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Abstract. This is alight *divertissement’ about the problems of modern
transportation, and the beckoning pleasures of meeting with Jorg.

Getting nowhere

Traveling between Saarbriicken and Amsterdam is easy, as Jorg well knows. A
convenient, network of connections exists between these two capitals of logic and
computation. In the phantasy world of this essay, the network is as pictured
below. But what if the transportation system breaks down, and a malevolent
demon starts canceling connections, anywhere in the network? Of course, a vet-
eran Al researcher adapts, and changes to the next optimal plan. But what
if, at every stage of his trip, the demon first takes out one connection? From
Saarbriicken to Amsterdam, Jorg still has a winning strategy. The Demon’s
opening move may block Brussel or Koblenz, but then Jérg goes to Luxemburg
in the first round, and gets to Amsterdam in the next. The Demon may also cut
a connection between Amsterdam and some city in the middle - but Jérg can
then go to at least one place offering him still two intact roads. My own Dutch
situation is less rosy, however. This time, Demon has the winning strategy. It
starts by cutting a link between Saarbriicken and Luxemburg. If I now go to any
city in the middle, Demon always has time in the next rounds to cut my beck-
oning link to Saarbriicken. Oh, that fair city on the Saar, and yet s0 inaccessible!
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This story may sound like a bad fairy tale - but users of the Dutch Railway
System NS will recognize the prevalent situation since one year. Connections
disappear in malevolent, patterns, and what used o be simple travel has become
a game of high complexity. This essay reflects the thoughts of a traveling logician
stuck at strange stations...



From algorithims to obstruction games

The preceding example is the well-known task of Graph Reachability ’sabotaged’.
More generally, any algorithmic task over graphs can be turned into a two-player
game, with one player 'Runner’ trying to do the original job, and another player
‘Blocker’ taking out, edges at each stage. Different schedulings and winning con-
ditions are possible. For instance, consider a game which sabotages Traveling
Salesman. An undirected graph is given, and Runner must complete a circuit,.
This time, Blocker lets him start in each round, and then takes out a link. Play-
erg must move as long as they can: the game stops the first, time a player cannot
move. Runner wins if the end situation contains a completed circuit; otherwise,
Blocker wins. Which player has a winning strategy in the following game, which
starts with Runner at the black dot?
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It may take a moment: but then you will see that Blocker has the winning strat-
egy, first cutting one upper link. {(Complex games of this sort are a nice pastime
for winter evenings.) But, why this implicit trust, that one of the two players must
have a winning strategy - i.e., that the game is determined? Recall Zermelo’s
Theorem from the dawn of game theory. It says that each finite two-player zero-
sum game is determined. Of course, the great German set theorist was thinking
about, Chess when he proved his result - as the Reichsbahn was still running
according to schedule in his days - but the mathematics applies equally well to
our modern trangport plight. The reason is that the sabotage games still satisfy
Zermelo’s three conditions.

One can see this as a game tronsformation. The original algorithmic task is
a graph game with just one player, where that player must perform a sequence
of moves creating a path with some desired property {ending in a spedified lo-
cation’, *forming a circuit’, etc.). Now we get a new game, whose local states are
subtrees of the original game tree, with a current position for Runner indicated,
whaose moves are of two kinds. Runner can follow an edge from his current, posi-
tion in the given graph, but Blocker can choose a new graph missing one edge.
For instance, the Traveling Salesman game has the given diagram as an initial
node. We display one opening move for Runner, followed by one for Blocker:

30 04 30 04




This blow up of the original search space to a game tree involves an exponential
factor - though Blocker’s moves also simplify the game as the graph gets simpler.

