
From Onions to Broccoli: Generalizing
Lewis’s counterfactual logic∗

Patrick Girard
Stanford University

November 7, 2005

Abstract

We present a generalization of Segerberg’s onion semanticsfor belief
revision, in which the linearity of the spheres need not occur. The resulting
logic is called broccoli logic. We provide a minimal relational logic, intro-
ducing a new neighborhood semantics operator. We then show that broccoli
logic is a well-known conditional logic, the Burgess-Veltman minimal con-
ditional logic.

Belief revision is the study of theory change in which a set offormulas is as-
cribed to an agent as a belief set revisable in the face of new information (Cf.
[6, 11]). A dominant paradigm in belief revision is the so-called AGM paradigm,
which describes a functional notion of revision (cf. [1]). Anatural semantics in
terms of sphere systems (cf. [8]) was given by Grove in [7] anda logical ax-
iomatization was extensively studied by Segerberg (cf. [12] and the forthcoming
[13]). The resulting logic is called “dynamic doxastic logic” (DDL). A gener-
alization of theAGM approach in which revision is taken to be relational rather
than functional was first studied by Lindström and Rabinowicz (cf. [9]), and was
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the winter quarter of 2005. I thank the participants for their enthusiasm and support, then and later.
In particular, I thank Krister Segerberg for introducing meto dynamic logics for belief revision,
Hannes Leitgeb and Tomasz Sadzik for their contribution in developing the abstract neighborhood
models used in this paper, and Johan van Benthem for suggesting that broccoli logic is really the
minimal conditional logic. Finally, I thank the anonymous referees for their helpful suggestions in
improving the paper.

1



pursued in [4]. Their motivation was to formalize cases in which an agent may
obtain incomparable belief sets after revision with new information. In this paper,
we will pursue this generalization and propose a relationalbelief revision logic.
We call the resulting logic “broccoli logic” (BL) and the type of revision it depicts
“broccoli revision”. As it turns out, and this will be the main result of this paper,
BL already exists, in the guise of what we call “minimal conditional logic” (MCL
for short), studied by Burgess and Veltman (cf. Burgess [3] and Veltman [14]).

In section 1, we outline onion semantics and the intended generalization to
BL. In section 2, we give a minimal relational logic (MRL) with its complete
proof system. The semantics of this logic is in effect a neighborhood semantics
(cf. [5]), but we will interpret it in terms of revision instead. In section 3, we will
propose ways of expendingMRL to get a complete proof system forBL and we
will point at a major difficulty in this task, namely to provide a so-called arrow-
condition for generalized selection functions. Finally, section 4 will show how the
quest for a generalized selection function, with the promised difficulties inherent
in the project, is avoidable by showing thatBL is equivalent toMCL.

1 Onion and broccoli logics

This section presents the onion and broccoli semantics. We give definitions of
onion and broccoli models and provide the semantics for the broccoli modal op-
erators.

1.1 Onions

An onion is a linearly ordered sphere system that satisfy thelimit condition. More
precisely,

Definition 1.1. Let U be a nonempty set. AnonionO ⊆ P(U) is a linearly ordered
set of subsets ofU satisfying the following condition (the limit condition):for all
X ⊆ U :

⋃
O ∩ X , ∅ ⇒ ∃Z ∈ O s.t.∀Y ∈ O(Y∩ X , ∅ iff Z ⊆ Y)

The limit condition states that every set intersecting an onion intersects a smallest
element. LetO • X = {Y ∈ O : Y ∩ X , ∅}. We use the notation ‘Zµ(O • X)’
to express thatZ is a minimal element of the onionO intersectingX, i.e., for all
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Y ∈ O • X,Z ⊆ Y. The limit condition can succinctly be written as:
⋃
O ∩ X , ∅ ⇒ ∃Zµ(O • X).

1.2 Broccoli semantics

We want to pursue a generalization of onion logic by droppingthe requirement of
linearity, thus generalizing the limit condition.

