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Abstract

Someinitial motivations for the GuardedFragmentstill seemof interestin carrying its program
further. First, we stress the equivalence between two perspectysatisfiability on standardnodels
for guarded first-order formulas, aifll) satisfiability on generalassignmenmmodelsfor arbitrary first-

orderformulas.In particular,we give a new straightforwardreductionfrom the former notion to the
latter. We also show how a perspective shift to general assignment mpomlétiesa new look at the
fixed-point extensio.FP(FO) of first-order logic, making it decidable. Next, wwadate guardedsyntax
to earlier quantifier restriction strategiesfor the purposeof achieving effective axiomatizability in

second-ordetogic — pointing at analogieswith 'persistentformulas, which are essentiallyin the
BoundedFragmentof many-sortedfirst-order logic. Finally, we look at some further unexplored
directions, including the systematic use of 'quasi-models' as a semantics by itself.

1 Basics of the Guarded Fragment

1.1  Guarded syntax

The Guarded Fragment of Andréka, van Benthem & Németi 1998asidablepart of
first-order syntax with @emanticphilosophy:quantifiersonly accesghe total domain
of individual objects 'locally’ byneansof predicatesover objects.But thereis moreto
the motivation and ambitiorsf guarding,aswill be shownin this paper.But first, we
make a quick tour of some known results and proof methods.

Here are somesyntactic preliminaries.In what follows, mostly for conveniencewe
consider only languages with predicatenbolsand variables:no function symbolsor
identity predicatesoccur. But we do allow so-called polyadic first-order quantifiers
X, wX¢ overtuplesof variablesx, with their obviousinterpretation Finally, we also
use polyadic notations[u/y]¢ for simultaneoussubstitutions.Theseare takenin the
standardsyntacticsensethat the substitutionis performedprovidedthe u are free for
they. If not, some suitable alphabetic variant is taken firsgfor

Our key ideais that objectsy can only be introducedrelative to given objectsx, as
expressedoy a 'guard atom' G(x, y) where objects can occur in any order and
multiplicity — and that the subsequent statement refers only to those guayded



Definition 1 Guarded Formulas.
Guarded formulasire all those constructed according to the syntax rules

atoms R |~ | v| Fy (G, y) & ¢(x, ¥))

Here, bold-facex, y indicate finite tuples of variables,and G is a predicateletter.
Looselyguardedformulasallow a conjunctionof atomsy(X, y) insteadof G(x, y) in
the quantifier clause, provided each variable fyaro-occurs with each variableom x,
y in at leastone atom of YX, y). The setof all guardedfirst-order formulas is the
Guarded Fragment GFThere is also hoosely Guarded Fragment LGF )

1.2  Decidability via quasi-models
The initial motivating result was that guarding quantifiers leads to decidability.

Theorem 1 GF andLGF are decidable.

In what follows, we stick mostly tGF. We shall have occasidao refer to the proof of
Theorem 1, and hence we reproduce its outline here.

Proof The first observationis that truth of first-order formulas in any model is

witnessed in some finite syntactic object, called a ‘quasi-model'. Let fogrbalxue in

standard modeM. LetV bethefinite setof variablesoccurringin ¢ — free or bound.
In effect, we are inside a finite-variable fragmentof first-order logic here.Next, we

restrictattentionto the finite setSuly consistingof ¢ andits subformulaswhile also
closingundersimultaneousubstitutionq u/y] usingonly variablesin V, that do not
changesyntacticforms. This is feasiblebecauseof the following simple observation,
provable by some syntactic manipulation:

Lemma 1 Finite-variable fragments are closed under simultaneous substitutions.

Now eachvariableassignmens on M verifies a set A, of formulasfrom Suly with
special properties, that we caliype Note that any model realizes at mfasitely many

types. A 'quasi-model’ is a finite set of typeth somepropertiesand mutualrelations
that obviously hold if the source is indeed some mbtel

Definition 2 Quasi-models.