Complexity bounds and model checking

Intuitively, solving my travel problems, if possible, against sabotage seems more
complex than the old task itself. Graph Reachability is in P, Traveling Salesman
is NP-complete. We will not determine the exact complexity of their sabotaged
versions, but some quick general observations can be made. First, note that
both problems amount to model-checking with first-order formulas. Given any
finite graph G, they state the existence of a sequence of points satisfying some
first-order definable condition, i.e., both check an ezistential formula of the form:
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where k is of the order of the size of G. More conveniently, think of the graph as
a domain of edges, and let the existential quantifiers run over these. What is the
effect of Blocker’s activities? At each stage, one edge is removed arbitrarily. The
result, of this progressive impoverishment, is that Runner has a winning strategy
if and only if the following first-order formula over edges is true in the graph G:
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where o' is the old condition suitably adapted in terms of endpoints of edges.
The length of this second formula is still linear in the size of the graph, but we
have quantifier interchanges now. Thus, an upper bound for the complexity is
that of uniform model checking of first-order formulas over finite models, which
takes polynomial space in the size of the model plus that of the formula.

Fact BSolving a sabotage game takes at most PSPACE in the graph size.
Probably, one cannot do better in general. Here is one lower bound. Consider
the PSPACE-complete problem of Quantified Boolean Formulas. This is akin
to a sabotaged Reachability task. Consider this special case:

Vi 3paVos alp, pa, Ps) with & some propositional formula

Now look at a graph with 3 nodes, and edges distributed as follows:
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thick edges : label frue
thin edges : label false



Here is a sabotage game over this graph. Blocker starts each round by taking
away an edge, after which Runner chooses an edge to cross. The game ends when
Runner can no longer move - and such a situation is counted as a win for Blocker
iff it is an end point and the formula ap, p2, p3) evaluated according to the
labels true or false of the successive edges chosen by Runner is false. Now, let
us analyze the strategic situation in this game. Blocker must let Runner move
three times: otherwise he loses. But by taking away links, he can force the truth
value at the first step, and then at the third - or perhaps just at the third. For
Runner 1o succesfully counter all possible actions by Blocker requires the truth
of the following formulas:
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But the second to fifth formulas are implied by the first. Thus, Runner has
a winning strategy in this game iff the first quantified Boolean formula is true.
I suspect that the general situation with ; propositional variables yields to a
similar construction, which suggests that

Sabotaged graph tasks can be PSPACE-hard games.

Admittedly, the preceding example is contrived - and its trick does not work
for the above sabotaged Reachability or Traveling Salesman. On the other hand,
John Rell pointed at the related (though more invalved) game 'Roadblock’ in
David Harel’s beautiful book Algorithmics, which takes even essentially EXP-
TIME. The general complexity behaviour of sabotage still eludes me.

Modal logics over changing models

Instead of solving our complexity problem, we will look at it from another angle.
Solving, say, a standard reachability problem amounts to evaluating a modal
formula with a number of disjunctions of the form ¢... ¢ » , where p holds in
the goal states. Uniform maodel checking for modal formulas on a finite model
is known to be in P-time - measured in the size of the model and the length
of the formula. But the above sabotaged versions involve changing the model
as we proceed. Here is a way of viewing this, thinking of models where arrows
are treated as objects. Introduce a cross-model modality referring to submodels
from which objects have been removed:

M,s |=&¢ iff there is a world w # s with M-{w}, s = ¢

Now the language has both an ’internal modality’ ¢ and an ’external maodal-
ity’ ¢, which can be combined. E.g., the fact that universal modal formulas



are preserved under submodels shows in valid principles like Op = EIOp. Actu-
ally, despite the modal notation, this language lacks some typical modal features.

For instance,
the formula &0 | is not invariant for bisimulations.

This formuyla holds in an irreflexive 2-cycle, but it fails in the bisimilar model
consisting of a single reflexive point. Nevertheless, the formulas of this langnage
are still translateable into an obvious first-order language, using the same trick
as above. Eg., 60 L

says that Jy # x -3z # y : Rzz.

The blow-up in this translation is only polynomial, and hence model checking
in the new language can be performed in PSPACE, the complexity of uniform
model checking for first-order formulas. But is this upper bound also a lower
one? After all, the model shrinks when we make a jump via the operator §. The
same open question of complexity now returns:

What is the complexity of uniform model checking for the @, @ language?