Definition 1.2. Let U be a nonempty set. Abroccoli flowerB ⊆ P(U) is a set of
subsets satisfying a generalized limit condition.

There are two ways to specify the generalized limit condition of definition 1.2.
LetB|X = {Y∩ X : Y ∈ B}. For allX ⊆ U, if

⋃
B ∩ X , ∅, either:

1. ∃S ⊆ B s.t.∀Y ∈ B(Y∩ X , ∅ ⇒ ∃Z ∈ S(Zµ(B • X) ∧ Z ⊆ Y)), or
2. ∃S ⊆ B s.t.∀Y ∈ B(Y∩ X , ∅ ⇒ ∃Z ∈ S((Z ∩ X)µ((B|X) • X) ∧ Z ⊆ Y)).

Intuitively, a generalized limit condition states that every set intersecting a broc-
coli flower intersects every members of a setS of smallest elements of the flower.
In the first case, the members ofS are minimal sets of the broccoli that have a non-
empty intersection withX. In the second case, the members ofS have minimal
intersection withX.

With a generalized limit condition in hand, it is meaningfulto define coun-
terfactual modalities. Two natural candidates forBL (with their respective dual)
come to mind. Let ‘→’ stand for the material conditional. The first modality says
thatϕ→ ψ holds throughout every minimalϕ-sphere; the second says thatϕ→ ψ

is consistent with every minimalϕ-sphere. We will follow Chellas [5] and write
these two counterfactuals as the unary modalities [ϕ]ψ and [ϕ〉ψ.

Definition 1.3. M = (U, {Bu}u∈U ,V) is a broccoli modelif U is a set of worlds,
{Bu}u∈U is a family of broccoli flowers for each worldu ∈ U satisfying either gen-
eralized limit condition, andV is a valuation assigning sets of worlds to proposi-
tions.

In what follows, we suppress the indexu whenever it is clear from context.

Definition 1.4. We say thatϕ is true at worldu in a broccoli modelM, written
M, u � ϕ iff (taking standard truth definition for the propositional andthe Boolean
cases):
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Figure 1: Broccoli semantics of the counterfactual operators [ϕ]ψ and [ϕ〉ψ.

1. M, u � [ϕ]ψ iff ∀Zµ(B • |ϕ|)(Z ∩ |ϕ| ⊆ |ψ|), and
2. M, u � [ϕ〉ψ iff ∀Zµ(B • |ϕ|)(Z ∩ |ϕ| ∩ |ψ|) , ∅.

Here, as usual,|ϕ| = {u : M, u � ϕ}. We call|ϕ| theassociated propositionto ϕ.

These two modalities are meaningful with either generalized limit condition pro-
posed above. Figure 1 illustrates the semantics of both operators.

2 Minimal relational logic

Our first goal is to get a logic that captures a notion of beliefrevision in which
revision is relational rather than functional. That is, we want to allow for incom-
parable revisions with respect to a belief set. With that purpose in mind, we need
a language that can express notions like “all sets obtained under revision byϕ are
ψ-sets” and “ψ is consistent with all sets obtained under revision byϕ”. In coun-
terfactual terminology, the same claims read as “all minimal ϕ-sets areψ-sets”
and “all minimalϕ-sets intersectψ-sets”. In this section, we introduce a minimal
relational logic that captures the core of these ideas. Section 2.1 introduces the
language and the semantics of this minimal logic. We will useintuitive interpreta-
tions of the semantics in terms of revision, but this is only to keep the motivation
of the paper prominent. We give the axiomatization of the minimal logic in section
2.2 and prove it to be complete in section 2.3.

2.1 Language and semantics

We use a standard propositional language whose primitive Boolean connectives
are negation¬ and disjunction∨, augmented with two modalities [ϕ]ψ and [ϕ〉ψ.
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Figure 2: Minimal relational model

Definition 2.1. Given a finite set of propositional variablesP, aminimal relational
modelis a triple (U,R,V), where:

• U is a nonempty set, the universe;
• R= {R|ϕ| : ϕ is a formula,R|ϕ| ⊆ U × P(U)}; and
• V : P −→ P(U).