Let F be thefinite setof all formulasof length< |¢| that use only variablesfrom V.
Note that ¢ F and F is closedundertaking subformulasand the above 'alphabetic
variants' used with substitutions. Artypeis a subsett of F which satisfies



(@) ~yeA iff not ye A whenever-yeF
(b) ywéeA iff weA or £eA wheneveryvé e F
(c) [ulylyeA onlyif FyweA whenever3yy eF

Next, wewrite A =y A if A, A' sharethe sameformulaswith all their free variables
disjoint fromy. A quasi-modelis a set oF—-typesSsuch that

(d) for eachie Sand each formuldyys e A,
there is a typet' eSwith ¥ e A" andA =y A",

We say that holds in a quasi-modéd ¢e A for some in this quasi-model. &
Clearly, this definition justifies the following assertion:

Lemma 2 If afirst-order formula has a model, it is true in some quasi-model.
The converse is not true for all first-order formulas, but it does holdFor

Lemma 3 If a guarded formula has a quasi-model, then it has a standard model.

The key fact is that quasi-models can be 'unraveled' to tree-like standard witharis
affecting truth valuesof guardedformulas in their set F. Details can be found in

Andréka, van Benthem & NémetD98— but they will not matterhere.The sametree-
model constructionalso leavestruth values of loosely guardedformulas invariant.
Decidability of GF or LGF now follows becauseve cantestsatisfiability for arbitrary
(loosely) guarded formulasby testing for the existenad a quasi-modefor ¢ whose
size is effectively bounded by the lengthpof &

This decisionprocedurecan be adaptedeasily to give an optimal complexity result
(Gradel1999B). Satsifiability is 2EXPTIMEcompletefor guardedformulas,and it is
EXPTIME-eomplete foiGF with a fixed bound on the arities of predicates.

1.3  Other metaproperties

The Guarded Fragment was metmnserveseveralpurposesat once.On the one hand
its complexity is low enough to be decidable, while it is expressive ernouggneralize
most commonmodal languagesThis demonstrateghe balancesoughtin all good
modal-like languages. Another desirafdatureconcernsts meta-theoryBasic modal
logic resembles first-order logic in all ilseta-propertiesgven'existential'onesthat do

not follow from just being a sublanguage,such as Craig Interpolation, Beth

Definability, and the standardmodel-theoretigpreservatiortheorems.GF sharesthis

good behaviourto some extent, witness the Los—style preservationtheorem for
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submodels given in Andréka, van Benthem & Németi 1998. Cf. also van BeR@&m
on GF as an instrumerfor finding out ‘what makesmodallogic tick'. But subsequent
work has shown that the picture is somewhat mixed. Beth Definability holds
(Hoogland, Marx & Otto 1999), but Craig Interpolation fails in its strgageralform
— though it remainsvalidd when we view guard predicatesas part of the logical
vocabulary (Hoogland& Marx 2002). On the positive side again, GF has shown
logical resilience in other ways, not foreseen wihdimst appearedA striking example
is the resultin Gradel 1999C, that the extensionLFP(GF) of GF with fixed-point
operatorse, v remainsdecidable whereasvalidity for the version LFP(FO) for all of
first-order logic is non-axiomatizable- indeednon-arithmetical.Incidentally, Gradel
1999A also determines the complexity foFP(GF).

In the remainder of this paper, we pursue some othemyéessallyappreciatedaspects
of guarded syntax, that also played a role at the time of its invention.

2 Guards and General Assignment Models

2.1 Restricted syntax versus generalized semantics

Giving each quantifier a guard may be vievesd syntacticrestriction,refraining from

all unbounded quantification. In this sensé€,is indeed a fragment fOL. But there
is also another perspective, where this move radgm@esents semanticgeneralization.
We now assumethat quantificationwill normally take placein 'structureddomains’,
where accessrom one group of objectsto anothermust go via some connecting
relation R of someappropriatearity. Binary modal accessibilityis a typical example.
Standardmodelsare the specialcasewith R the universalrelation. Informally, then,

there seems to be an analogy between

(a) using guarded formulas over standard models, and
(b) using arbitrary first-order formulas over suitably generalized models.

This can be made more precise using the following semantics,going back to the
general relativization technique for algebraic models in Németi 1985.

2.2  Modal models and general assignment models
For a start, by simple inspection of the standarth definition, it is easyto interpreta
complete first-order language on abstracdal models

M = (S, {RdxeVAR I)
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with Sa set of 'statesiy a binaryaccessibilityrelation betweenstatesfor eachvariable
X, and| aninterpretationfunction giving a truth valueto eachatomic formula in each
states. This is a huge extensiaf standardirst-order semanticswhereno domainof
'individual objects'needbe presentunderpinningthe states.Indeed,it has often been
observed that quantifiers are modalities, with

M,s |=3x¢ iff for some: Ryst andM, t |= ¢.

