by c, then G will also be satisfied by cS . On the other
hand, if r has a negative premiss H, which is not satisfied by a, then H will
not be satisfied by cS either. So if all positive premises of r are satisfied by c
and all negative premises of r are not satisfied by a, then r will be applicable
with respect to cS :

S+(c, a) =

r ∈ S
∀G ∈ prem+(r) : c |= G

and
∀H ∈ prem−(r) : a 2 H


If r has a positive premise G, which is not satisfied by a, then G will not be
satisfied by cS either. If r has a negative premise H, which is satisfied by c,
then H will be satisfied by cS as well. In both cases r will certainly not be
applicable with respect to cS :

S−(c, a) =

r ∈ S
∃G ∈ prem+(r) : a 2 G

or
∃H ∈ prem−(r) : c |= H


20

For convenience, we write:

S∼(c, a) = S \ S−(c, a)

Think of S∼(c, a) as the set of rules that is possibly applicable with respect to
cS , and notice that S+(c, a) ⊆ S∼(c, a), whenever c � a, and that S+(c, a) =
S∼(c, a), if c = a.

Lemma 13 If S is a normal system and 〈c, a〉 and 〈c′, a′〉 are two chain-
anti-chain pairs s.t. 〈c, a〉 ≤ 〈c′, a′〉, then we have:

1. S+(c, a) ⊆ S+(c′, a′)

2. S−(c, a) ⊆ S−(c′, a′)

3. S∼(c, a) ⊇ S∼(c′, a′)

Proof. Suppose that 〈c, a〉 ≤ 〈c′, a′〉. Then, by definition, c � c′ and
a′ � a. Let r be a rule in S. For the first statement, suppose that r ∈
S+(c, a). Then c satisfies all of r’s positive premises, and a does not satisfy
any of r’s negative premises. By lemma 3, the same goes for c′ and a′,
respectively, which implies that r ∈ S+(c′, a′). The second statement is
proven analogously; the third follows directly from the second. �

Next, we specify how ΨS refines 〈c, a〉, based on S+(c, a) and S∼(c, a).
Every local model m ∈ ci that does not satisfy the consequence of a rule in
S+(c, a) should certainly not be in cS and is therefore removed from c. On
the other hand, every local model m ∈ ci that satisfies the consequences of
every rule in S∼(c, a) should certainly be in cS (S provides no ground for
removing it) and is therefore added to a.

ΨS(〈c, a〉) = 〈Ψc
S(〈c, a〉),Ψa

S(〈c, a〉)〉

where:

Ψc
S(〈c, a〉) = c \

{
m | ∃r ∈ S+(c, a) : m 2 cons(r)

}
Ψa

S(〈c, a〉) = a ∪ {m | ∀r ∈ S∼(c, a) : m |= cons(r)}

Notice that Ψc
S only removes local models from c, whereas Ψa

S only adds
local models to a.

We now prove that, starting with 〈c⊥, c>〉, ΨS reaches its≤-least fixpoint
after finitely many iterations. To apply Tarski’s fixpoint theorem, we first
need to show that ΨS is monotone and continuous with respect to ≤.

Lemma 14 ΨS is monotone with respect to ≤, that is, for every normal
system S, 〈c, a〉 ≤ 〈c′, a′〉 implies ΨS(〈c, a〉) ≤ ΨS(〈c′, a′〉).

21

Proof. Let S be a normal system and let 〈c, a〉 and 〈c′, a′〉 be any two
chain-anti-chain pairs such that 〈c, a〉 ≤ 〈c′, a′〉. Then, by definition, c � c′

and a′ � a. We need to prove that ΨS(〈c, a〉) ≤ ΨS(〈c′, a′〉). Suppose,
towards a contradiction, that this is not the case. Then Ψc

S(〈c, a〉) �
Ψc

S(〈c′, a′〉) or Ψa
S(〈c′, a′〉) � Ψa

S(〈c, a〉). We consider both possibilities.