Definition 2.2. LetM be a model and letw ∈ U. The truth-definition for atomic
propositions, negations and disjunction is standard. We say that the formulaϕ is
true at pointu in a minimal relational modelM, writtenM, u � ϕ if :

M, u � [ϕ]ψ iff ∀X((u,X) ∈ R|ϕ| ⇒ ∀v ∈ X,M, v � ψ)
M, u � [ϕ〉ψ iff ∀X((u,X) ∈ R|ϕ| ⇒ ∃v ∈ X,M, v � ψ))

The semantics of the modalities [ϕ] and [ϕ〉 contains two levels of quantification
and should be read in two stages: 1) the left bracket picks outa set ofϕ-subsets
of the universe and 2) the right bracket evaluates whereψ is true in these subsets.
Notice that the semantics given by minimal relational models is a neighborhood
semantics (cf. [5]). Indeed, the relationR is a relation between worlds and subsets
of the universe. The modality [ϕ] is the usual neighborhood universal modal-
ity, but indexed with associated propositions|ϕ|. It comes with its dual modality
〈ϕ〉 with the obvious semantics. The interesting addition of ourlanguage is the
modality [ϕ〉, which expresses that every setR|ϕ|-related tou satisfiesψ in at least
one point. In neighborhood terminology, this modality expresses that everyϕ-
neighborhood contains at least oneψ-point. This latter modality also come with
its natural dual〈ϕ]. In the remainder of this paper, we shall no longer appeal to
neighborhood semantics. We will instead provide an interpretation in terms of
revision, but the reader who prefers to think in terms of neighborhood semantics
is urged to do so and to see in what respect it is a generalization of this logic.

Figure 2 presents a simple minimal relational model, in which the worldu is
R|ϕ|-related (illustrated with arrows) to the sets of worldsX andY and such that
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Figure 3: Broccoli flower

Figure 4: Intended semantics of the Broccoli revision operators [ϕ]ψ and [ϕ〉ψ.

ψ is true at every world ofX andY. Hence, according to the minimal semantics
of definition 2.2, [ϕ]ψ is true atu. This is enough to illustrate the semantics of
our minimal relational logic, but to give a motivation for pursuing this semantics,
we illustrate its role inBL. Figure 3 depicts a broccoli flower consisting of two
sets (doted lines) of whichX andY are subsets. Irrespectively of the generalized
limit assumption ultimately adopted, assume that these twosets are minimalϕ-
sets (or that the setsX andY have minimal|ϕ|-intersections). Our goal is to add
restrictions on the relationR|ϕ| in order to get the setsX andY as two minimal sets
returned under revision byϕ. This is illustrated in picture 4. In the picture on the
left-hand-side, [ϕ]ψ is true at worldu, since every set obtained under revision by
ϕ is aψ-sets. Similarly, [ϕ〉ψ is true atu in the right-hand-side picture, sinceψ is
consistent with every revision byϕ.

We see the motivation of the minimal relational logic of the present section.
In a full-blown BL, either additional restrictions on the relationR or so-called
‘generalized selection functions’ will play the role of selecting minimal revised
sets. Once these sets are selected, the minimal relational logic of the present
section will provide the logic to evaluate what holds in these sets. We will discuss
selection function in section 3 below. For the remainder of this section, we will
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present the logic of minimal relational logic and prove completeness. Our goal is
to get a firm grasp of the core of future expansion toBL.