Another obvious open questions concerns the complete logic of these operators.
Logics like this axiomatize a bit of the meta-theory of modal evaluation plus
some natural model operations. One could also add modalities for passing to
arbitrary submodels {on finite models, this is the Kleene iteration of ), and other
model constructions have been considered as well. E.g., in modern update logics
for communication, a public announcement, A! of an assertion A restricts the
current, model to only those worlds where A holds. Evaluation of further modal
statements about agents’ knowledge and ignorance then moves to a definable
submodel, driven by mixed assertions such as 0.4 K;¢. And there are still further
examples in the literature. The above is just a start. New questions of model
checking and completeness emerge in all such systems.

Disturbing a gamne in general

Time for some free association! We turned an algorithm into a game by intro-
ducing a disturbing player madeling the action of a hostile environment. But we
can algo disturb any game itself. One simple variant is as follows. Consider a
game free, with one player for convenience - and at the start of each round, let
Blocker prune one game move from the tree. The effects of this local disturbance
are not, 5o dramatic. One can still compute winning positions for Runner in the
original game tree, in the same inductive fashion as with Zermelo’s algorithm
for finding the winning player in finite game trees. The key observation is this:

Fact At any game node, Runner has a winning strategy against Blocker iff
he has winning strategies in the subtrees for at least twe of his moves.



From right to left, this is obvious, as Blocker can only affect at most one of
those subtrees in the first round, leaving Runner free to go to the other one.
From left to right, if there was at most one such subtree, then Blocker can cut
the move to that, and force Runner to choose a move to a losing position. The
resulting inductive algorithm for computing winning positions is about as sim-
ple as that of Zermelo. But, our sabotaged graph tasks are not like this! Blocker
removed an edge from the graph, which cuts travel options for Runner at many
stages in the original search space. This is a global action, which amounts to
pruning a whole set of moves simultaneously from a game tree. The effects of
this are not as easy to compute inductively - again reflecting the essentially
greater complexity of the new game.

Social life and cealition logic

Sabotaging players also make sense in n-person games, whether removing single
moves or whole sets of them. The corresponding game transformation produces
an (n+1)-person game, and the above issue of winning or losing generalizes to
coalitional powers of groups of players, including Blocker. Here is an example:

winl win?2 winl win2

Working upward, inductively, one can compute forcing coalitions for any propo-
sition p. At bottom nodes satisfying p, these are the empty set, of players @ and
its supersets. At end nodes not satisfying p, no forcing coalition exists for p. At
higher nodes which are turns for player j , the rule is this:

Take all p-forcing coalitions that occur at daughters and add j to them.
To simplify the calculation, supersels may be suppressed here - as these rep-

resent, weaker derived powers of groups. For the above game tree, with p the
predicate winl, the minimal p-forcing coalitions would be:
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But the logic of sabotage supports more refined new notions, such as Blockexr’s
being able to determine the outcome of the game - in the sense of being able
10 make either player 1 or player 2 win. Also, players can make a pact with the
Devil, and oppaose their old antagonists more effectively. Modem modal game
logics describe these complex statements of powers for individuals and coalitions
in a general way. With our earlier games on graphs G , such statements still
translate into first-order properties of G - and the earlier observation about
model checking still applies.

Thus, after the game transformation, many interesting aspects of sabotage be-
come Iatters of coalitional game theory - and with graph games, even of stan-
dard first-order logic.

Receptions, circulation, and pacts with the devil

This mathematical calculus is closer to real life than you might think. Directors
of ingtitutes like Jorg need the skill of cérculation atf receptions. Suppose there
are b positions, with your starting point at the black dot, and mine at the grey
one. At each round, we have to shift, position: you move fixst, and I follow. One
important, skill among academics of high standing is " meet” versus "avoid”. Here
is a picture of an initial situation plus the situation after one possible round:

@ Q

Analysing the strategic situation, one easily finds the following three 'powers’:

(a) You can force us to meet,
(b) I can force us to meet,

and therefore, none of us can force ’avoidance’ - but still:
{(c) You and I tegether can force us to avoid each other,

mast easily by cycling back and forth at two disjoint links.



More spectacular avoidance strategies for one player against another occur around
cycles, much like sequences of running around obstacles in action movies. Now
introduce a Blocker who can take away links, say a manipulative host. The
new power structure will depend on the scheduling. Consider first a rule where
Blocker starts each round, then you, then me. Then it is easy to see that

Blocker can force us to meet, but also force avoidance.