Ψc
S(〈c, a〉) � Ψc

S(〈c′, a′〉)
In this case there must be a local model m which is contained in
Ψc

S(〈c′, a′〉) but not in Ψc
S(〈c, a〉). In the process of applying Ψc

S to
〈c′, a′〉 local models may be removed from c′, but no local models are
added to it. So m must already be present in c′. As c � c′, m must
also be in c, thus it must have been removed from c in the process of
applying Ψc

S to 〈c, a〉. It follows that there must be a rule r in S+(c, a),
such that m 2 cons(r). From the fact that 〈c, a〉 ≤ 〈c′, a′〉, by lemma
13, it follows that S+(c, a) ⊆ S+(c′, a′). So r is also in S+(c′, a′) and
m should be removed from c′ in the process of applying Ψc

S to 〈c′, a′〉
as well. This contradicts our earlier conclusion that m ∈ Ψc

S(〈c′, a′〉).

Ψa
S(〈c′, a′〉) � Ψa

S(〈c, a〉)
In this case there must be a local model m which is contained in
Ψa

S(〈c, a〉) but not in Ψa
S(〈c′, a′〉). For m /∈ Ψa

S(〈c′, a′〉) to hold, there
must be a rule r in S∼(c′, a′) such that m 2 cons(r). As 〈c, a〉 ≤ 〈c′, a′〉,
by lemma 13, we have S∼(c′, a′) ⊆ S∼(c, a). So r must be in S∼(c, a)
as well, and therefore m cannot be in Ψa

S(〈c, a〉). This contradicts our
earlier conclusion that m ∈ Ψa

S(〈c, a〉).

It follows that ΨS(〈c, a〉) ≤ ΨS(〈c′, a′〉), as desired. �

Lemma 15 ΨS is continuous with respect to ≤.

Proof. Let 〈c0, a0〉 ≤ 〈c1, a1〉 ≤ 〈c2, a2〉 ≤ . . . be an infinite sequence of
chain-anti-chain pairs, each of which is more evolved than all preceding ones.
We need to prove that ΨS(

⋃∞
n=0〈cn, an〉) =

⋃∞
n=0 ΨS(〈cn, an〉). As C × C

is finite, {〈c0, a0〉, 〈c1, a1〉, 〈c2, a2〉, . . .} must have a maximum 〈cm, am〉 in
C×C. So ΨS(

⋃∞
n=0〈cn, an〉) = ΨS(〈cm, am〉) =

⋃∞
n=0 ΨS(〈cn, an〉). �

Theorem 8 ΨS has a ≤-least fixpoint, which is obtained after finitely many
iterations of ΨS, starting with 〈c⊥, c>〉.

22

Proof. Follows from lemmas 12, 14, 15, by Tarski’s fixpoint theorem [14].
�

Definition 3 Let S be a normal system, and let 〈cS , aS〉 be the ≤-least
fixpoint of ΨS. We define cS to be the canonical chain of S, and we define
the semantics of S to be completely determined by cS. That is, for every
formula F :

S |= F ≡ cS |= F

�

A bound on the number of iterations needed by ΨS to reach its ≤-least
fixpoint can be formulated in terms of the number of bridge rules in S.

Theorem 9 Let S be a normal system and let |S| denote the number of
bridge rules in S. Then, starting with 〈c⊥, c>〉, ΨS will reach its ≤-least
fixpoint after at most |S|+ 1 iterations.

Proof. A chain-anti-chain pair 〈c, a〉 is a fixpoint of ΨS if and only if
S+(c, a) = S+(ΨS(〈c, a〉)) and S−(c, a) = S−(ΨS(〈c, a〉))). During the first
application of ΨS (to 〈c⊥, c>〉), all facts in S are added to S+ and all bridge
rules in S are added to S∼. Each further application of ΨS either leads to
a fixpoint or to the addition of at least one bridge rule to S+ or S−. Once a
bridge rule is added to S+ or S−, it will not be removed again in any further
iteration of ΨS . It follows that ΨS must reach its ≤-least fixpoint after at
most |S|+ 1 iterations. �

The next theorem shows that definition 3 is a proper generalization of
the local model semantics for positive systems.

Theorem 10 Let S be a positive system. Then its canonical chain coincides
with its minimal solution chain.

Proof. If S is a positive system, then for every pair 〈c, a〉, S+(〈c, a〉) co-
incides with S∗(c) and therefore Ψc

S(〈c, a〉) is independent of a. As a conse-
quence, 〈cS , aS〉 is the ≤-least fixpoint of ΨS , for some anti-chain aS , if and
only if cS is the �-least fixpoint of TS . �

The canonical chain of a system S, and other fixpoints of ΨS , are inti-
mately related to the stable solution chains of S.

Lemma 16 If c is a stable solution chain of a normal system S, then 〈c, c〉
is a fixpoint of ΨS.