2.2 Proof system

The following set of axioms and rules is complete with respect to onion selection
models:

Axioms:

1. Classical tautologies
2. 〈ϕ〉ψ ≡ ¬[ϕ]¬ψ
3. 〈ϕ]ψ ≡ ¬[ϕ〉¬ψ
4. [ϕ](ψ→ θ)→ ([ϕ]ψ→ [ϕ]θ)
5. 〈ϕ]ψ→ 〈ϕ](ψ ∨ θ)
6. [ϕ]ψ ∧ 〈ϕ]θ→ 〈ϕ](ψ ∧ θ)
7. ¬〈ϕ]⊤ → [ϕ]ψ

Rules:

1. Modus Ponens.
2. Necessitation for [ϕ] and [ϕ〉.
3. If ϕ andϕ′ are formulas differing only inϕ having an occurrence ofθ in

one place whereϕ′ has an occurrence ofθ′, and ifθ ≡ θ′ is a theorem, then
ϕ ≡ ϕ′ is also a theorem.

Rule 3,substitution of equivalents, is applied indiscriminately inside or outside the
modal operators. We count the presence of ‘ϕ’ inside [ϕ] and [ϕ〉 as occurrences
of ϕ. For example, ifψ ≡ θ, then both [ϕ]ψ ≡ [ϕ]θ and [ψ]α ≡ [θ]α are instances
of rule 3.

Axioms 2 and 3 provide the dual modalities of [ϕ] and [ϕ〉 respectively. Ax-
iom 4 is a typicalK axiom for the modality [ϕ] and yields modus ponens under
the scope of [ϕ].1 Axioms 5 is a monotonicity axiom for the modality〈ϕ]. Intu-
itively, if ψ is consistent with some revision byϕ, then anything weaker thanψ

1There is no correspondingK axiom for the [ϕ〉. Consider a modelM such that the setX ⊆ U
is the only subset ofU that isϕ-related to the worldu ∈ U, i.e,R|ϕ| = {(u,X)}. Suppose that both
|ψ| ∩ X , ∅ and|¬ψ| ∩ X , ∅, but that|θ| ∩ X = ∅. Thenu � [ϕ〉(ψ→ θ) (since|¬ψ| ∩ X , ∅) and
u � [ϕ〉ψ, butu 2 [ϕ〉θ. Hence, [ϕ〉ψ(ψ→ θ) → ([ϕ〉ψ→ [ϕ〉θ) is not valid.
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is also consistent with some revision byϕ. Finally, axiom 6 provides a minimal
interaction between the modalities: Ifψ is consistent with every revision byϕ and
there is a revision byϕ such thatθ is consistent, then there is a revision byϕ such
that bothψ andθ are consistent. Finally, axiom 7 says that if there is no revision
by ϕ, then every [ϕ] formula holds vacuously. This is akin to saying that every
necessary formula holds at en end-point in a Kripke model.

Now, Suppose that〈ϕ]⊤ ∈ u for someu ∈ U.2 Then, for everyψ ∈ u such
that [ϕ〉ψ ∈ u, axiom 6 gives that〈ϕ](ψ ∧ ⊤) ∈ u. By monotonicity of〈ϕ] (axiom
5), 〈ϕ]ψ ∈ u. Hence, if there is a revision byϕ and ifψ is consistent with every
revision byϕ, then there is a least one revision byϕ that witnesses the consistency
of ψ. This is desirable for a belief revision logic.

2.3 Completeness

Soundness is a matter of routine. We show the soundness of axiom (6) and leave
the others to the reader. Assume thatM, u � [ϕ]ψ ∧ 〈ϕ]θ. ThenM, u � 〈ϕ]θ i.e.,
∃X((u,X) ∈ R|ϕ|∧∀v ∈ X,M, v � θ). ButM, u � [ϕ]ψ implies that∀v ∈ X,M, v � ψ.
Hence,∀v ∈ X,M, v � ψ ∧ θ. Therefore,∃X((u,X) ∈ R|ϕ| ∧ ∀v ∈ X,M, v � ψ ∧ θ,
i.e.,M, u � 〈ϕ](ψ ∧ θ).