Thus, first-order logic is a poly-modal logiath an existentialmodality 7x. This gives
us a broad space for generalized semantics of many sorts.

More concreteis the following semanticswhich merely takes away the existential
assumption of 'fullness’ from standard Tarski model&@it.

Definition 3 General assignment models.
A generalassignmentnodelis an orderedpair (M, V) with M a standardfirst-order

model with domain D and interpretationfunction I, and V any non-empty set of

assignmentson M, i.e., a subsetof DVAR The first-orderlanguageis interpretedas
usual, now at tripleM, V, swith seV — with the following clause for quantifiers:

M,V,s|=3x¢ iff forsome & V:s=xtandM,V,t|=¢
Here=y is the standard relation between assignments of identityxJpatoes. &

Assignmentgapsin these models model the natural phenomenorof dependencies
betweenvariables: changesin value for one variable x may induce, or at least be
correlated with, changes in value for another varipht&eneral assignment modelso
support new vocabulary reflecting distinctions beyond standardfirst-order logic.
Examples are irreducibjyolyadic quantifiersix binding tuples otariablesx, with the
following truth condition:

M,V,s|=3x ¢ iff forsome &¢V:s=xtandM,V,t|=¢

This time, =x is identity betweenassignmentsip to valuesfor all the variablesin x.
E.g.,in standardirst-order logic, the notation Fxyegp is just short-handfor Fx3y¢ or
FyIx¢ in any order. But in GAM-semanticsthesetwo expressionsare no longer
equivalent, as not all 'intermediate assignments-for y-shifts needbe present- and
they are both non-equivalento Ixy, as defined just now. Moreover, one can also
interpret single or polyadgubstitutionoperators directly in this style:
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M, V, s |=fyX] ¢ iff s[x:=s(y)]leV & M, V, s[x:=s(y)]|= ¢

The resultinglogic 'CRS' over generalassignmentmodels has been much studied
(Marx & Venemal997).lIts valid principlesconsistof the standardaxiomsfor poly-
modal S5 plus all atomic ‘locality principles' (=)Px — ¥y (=)Px with x~y =&
Not universally valid in the above models, however, are the following two principles:

() [ulylw — Fyy  with u free fory in y Existential Generalization
(i) P(X) — Yye(X)  with noy free ing(x) Full Locality

These failures reflect the special handling of variablesin models where not all

assignments need be available. Alkp¥, z, ..then acquirea sort of 'individuality’, due
to their possiblydifferentinteractionswith other variables.We omit technicaldetails
here (an excellentsourceis Németi1996). Instead we turn to the connectionbetween
GAM-semantics foFOL and standard semantics {aF.

2.3  Reducing GAM logic to GF
The following result is proved in Andréka, van Benthem & Németi 1998, Section 5.

Definition 4 Guarded translation.

Consider ank—variable languagé.{xy, ..., Xx}. Let R be a new k—ary predicate. The
translation guard takes k—variable first-order formulas ¢to guarded first-order
formulas guard(@) by relativizing all quantifiers to the same atom Rx;...%. This
translation works for polyadic first-order quantifiers just as wedliagle ones— andit

evenextendsto the abovesubstitutionoperatorsjf desired.Thereis also a matching
semanticoperationof modelexpansionLet (M, V) be any generalassignmentnodel
for L{xq, ..., %} — without thenew predicateR. The standardnodel GUARDM, V) is

M viewed as a standard model, and expanded with the following interpretation:

R(dy, ..., &) iff the assignmeng := d;j (1<i<k)isinV. &

The following is easy to prove by induction on first-order formulas:

Lemma 4  For all available assignmergsin V, and alk-variable formulas,
M,V,s |=¢ iff GUARDM,V),s|=guard(@)

Here is a reduction @AM-semantics to the Guarded Fragment.

Theorem 2 For all first-ordelk-variable formulag, the following are equivalent:
(@ ¢ is satisfiable in general assignment models,
(b)  Rx...x ~ guard@) is satisfiable in standard models.



Proof From (a) to (b), Lemma4 suppliesthe reasonFor the converse supposethat
Rx... X ~ guard@) hasa standardnodelM undersomeassignmens. Now definea
generalassignmentnodel (N, V) by retainingonly thoseassignment®n M whose
valuesfor xq, ..., Xk standin the relation Ry;. Theseinclude the assignmensitself.
Then it is easy to see thdt V, s |= ¢ as with Lemma 4. &

The translationalso works directly for the full first-order languagewithout the k-
restriction, by a slightly modified translation. The converse direction was left@sean
questionin Andréka,van Benthem& Németi 1998, but we tackle it here.Remark1
below briefly discusses an earlier solution by Marx.