He forces a meet by cutting links to decrease our room of manoevre, but still in
one connected component. He forces us 1o avoid each other by imprisoning us
inside disjoint components. Pacts with the devil make no sense here, as Blocker
controls all relevant outcomes anyway. With a rule: "First you, then me, then
Blocker”, you retain your earlier power to force a meet, Blocker can force the
same, and I have no significant powers. A pact with the devil does make sense
at the following reception:

o O

o O

Neither you nor I alone have the power to force a meet here, or force avoidance.
But the conlition {you, me} can force a meet, and it can also force avoidance
- by both going to our nearest end-points: Blocker must then cut us off in the
middle. Also, in a pact with Blocker, each of us can force a meet, or avoidance.

These outcomes show that the above general Meet and Avoid strategies for
Blocker alone have their limitations. Still, it is easy to see that they will always
work if he has empty moves, allowing him to wait until we have made our com-
pulsory moves. Another aspect of social algorithmics is potential redesign. Once
powers for meeting and avoiding have been computed for a reception scheme,
a host might want to design simpler - perhaps cheaper - social events with the
same effect. Moreover, these are not mere formal phantasies. When the German
president von Weiszéicker visited Groningen University in the early 1980s, we
professors at his gala reception were all given a mathematical circulation dia-
gram with exact choreographic instructions on how to move from table to table.
I guess the much greater professionalism at our modern Dutch universities also
inclides instructions on what to say. ..



The meaning of sabotage

Any algorithmic task can be ’sabotaged’ to create real-life versions in a hostile
environment. This can be done by turning it into a game, which can be studied
by known techniques. Thus, in Clausewitz’ immortal phrasing, game theory is
“algorithmics pursued by other means”. But there are also other perspectives
on these phenomena. In particular, the logical model-checking angle suggests a
study of evaluation of first-order logic on structures which change under evalua-
tion. E.g., an object might become unavailable once drawn from the domain, or
a fact might change when inspected {think of measurement, in quantum mechan-
jcs). This would be like adding aspects of sabotage to logical evaluation games.
Finally, in the realities of modern transport, sabotage comes in a more global and
statistical fashion. Thus, we might also assume that Blocker is a blind opponent
cutting links with equal probability. This will generally improve the situation
for Runner, and one can use a Zermelo algorithm to compute his ezpected game
values, indicating the degree of deterioration from Runner’s prospects in the ini-
tial tagk. E.g., with a random Blocker, here is a piece of the game tree for the
second reception, whose schedule was * You, Me, Blocker:

Blocker
1 1 1 1
/4 I / 4c / 15 : / 4c
You —meet —avoid —avoid
You can force a meeting with
—meet Me probability /5 by playing left,
You can force avoidance with
probability 2/ by playing right
Blocker
YYa s /s

avoid avoid meet




This is more like known tasks in Graph Theory, where random graph problems
may involve removal of nodes and edges. By contrast, our opponents in this essay
are maximally malevolent. More positively, canceled connections may come alive
again in the course of our trip when we add a third player 'Deblocker’. Lots of
further complications to investigate! But then, the field is still young.

Even so, one deeper question remains. Why does the Dutch railway system
behave in its current erratic mode? Instead of thinking negatively about failure
and doom here, we can also think positively about the intentions of our political
leaders who govern it. For many centuries, the average member of our nation has
muddled through life in P-like, or at best NP-like patterns of behaviour. But
now, in the new millennium, the authorities have decided that we have reached
a new plateau of intelligence. The Dutch are ripe for PSPACE tasks, and we
are given a challenging chance to practice these. Similar encouraging experiences
are reported from the British Isles. This represents a new stage in human evo-
Iution, and I am sure we will see many similar phenomena all across Europe soon!
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Postscript
In the few months between the first posting of this essay and publication, Christof
Liding and Philipp Rohde (RWTH Aachen) have answered the main complexity
question. Through an ingenious construction, sabotaged Graph Reachability and
Traveling Salesman both turn out PSPACE-hard on finite graphs.