For the completeness part, letUL consists of all maximalL-consistent sets
of formulas. For each formulaϕ, we define an accessibility relationRL

|ϕ|
between

worlds and subsets of worlds ofUL. For all worldu ∈ UL, if 〈ϕ]⊤ < u, then we
put RL

|ϕ|
= ∅. Otherwise, for every subsetsX ⊆ UL and formulasϕ andψ, we say

that the ordered pair (u,X) ∈ RL
|ϕ|

iff X satisfies the two following conditions:

1. for all x ∈ X, if [ϕ]ψ ∈ u, thenψ ∈ x; and
2. for every [ϕ〉ψ ∈ u,X contains at least one worldv with ψ ∈ v.

Definition 2.3. Let p ∈ P be a proposition. LetVL(p) = |p| and letRL = {RL
|ϕ|

:
ϕ is a formula}, then the modelML = (UL,RL,VL) is thecanonical minimal re-
lational model.

The completeness of the proof system in section 2.2 follows from a standard truth-
lemma:

Lemma 2.4. For all u ∈ UL and for all formulaθ, θ ∈ u iff M, u � θ.

2We read〈ϕ]⊤ as “there is a revision byϕ”.

8



We will give the proof of the truth-lemma once we have stated and proved the
following crucial lemmas.

Lemma 2.5. If 〈ϕ]α ∈ u, then there exists a subset X⊆ UL such that RL
|ϕ|

uX, and
for every world x∈ X,α ∈ x.

Proof. Let [ϕ〉θ ∈ u, and let

v− = {β : [ϕ]β ∈ u} ∪ {θ} ∪ {α}

thenv− is consistent. Suppose thatv− is not consistent, then there existsδ1, ..., δn ∈

v− such that⊢ (
∧
δi ∧ α)→ ¬θ. For every 1≤ i ≤ n,

δi ∈ v− ⇒ [ϕ]δi ∈ u (Definition ofv−)
⇒
∧

[ϕ]δi ∈ u (Truth definition)
⇒ [ϕ]

∧
δi ∈ u (Axiom 4)

⇒ ([ϕ]
∧
δi ∧ 〈ϕ]α) ∈ u (since〈ϕ]α ∈ u)

⇒ 〈ϕ](
∧
δi ∧ α) ∈ u (axiom 6)

⇒ 〈ϕ]¬θ ∈ u (by the monotonicity axiom 5)
⇒ ¬[ϕ〉θ ∈ u (axiom 3)

and this is a contradiction, since [ϕ〉θ ∈ u by assumption. Therefore,v− is consis-
tent. Letv be a maximal extension ofv−.

For everyθi such that [ϕ〉θi ∈ u, letwi be obtained from the above construction,
and let

X = {wi : [ϕ〉θi ∈ u, θi ∈ wi}.

ThenX satisfies conditions (1) and (2) and for everyx ∈ X, α ∈ x. �

Corollary 2.6 (Corollary to the proof of lemma 2.5). If [ϕ〉ψ ∈ u, then the set
w = {ψ} ∪ {θ : [ϕ]θ ∈ u} is consistent.

Lemma 2.7. If 〈ϕ〉ψ ∈ u, then there exists a subset X⊆ UL such that RL
|ϕ|

uX, and
there exists a world x∈ X such thatψ ∈ x.

Proof. Assume 〈ϕ〉ψ ∈ u. Then there is a maximal consistent setv such that
ψ ∈ v. The proof thatv exists is standard (see [2], Lemma 4.20).

By corollary 2.6, for every formulaαi, if [ϕ〉αi ∈ u, then the setw−i = {αi}∪{θ :
[ϕ]θ} is consistent. By Lindenbaum’s lemma, there exists a maximal consistent set
wi extendingw−i such thatαi ∈ wi. Let W = {wi : [ϕ〉αi ∈ u}

Finally, letX = {v} ∪W. It is not difficult to check thatRL
|ϕ|

uX, andψ ∈ v. �
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We are now ready for the proof of the truth-lemma.