24  Reducing GF to GAM logic

We need a translation again. This tinteés not compositionalin the earliersenseThe
reasonis the earlierfailure of Existential Generalization(i) and Full Locality (i) in

generalassignmentnodels.We needtheseprinciplesfor somefinite setof relevant
formulas in the proof to follow, and hence we put them into the translation.

Definition 5 GAM translation.
Let ¢ be any guardedfirst-order formula with a total set of variablesx = Xy, ..., Xk
Let set-up§) be the finite conjunction of all formulas of the following form

0) X ([uly]l v — Fyy) whereu, y « x andy(2) is a subformula of
(i)' X (W(2) — vy w(2)) where z, y < x with z disjoint fromy,
andw(2) is a subformula o

The, not necessarily guarded, formgém@) is the conjunctiom A set-upf). )

In particular, the prefixed polyadic universalquantifier ¥x running over all relevant
variables makes sure that the implications (i)', (i)’ hold throughoutany general
assignment model which hast-up) true at any assignment at all.

Theorem 3 For all guarded formulag the following are equivalent:
(@  ¢is satisfiable in standard models,
(b) gamg) is satisfiable in general assignment models.

Proof From (a) to (b), it sufficesto notethatany standardnodelfor ¢ also satisfies
gam@), sincethe formulasin the secondconjunctare universallyvalid. And standard
models are general assignment models with a full set of assignments.
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Next, from (b) to (a), leM, V, s |= gam@). As in Sectionl.2, this situationinducesa

quasi-model fow. Recallthat the relevantformulasareall subformulasof ¢ plus their
alphabetic variants with variables fromThe types othe quasi-modebre now all sets
of relevantformulastrue at the assignment& V. We mustcheckthe four clausesof

Definition 2. Here, the first two follow directly by the truth definition for Boolean
operationsNext, the third existentialgeneralizatiorclauseholdsfor all types because
of the truth of conjunct (i)' iset-upf). And finally, the special'witnessclause'(d) for
existential quantifiers iisuitably relatedtypesholds becauseof the truth conditionfor
the existentialquantifierin generalassignmenmodelsplus the true transfercondition
(i)' in set-up@). Thus,the given guardedformula ¢ hasa quasi-model- and henceit
also has a standard model by Lemma 3. &

The same reasoning extends to the loosely-guarded frag@EnOnecanalsorecast
Theorem 4 in other interesting ways,isslonein Andréka& Németi2005. The latter
uses conjunctions dhe specialformulas ¥Xx ([uly] ¥ — Fyy), vX (Y (2 — ¥y w(2)

in Definition 5 to raise further issues comparing standard first-order vadiddysAM-

validity. We do not pursue these here.

Remarkl Marx 2001, which cameto our attentionafter completingthis paper,also
addresseshe issue of semanticrelativization versus syntactic guarding. Following
earlier results from 1997, Marx gives a two-way reduction like our Theazegs but
instead of 'loading' the translatigapmaswe havedone,he works with specialgeneral
assignmenmodelssatisfyingFull Locality plus a 'Local Cube’ property guaranteeing
the validity of existentialgeneralization Another illuminating resultin the paperis a
model-theoreticpreservationtheoremfor the 'packedfragment of first-order logic
(roughly, a slight extension &fGF). This isshownto be the largestfragmentof first-
order logic that is insensitive betweenevaluationin standardmodels and models
relativized to some 'tolerance relation'.

25  Consequences. general semanticsfor fixed-point languages

Sections 2.3, 2.4 show that we can think in two modes dipstiorderlogic: eithervia
syntactic quantifier guards, or via generalizedsemantics.This duality transports
insights from one areato another.Here is one examplethat may be of interest.
Considerthe fixed-point version LFP(FO) of full first-order logic. This language
extends the usual inductive formation rules for first-order syntax with an operator

JU'P1 Xe Q{’(P’ Q1 X)
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whereP may occuronly positivelyin #(P, Q, X), andx is a tuple of variablesof the
right arity for P. The relevantpredicatesare the smallestfixed-pointsof the following
monotone set operation on predicates in any given nvbdel

FY, = AP+ {din M | (M, P),d |= ¢(P, Q)}

We sawthat Gradel1999B showedthe fixed-point versionLFP(GF) of the Guarded
Fragmentto be decidable,unlike the much stronger LFP(FO) itself. But then, this

phenomenortanalsobe understoodn dual mode,on generalassignmentmodels.In

algebraic terms, the 'relativized' versiorLBP(FO) is well-behaved!