23

Proof. Recall that:

S′(c) = {r ∈ S | ∀H ∈ prem−(r) : c 2 H}

=
{

r ∈ S
∃G ∈ prem+(r) : c 2 G
∀H ∈ prem−(r) : c 2 H

}

∪
{

r ∈ S
∀G ∈ prem+(r) : c |= G
∀H ∈ prem−(r) : c 2 H

}
︸ ︷︷ ︸

S+(c,c)

(5)

and that c is a stable solution chain of S, only if it is the minimal solu-
tion chain of S′′(c) = pos(S′(c)). Furthermore, observe that for every c,
S+(c, c) = S∼(c, c), which implies that 〈c, c〉 is a fixpoint of ΨS if and only
if:

c =
{
m | ∀r ∈ S+(c, c) : m |= cons(r)

}
(6)

Suppose that 〈c, c〉 is not a fixpoint of ΨS . There are two possibilities to
consider:

∃m ∈ c : ∃r ∈ S+(c, c) : m 2 cons(r)
In this case, c is not a solution chain of S+(c, c), and therefore not a
solution chain of S′′(c).

∃m /∈ c : ∀r ∈ S+(c, c) : m |= cons(r)
Suppose c is a solution chain of S′′(c). Then every rule in S′′(c) is
such that c either satisfies its consequence, or does not satisfy at least
one of its premises. Let c′ be the chain obtained from c by adding m
to it, and let r be a rule in S′′(c). If c satisfies r’s consequence, then,
by definition of m, c′ does so as well. If c does not satisfy a premiss
G of r, then, by lemma 3 and the fact that c′ � c, c′ does not satisfy
G either. It follows that c′ is a solution chain of S′′(c) as well. So c is
not the minimal solution chain of S′′(c).

In both cases, as desired, c is not a stable solution chain of S.
�

Theorem 11 Let S be a normal system, let 〈cS , aS〉 be the ≤-least fixpoint
of ΨS, and let cstable be a stable solution chain of S. Then cS � cstable � aS.

24

Proof. Suppose that cS � cstable or that cstable � aS . Then 〈cS , aS〉 �
〈cstable, cstable〉, while 〈cstable, cstable〉, by lemma 16, is a fixpoint of ΨS . This
contradicts the assumption that 〈cS , aS〉 is the ≤-least fixpoint of ΨS . �

Lemma 17 Let S be a normal system. If 〈c, c〉 is the ≤-least fixpoint of
ΨS, then c is a stable solution chain of S.

Proof. Recall, as in the proof of lemma 16, that c is a stable solution
chain of S only if it is a minimal solution chain of S′′(c), that S′′(c) can be
expressed in terms of S+(c, c) as in equation (5), and that 〈c, c〉 is a fixpoint
of ΨS if and only if c satisfies condition (6).

Suppose that 〈c, c〉 is the ≤-least fixpoint of ΨS . We first show that c is
a solution chain of S′′(c). Observe that every rule in S′′(c) \ pos(S+(c, c))
is such that at least one of its premises is not satisfied by c, and that every
rule in pos(S+(c, c)) is such that c satisfies its consequence. It follows that
c is a solution chain of S′′(c).

Next, we show that, if c is not a minimal solution chain of S′′(c), then
〈c, c〉 cannot be the ≤-least fixpoint of ΨS .

Claim 1 If c′ is a solution chain of S′′(c) such that c′ ≺ c, then there is an
a′ such that 〈c′, a′〉 is a fixpoint of ΨS.

By construction, 〈c, c〉 � 〈c′, a′〉, so from claim 1 it would follow directly
that 〈c, c〉 is not the ≤-least fixpoint of ΨS .

To prove claim 1 we show that, if a is such that c � a, then Ψc
S(〈c′, a〉) =

c′. To see this, first notice that, as 〈c′, a〉 ≤ 〈c, c〉, by lemma 13, we have
S+(c′, a) ⊆ S+(c, c). Now, let r be a rule in S+(c, c). As c′ complies with
all rules in pos(S+(c, c)), c′ must satisfy cons(r), whenever it satisfies all
positive premises of r. Every rule r′ in S+(c′, a) is also in S+(c, c) and is
such that c′ satisfies all its positive premises. Therefore, c′ must satisfy
cons(r′) as well. This means that no local models are removed from c′ in
the process of applying Ψc

S to 〈c′, a〉. In other words: Ψc
S(〈c′, a〉) = c′.