Proof of Lemma 2.4.Thanks to axioms 5 and 7, if〈ϕ]⊤ < u, then [ϕ〉ψ ∈ u and
[ϕ]ψ ∈ u for all ψ. SinceRL

|ϕ|
= ∅ when〈ϕ]⊤ < u, the lemma is trivially satisfied.

Thus, we assume for the remainder of the proof that〈ϕ]⊤ ∈ u. The proof now
proceeds by induction on the complexity ofθ. The interesting cases are when
θ = [ϕ]ψ or θ = [ϕ〉ψ. The first direction (θ ∈ u ⇒ M, u � θ) follows from the
conditions imposed onRL

|ϕ|
. We prove thatM, u � θ ⇒ θ ∈ u.

Suppose [ϕ]ψ < u. Sinceu is a maximal consistent set of formulas,¬[ϕ]ψ ∈ u.
By axiom 2, this implies that〈ϕ〉¬ψ ∈ u. By lemma 2.7, there exists a subset
x ⊆ UL such thatRL

|ϕ|
uX and a worldx ∈ X such thatM, x � ¬ψ. Hence, by

truth-definitionM, u � 〈ϕ〉¬ψ, i.e.,M, u � ¬[ϕ]ψ. Therefore,M, u 2 [ϕ]ψ.
Finally, suppose that [ϕ〉ψ < u, then¬[ϕ〉ψ ∈ u. Hence,〈ϕ]¬ψ ∈ u (axiom 3).

By lemma 2.5, there exists a subsetX ⊆ UL such thatRL
|ϕ|

uX and for every world
x ∈ X, ¬ψ ∈ x. By inductive hypothesis, for everyx ∈ X,M, x � ¬ψ. Therefore,
by truth-definition,M, u 2 [ϕ〉ψ. �

3 Generalized selection functions

Selection functions are a natural level in between onion semantics and the gen-
eral neighborhood models of the preceding section. A selection function takes
a propositionp as an argument and return a segment from the set of closestp-
worlds (cf. [8]). In this section, we show what properties a suitably generalized
selection function should satisfy to play the same role as selection functions in
onion semantics, and we point to the difficulties of the generalization. We start
with selection functions for the original case of onion models.

3.1 Onions and selection functions

Definition 3.1. A function f : P(U) → P(U) is aselection functionif it satisfies
the following conditions, whereX ⊆ U :

f (x) ⊆ x (INC)
x ⊆ y⇒ ( f (x) , ∅ ⇒ f (y) , ∅) (MON)
x ⊆ y⇒ (X ∩ f (y) , ∅ ⇒ f (x) = X ∩ f (y)) (ARR)

The third condition is called thearrow conditionand is the source of the major
difficulties in the original development of broccoli semantics.
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Let U be a finite set and letF be a selection function onU. Let

S0 = F(U)
Sn+1 = Sn ∪ F(U − Sn)

SinceU is finite, there is a smallestmsuch thatSm+1 = Sm. We leave to the reader
to verify that the setOF = {Sn : n < m} is an onion and thatOF andF agree.3

Hence, models for onions may be given in terms of selection functions.

Definition 3.2. Let U be a set,F a selection function onU andV a valuation
on a given set of propositional variables. We say thatM = (U, F,V) is anonion
selection model.

The truth-definition for the modality [ϕ] in onion selection model is given by:

M, u � [ϕ]ψ iff Fu(|ϕ|) ⊆ |ψ|.

The complete logic for onions consists of the axioms (1), (2), and (4) of section
2.2 together with the additional axioms (I ), (M) and (A):

[ϕ]ϕ (I )
〈ϕ〉ψ→ 〈ψ〉T (M)
〈ϕ〉ψ→ ([ϕ ∧ ψ]θ ≡ [ϕ](ψ→ θ)) (A)

Axioms (I ), (M) and (A) are obvious analogues of conditions (INC), (MON) and
(ARR) of definition 3.1. The total resulting system is almost Lewis’s famous con-
ditional logicVC, provided that we add an assumption of centrality (cf. [8, 10]).