Formulasg in the languageéFP(FO) now need a bit moreare,sincevariablesareless

‘anonymousin generalassignmenmodels,as we noted before. In particular, when

defining a predicate:P, x* ¢(P, Q, x), the particularvariablesx matter. This suggests
that weare only defining valuesfor the specificatom Px, whereasvariantssuchas Py

must be viewed as substitution instarjgés|Px. With this understanding, we cajive

a definition of semantic evaluation as before.

Definition 6 GAM fixed-point evaluation.
Formulas¢in the abovelanguageinducethe following map in generalassignment

models M, V) with some given assignmestfor the free variables i

FMs = AP {din M | six:= dleV & (M, P), sk:= d] |= ¢(P, Q)}

Smallest and greatest fixed-points are then defined as usual. &

Example 1 Transitive closure of guard predicates.

Considerthe fixed-point formula ¢ = pP, x» Qx v Fy [y/X]Px. Its approximation
sequence as defined above starts with the empty $&tdad it ends bgtagew, where
iteration of the majp M':, produces nothing new. Here are some stages:

P = &

P! = {d | s[x:=d]eV & (M, P°), s[x:=d]|= Qx v Fy [y/X]Px}
= {d]|s[x=d]eV & Q(d)}

pP? = {d | s[x:=d]eV & (M, PY), s[x:=d]|= Qx v Fy [y/X]Px}

= {d | s[x:=d] eV & (Q(d) v for some object e:
s[x:=d][y:=e] €V & s[x:=e][y:=e] € V & Q(e))}
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Iteratively, one computes the set of all objetksr which there isan objecte satisfying
Q reachable frond in the transitive closure of the following relation:

Rab iff s[x:=a]ly:=b], s[x:=b][y:=b] €V. &

We forego further details herebut note how thesefixed-point computationgoring to
light the hidden dependency structure of the relevant general model.

Theorem 4 LFP(FO)is decidable over general assignment models.

Proof First, the translationguard in Section2.3 from arbitrary formulasto guarded
onescaneasily be extendedto the languagewith addedfixed-point operators.Next,
translationsareinside the languageof LFP(GF), andfixed-point evaluationmust stay
inside the setof tuplessatisfyingthe guardrelationR. Lemma4 will still go through
then — and Gradel's earlier-mentioned result supplies the decidability. &

The more generaldirection suggestedy theseresultsis a systematicuse of general
assignment models in abstract model theory for extensions of first-order logic.

3 Guardsin second-order logic

3.1  Lowering complexity in higher-order logic

Guardingwas introducedfor making first-order logic decidable— but strategiesfor

lowering complexity of logics havebeenaroundat least since Henkin introducedhis

general models for second-orderdogic. These make the latter system effectively
axiomatizableandindeedequivalentto a two-sortedfirst-orderlogic over objectsand
setswith a primitive relation e betweenthem.On thesemodels,one can then impose
any family of Comprehension axioms for set existence as addifisstabrder axioms.
Van Benthem 1996A asks whether the guarding and generalmodel strategiesare
related. What follows is a partial answer, triggerecdbgtherprecursorof GF, viz. the
useof 'persistentformulas'in so-called'extendedpragmaticlanguagesin Montague
1970. Theselanguageswere inspired by earlier work of Orey in the 1950s on

fragments of higher-order logics, amdpractice,they candealwith much of whatone
would naturally want to say in natural language.

3.2  Persistent formulas
Montagueobservedtogetherwith his studentKamp) that, inside the full languageof
second-order logic, the following set of formulas is particularly well-behaved.
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Definition 7 Persistent second-order formulas.
Persistentsecond-ordeformulashaveall their second-ordequantifiersrelativizedin
the format IX(R(X, Y, 2 » ¢), whereR is somethird-order predicate,Y a tuple of
predicate variables, arzdh tuple of object variables. Tpersistent fragmentf second-
order logic with just these forms of quantification is caR&DL &

Here, third-ordepredicateexpresspropertiesof setsor relations.Examplesof third-
order type-theoreticobjectsare generalizedquantifiers (see below), as well as other
higher-order constructions in mathematics or natural language semantics.