For any a we have Ψa
S(〈c′, a〉) � a (no local models will be removed from

a in the process of applying Ψa
S to 〈c′, a〉). So in particular, the sequence:

c,Ψa
S(〈c′, c〉),Ψa

S(Ψa
S(〈c′, c〉)), . . .

is a descending sequence with respect to �, bounded by c⊥. This means
that after applying ΨS finitely many times to 〈c′, c〉 a fixpoint 〈c′, a′〉 of ΨS

will be reached, which proves claim 1.

25

We conclude that c is a minimal solution chain of S′′(c), and therefore a
stable solution chain of S. �

Theorem 12 Let S be a normal system and let 〈cS , aS〉 be the ≤-least fix-
point of ΨS. If cS and aS coincide, then cS is the unique stable solution
chain of S.

Proof. Stability of cS is established by lemma 17; uniqueness follows from
theorem 11. �

Finally, we remark that, in our view, all the examples presented above
are suitably dealt with by the present analysis.

6 Conclusions

We investigated the multi-context system formalism as a framework for rep-
resenting contextual information and inter-contextual information flow.

We observed that the semantics of a multi-context system is completely
determined by the information that is obtained when simulating the infor-
mation flow specified by the system, in such a way that a minimal amount
of information is deduced at each step of the simulation. Based on this ob-
servation, we defined an operator which determines the information entailed
by the system by implementing a suitable simulation of the prescribed in-
formation flow. This operator provides a first constructive account of the
local model semantics.

Next we observed that the multi-context system framework implicitly
rests on the assumption that information flow is deterministic. We sketched
a number of situations, in which this is not a valid assumption. We extended
the framework in order to account for non-deterministic information flow,
and provided a way to express the semantics of a non-deterministic system
in terms of the semantics of a number of associated, deterministic systems.
This allowed us to give a constructive account of the semantics of non-
deterministic systems as well.

Finally, we observed that in the multi-context framework, new informa-
tion is deduced based on the presence of other information. We presented
a generalized framework that accounts for situations in which new infor-
mation can be derived based on the absence of other information as well.
Non-monotonic reasoning techniques were applied to establish a suitable
semantics for this framework.

26

References

[1] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative
knowledge. 1988.

[2] M. Benerecetti, P. Bouquet, and C. Ghidini. Contextual reasoning dis-
tilled. Journal of Experimental and Theoretical Artificial Intelligence,
12(3):279–305, 2000.

[3] N. Bidoit and C. Froidevaux. General logical databases and programs:
Default logic semantics and stratification. Information and Computa-
tion, 91:15–54, 1991.

[4] F. Fages. A new fixpoint semantics for general logic programs compared
with the wellfounded and the stable model semantics. New Generation
Computing, 9(4), 1991.

[5] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In International Conference on Logic Programming (ICLP
88), pages 1070–1080, 1988.

[6] C. Ghidini and F. Giunchiglia. Local models semantics, or contextual
reasoning = locality + compatibility. Artificial Intelligence, 127(2):221–
259, 2001.

[7] F. Giunchiglia. Contextual reasoning. Epistemologia, XVI:345–364,
1993.

[8] F. Giunchiglia and L. Serafini. Multilanguage hierarchical logics, or:
how we can do without modal logics. Artificial Intelligence, 65(1):29–
70, 1994.

[9] J. McCarthy. Notes on formalizing context. In International Joint
Conference on Artificial Intelligence (IJCAI 93), pages 555–560, 1993.

[10] J. McCarthy and S. Buvač. Formalizing context (expanded notes). In
Computing Natural Language, volume 81 of CSLI Lecture Notes, pages
13–50. 1998.

[11] F. Roelofsen, L. Serafini, and A. Cimatti. Many hands make light
work: Localized satisfiability for multi-context systems. In European
Conference on Artificial Intelligence (ECAI 04), pages 58–62, 2004.

27

[12] C. Sakama and K. Inoue. An alternative approach to the semantics of
disjunctive programs and deductive databases. Journal of Automated
Reasoning, 13:145–172, 1994.

[13] L. Serafini and P. Bouquet. Comparing formal theories of context in
AI. Artificial Intelligence, 155:41–67, 2004.

[14] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–309, 1955.

[15] A. van Gelder, K. Ross, and J. S. Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

28