3.2 Broccoli and generalized selection functions

Now, consider the issue of generalizing this format in a non-linear broccoli setting.
(INC) and (MON) are easily generalized inBL to the following conditions,

for all X,Y ⊆ U:

Y ∈ F(X) ⇒ Y ⊆ X (INC∗)
Y ⊆ X and∃Z ∈ F(Y) s.t.Z , ∅ ⇒ ∃Z ∈ F(X) s.t.Z , ∅) (MON∗)

3OF andF agree iff

1. OF ∩ X , ∅ ⇒ FX = X ∩ Sk for somek.
2. OF ∩ X = ∅ ⇒ FX = ∅.
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Figure 5: Counter-model to〈ϕ〉ψ→ ([ϕ](ψ→ θ)→ [ϕ ∧ ψ]θ)

with the identical corresponding axioms (I ) and (M). On the one hand, if¬〈ϕ]⊤ <
u for some worldu ∈ U (i.e. if there is no revision byϕ) then [ϕ]ϕ ∈ u by axiom 7.
But if there is no revision byϕ, thenF(X) is empty, and (INC∗) holds vacuously.
On the other hand, if there is a revision byϕ, then (I ) and (INC∗) express the same
thing. Similar considerations will convince the reader that (M) and (MON∗) go
together.

A difficulty arises when attempting to generalize condition (ARR) in a sim-
ilar fashion. The choice of the generalization depends on the generalized limit
condition adopted. For example, a generalization of (ARR) that seems natural is:

3. Y ⊆ X⇒ (∃Z ∈ F(X) s.t.Y∩ Z , ∅ ⇒ Y∩ Z ∈ F(Y)) (ARR∗)

but (ARR∗) holds only if we insisted on keeping the generalized limit condition
1 of section 1.4 Now, only one half of (A) can be kept inBL, viz. 〈ϕ〉ψ →
([ϕ ∧ ψ]θ → [ϕ](ψ → θ)). The other half makes a crucial appeal to linearity,
as may be seen from the counter-model of picture 5. Furthermore, this counter-
model invalidates〈ϕ〉ψ → ([ϕ](ψ → θ) → [ϕ ∧ ψ]θ) under both limit conditions.
It is an open question to find an appropriate axiom that corresponds to condition
(ARR∗), or alternatively, to find an appropriate generalization of (ARR) that yields
a generalized selection function forBL. This promises to be a difficult task. But
instead of pursuing this enterprize further, we pause and see whetherBL may not
be obtained from an entirely different approach, viz. by showing that the logic
already exists! The fact that it is is the third and final contribution of this paper.

4We shall make such an assumption for the remainder of the paper, unless if stated otherwise.
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4 Broccoli logic and minimal conditional logic

Minimal conditional logic (MCL) was studied by Stalnaker, Pollock, Burgess and
Veltman to capture the idea that a conditionalϕ ⇒ ψ is true if an only if the
conjunctionϕ ∧ ¬ψ is less possible than the conjunctionϕ ∧ ψ, and no more.
Their modeling comes with a reflexive and transitive≤-order for each worldx and
no spheres need occur. In a sphere system, two worlds lying onthe same sphere
agree on which worlds are farther away and which are closer. This assumption
is dropped inMCL. Hence, if two worldsx andy are equally far away in the
underlying order from the real worldu and if the worldz is farther away than the
world y, no conclusions may be drawn as to whether worldz is farther from the
real world than worldx, or vice versa. Instead of changing the onion picture by
allowing non-linearly ordered sphere system as we wish to doin BL, MCL ignores
spheres altogether. It has been a difficult task to find completeness forMCL, and
we refer the reader to Burgess [3] for a detailed proof. This section will show how
to avoid similar completeness difficulties withBL by showing that it is actually
equivalent toMCL.

Section 4.1 provides theMCL semantics, section 4.2 gives the complete proof
system and section 4.3 shows the equivalence ofMCL andBL.