Theorem 5 PSOLis effectively axiomatizable.
Proof The key observation is the following.
Lemma5 PSOLformulas have standard models iff they have general models.

The direction from left to right is obvious. Conversely,considerany generalmodel
M, P, P, s |= ¢ whereP is therestrictedrangeof predicatesNext, considerthe full
standardnodelM™ = (M, P, s) which allows for the family PRED of all predicates.
Moreover, just copy all third-order predicatesk usedin the boundedquantifiers of
@: so thatthey only relatepredicatedrom the earlierfamily P and possiblyindividual
objects. Now it is easy to prove by induction that

M,P,P,s|=¢ iff M,PREDP,s|=¢, for all PSOLformulasg.

The key inductive stepis that for the existentialquantifiers IX(R(X, Y, 2) A ¢) over
predicates. From left to right, this is obvious,sincePRED extends P. From right to
left, we usethe truth of the boundingpredicateR in M* asdefinedaboveto conclude
that the predicat¥ must belong té.

Finally, since validity in generalmodelsis effectively axiomatizableby the usual
Henkin-style proof, the same holds for standard validifg®®L-formulas. &

The above proof does not check whether general models satisfy Comprehension
Principles 7Y ¥X (Yx < w (X, z, P)) for all second-ordeformulaswy. The latter serve
to make sure that the logic satisfies universal instantiation in its strdogastor our
purposes here, we omit this point. The above is realyductionfrom satisfiability for
PSOLto satisfiability in two-sorted first-order logic.
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3.3  Bounded Fragment versus guarding

The key inductive stepin the proof of Lemma5b expresses familiar fact from first-
order logic concerningboundedformulas having all their quantifiers relativized to
someatomic predicate For, the abovegeneraimodelM, P was a so-called'generated

submodel' of the full modd&l* with respect to its predicate subdomaiand Feferman
1969 showedthat the characteristicsemanticfeature of boundedformulasis their
invariance for generatedsubmodels More precisely, Lemma 5 also allowed for

unrestrictedquantifiersover objects,as objectdomainsarethe samein M, P and M*.

Van Benthem1983 containssome semanticpreservationtheoremsfor these mixed
settings. We now focus dhe BoundedFragmentBF. This differs from the Guarded
Fragment in allowing the more general quantification

Fy (G, y) & ¢(x, Y, 2)

where the formula at the end may contain new free variables.This fragmentis still
undecidable, but its semantic invariance behaviour has applicatianthmeticand set
theory, as a way of defining suitably ‘absolgi@pertiesnot affectedby the difference
betweenstandardmodels and generalizedmodels. Ten Cate 2005 has a modern
treatmentwith interestingnew results,including the one that BF equalsthe first-order
definable part of basic modal logic with added propositional quantifiers.

For the general perspectiveof this paper,the relevantpoint is this. Like GF, BF also
represents a general stratdgy lowering complexity of given logical systemsWithin
second-ordetfogic, it reducescomplexity of validity to RE It does not take things
further to decidableaswe just noted— but the latter would happenif we restrict the
syntax ofPSOLstill further, to just guardedquantifiersover predicatesand objects.It
may be of interest to seehich partsof higher-orderogic or settheorythat motivated
the usesof BF areevenguardedin this strongerfashion.Finally, aswith GF, the BF
strategy occurs in two guises: either syntax restriction, or semantic model
generalization. Thus, it seems tB& andGF are a natural pair.

34  Further modal second-order fragments

The preceding ideas apply to existing modal languages with a second-order flavour.

Example 2 Neighbourhood semantics
In modal neighbourhood semantics, the key semantic clause is

M,s|=[]¢ Iff there exists some set of worlds
with N s, X& ¥teX: M, t |= ¢.
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HereN is a given third-orderelation betweenworlds and setsof worlds. This form is
guarded, and hendke basicmodallogic of thesemodelsis decidable Moreover,one
can evenextendthe logic while stayingguarded— by introducinga secondsort of
formulas expressingmodal propertiesof sets X, with operatorsreferring to their
elements.Such decidable languagescan be made still stronger by using truth
conditions in the loosely guarded fragmeGi-. &

Another line of investigationwould be guardedor loosely guardedfragments of
quantifiedmodallogic, or monadicsecond-ordetogic MSOL And of course,if only
REness is the target, truth conditions ipeaisistenformat will suffice!

Example 3 Generalized quantifiers.

The mostexciting challengefrom our viewpointis that of generalizedquantifiersin a

modalformat. It is known that addingsimple quantifiersto first-order logic, suchas

Most A are Bor At least as many A are B &makesthe languagenon-axiomatizable,
as the standard natural numbers can be defined. Can this compétdatgedby some

sort of guarding strategy? One way of doing this uses guard relRtmmengobjects.

One might interpret, e.g.,

Most xe @(x, Y), ¥(X,y)) as saying that the majority
of objectsx satisfying@(x, y) A Rxy also satisfyAx, y).

But it is not known if this move makesthe logic decidableE.g., van der Hoek & de
Rijke 1993 do axiomatize a decidable basic mamlzt defining an operator'most R-
successor®f the currentworld...”, but this only works on equivalencerelations R
where iterated operators collapse — and things can be provedtbyorce. Eric Pacuit
(p.c.) has claimed decidability for the general modality "in the majority of successors".

But thereis also anotherrelevantanalysis.A generalizedquantifier is a third-order
predicate, as with persistent formulas. Now this does notiyeigelf, aswe are using
a fixed interpretationfor this predicate,not a freely assignableone as neededin the
abovereductionto RE-complexity. Neverthelesspne can try to boundor guard the
second-ordeguantifiersoccurringin that fixed interpretationitself. E.g., the above
statement about a ‘'majority’ says that there is some injective map freet gkleg(x, y)
A =Rxy} to the set{x| @(x, y) A Rx}, while thereis no such map in the opposite
direction. But we can bound this as follows:

There is some injective maatisfying some third-order proper®/from
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{x] ¢(x,y) » =Rxy} to{x| ¢(x,y) » R¥}, but not in the opposite direction.

The property P may be motivatedas restricting attentionto some sort of ‘available’
maps, say computableones— or mapsthat are simply definable from the given
predicates. At least in natural language semantics, this is a natural restriction. &

These examplesare merely meant to illustrate that both bounding and guarding
strategies may be of use in second-order logic, in ways unexplored so far.

4 Further waysto go

Sections2, 3 havejust addressed few of the more generalissuesthat can still be
raised about guarding. In this final section, we list a few more, as a short agenda.

4.1  Guarding lower down?

Guards make sense, rjost higherup from first-order logic, but also but lower down

in much more restricted formalisms. For instance, Kerdiles 2001considdasiguage
CG of conceptual graphs which has only atoms, conjunction, and existential
quantifiers. The complexity of the general consequenceproblem between such
formulas isNP, but we have thatonsequencbetweerguardedCG-formulasis in P.

This result suggestghat guardingcan take the 'N' out of 'NP' sometimes,but the
precise extent of this phenomenon is unknown.

4.2  Replacing modal logic by GF?

The GuardedFragmentconsiderablyextendsthe expressiveresourceof basic modal
logic. Moreover, it lives insidéhe familiar formalismof first-order logic, and that with

meta-properties roughly similar to those of basic modal logic. One esulithenfor a
systematic replacement of the latter formalism by the mumte liberal GF in all sorts
of contexts. For instance, tpecalculus is a prime example of a decidable mégad-

point languageput why not use the full LFP(GF) instead(cf. also Gradel 1999A)?
Likewise, whatevercan be donewith standardmodalbisimulationseemsalso feasible
with the 'guardedbisimulations'of Andréka, van Benthem & Németi 1998. This
substitutionhasnot yet beenstudiedin its generality,andthere may still be casesof

logic combination where system properties @R may havesurprisescomparedwith

basic modal logic. All theseare theoreticalquestionsthough— and there remainsa
much more practical concern:

4.3  Empirical coverage of guarding
Basic modal logic capturesa certain amountof reasoningabout monotonicity and
distribution, and part of its attractionis that modal patternsof expressionwithout
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explicit variable-bindingdevicesare widespreadn many areas.What about guarded
syntax? If we do a real empirical survefytypesof expressiorfound in standarduses
of first-orderlogic, are we going to find a high degreeof guardedness®or a start,
generalized quantifie®(A, B)in naturallanguagealwaysoccurrestrictedto definable
subdomaing\ ("all humansare mortal”, "mosgentlemerpreferblondes”).Still, this is
not yet full guarding (cf. Section 3.4)but rathera caseof bounding astheremay be

new free variables in the follow-up predicBte

Perhaps a better test case than natural langliagaurseare formal proofs. One good

way of appreciatinghe powerandlimits of guardsis by looking at tiling arguments
for undecidability. One writes a first-order sentencedescribing a tiing on some
rectangular grid which is satisfiable iff a tiling existsNxN with thefinite setof given

tiles. Examining the relevamitssertionspne finds that most of themare guarded- but

one crucial property is not, vithe confluencepropertyof a grid: going north-eastan

be mimicked by going east-north.The latter assertionis not guarded,and not even
loosely guarded. Thus, guarfdsl wheneversomesort of confluenceis required.This

border line is very significant, e.g., when desigramgcesdogics in computerscience.
Anotherrich testareafor the scopeof GF and BF-style fragmentsare the theoriesof

space-time investigated in Andréka, Madarasz & Németi, to appear.

5 Conclusion

The original motivationsfor the GuardedFragmentwere diverse, ranging from the
designof decidablewell-behavednodal fragmentsto generalizedsemanticsand from
complexity lowering of validity in first-orderlogic to similar concernsin other areas.
These ideas still seem alive, and they can still be pushed a little further.
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8 Appendix  Quasi-models per se
The original working methods f@F may have a broader spin-off by themselves.

In particular,quasi-modelsrea mix of modalfiltration andthe 'mosaicsof algebraic
logic — and to some extenteven semantictableausfor first-order logic. Right now,
mosaics — introduced in Németi's 1986 dissertation, with Németi 199Bage up-to-
date reference— seemthe methodof choice for proving decidability in modal and
algebraiclogics — with contributionsby Marx, Mikulas, Reynolds,and many others.
But quasi-models may also be appreciaiedheir own. First, a quasi-modefor some
initial formula¢ is a modal modeV, for a first-order languagasit stands.The types
are the worlds, there are accessibility relatenf agreeing on all formulas havimg
free variables ix, andfor atoms,V(4, Px) =1 iff PxeA. The following Truth Lemma
is then easily proved by induction:

Lemma 6 ForallaeSUB, and all typegt inM, M, A |=a iff acA,

Thus, quasi-models are models by themselves, and this may leew applicationsof
modalmodel theory to first-order logic. The connectionbetweenmodal modelsand
standard ones has been studied in some detail van Benthens&886ns9.8 and 9.9,
with results such as the followinget x, y standfor finite sequencesf variables.The
notation R, denotesthe sequentialcompositionof accessibilityrelations R, as they
occur in their given order x

Theorem 6 An abstract modal fram@&, {R}xeVAR)is isomorphic
to the frame of some general assignment model if and only if
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theR, are equivalence relations satisfying all 'Path Principles'
@ if sRat,..., s Rt and the only variable

occurring in all ofzy, ...,z is x, then s R¢t.
(b)  if no variable occurs in all &, ...,z, thens=t.

Representingnodal modelswith valuationsin this sameway is an open problem.
At least, stronger Path principles are needed. But less, tatttanore,is neededf we
are content with a weaker structuegjuivalencehanisomorphism.Thenan unraveling
argument like the earlier one for quasi-models shows the following.

Theorem 7 A finite modal model is bisimilar to a general assignment
model if and only if its accessibilities are all equivalence relations.

For bisimulationswith standardmnodels,the situationis more complex.First, havinga
quasi-model — finite by definition — does not imply having a finite stanceadkl. E.g.,

it is easy to find a quasi-model for the first-order formidkyz((Rxy& Ryz)— Rxz)&

X Iy Rxy& ¥X =Rxx which only hasinfinite models But in fact, having a quasi-
model need not imply standard satisfiability at all. E.g., the predicate-logically
inconsistentformula #x Fy Rxy & -3y Ix Ryxis clearly satisfiablein the general
assignmentmodelM with domain{1, 2}, relation{<1, 2>}, andjust oneadmissible
assignmens, viz. {(x, 1), (y, 2)}. This model also satisfiesthe earlier Existential
Generalizatiorand Full Locality. The single type of M inducedby s is thereforea
quasi-modefor 7x Fy Rxy& -3y Ix Rxy This 'inconsistencyin a set of types may
seem strange — but it also shows that quasi-models are intriguing structures.