4.1 Minimal conditional logic

A Minimal conditional logic modelis a triple (U,R3,V), whereU andV are as
above, andR3 is a ternary relation onU that respects reflexivity and transitivity
(cf. [3]). The relationRxyzshould be read as “according to worldx, world y is
no farther away than worldz”. We shall write the more suggestivey ≤x z instead
of Rxyz. We letWu = {y : ∃z, y ≤x z} be thezone of entertainabilityfor world
u ∈ U. Intuitively, worlds outside the zone of entertainabilityfor u are worlds so
far away that their distance from the real world is not appreciable. Theminimal
conditional logic languagecontains a set of propositional variables, together with
negation¬, disjunction∨ and a counterfactual modality [ϕ] for every formulaϕ.

Definition 4.1. We say that the formula [ϕ]ψ is true at worldu in the modelM,
and we writeM, u � [ϕ]ψ, iff:

∀y ∈Wu ∩ V(ϕ),∃z ∈ Wu ∩ V(ϕ)[z≤u y&∀w ∈Wu ∩ V(ϕ)(w ≤u z→ w ∈ V(ψ)]

Notice that the semantic definition of [ϕ]ψ does not contain a minimality condi-
tion. However, if the model is finite andM, u � [ϕ]ψ, then there is a minimal
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Figure 6: Simple model such that [p]q is true at worldu. The dotted arrows stand
for sequences of≤-related worlds.

world z ∈ U such thatz ∈ V(ϕ) ∩ V(ψ). Since we will only use finite models for
our equivalence result, we use the minimality formulation in evaluating [ϕ]ψ for
the remainder of this paper. The semantic condition reducesto:

∀y ∈Wu ∩ V(ϕ),∃z ∈ Wu ∩ V(ϕ)[z≤u y&∀w <u z,w < V(ϕ)&z ∈ V(ψ)].

Figure 6 depicts a simple model satisfying [p]q. There are two minimalϕ-worlds,
z andz′, andψ is true at both worlds. Hence,ψ is true at every minimalϕ-world.
We turn to the proof system ofMCL.

4.2 Proof system

The following set of axioms, with the same set of rules as for minimal relational
logic presented in section 2.2, is complete forMCL (cf. [3]):

1. Classical tautologies
2. [ϕ]ϕ
3. [ϕ]ψ ∧ [ϕ]θ→ [ϕ](ψ ∧ θ)
4. [ϕ](ψ ∧ θ)→ [ϕ]ψ
5. [ϕ]ψ ∧ [ϕ]θ→ [ϕ ∧ ψ]θ
6. [ϕ]ψ ∧ [θ]ψ→ [ϕ ∨ θ]ψ

We give some examples of derivable theses.

Example 4.2. MCL ⊢ [ϕ]ψ ∧ [ϕ ∧ ψ]θ → [ϕ]θ
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Proof. Assume 1)⊢ [ϕ]ψ and 2)⊢ [ϕ ∧ ψ]θ. By axiom (2), ⊢ [ϕ ∧ ¬ψ](ϕ ∧ ¬ψ)
and by axiom (4), ⊢ [ϕ ∧ ¬ψ]¬ψ. Hence, by monotonicity in the consequent
(axiom (4) again),⊢ [ϕ ∧ ¬ψ](¬ψ ∨ θ). Now, from assumption 2) and axiom
(4), ⊢ [ϕ∧ψ](¬ψ∨ θ). Combining the two latter results, we get that⊢ [ϕ](¬ψ∨ θ).
But since⊢ [ϕ]ψ by assumption (1), we get that⊢ [ϕ]θ, as desired. �

Example 4.3. MCL ⊢ 〈ϕ〉ψ→ 〈ψ〉T

Proof. We prove the contrapositive. Assume that⊢ [ψ]⊥. Then both⊢ [ψ]¬ψ and
⊢ [ψ]ϕ. Hence, by axiom (5), ⊢ [ψ ∧ ϕ]¬ψ. But ⊢ [¬ψ ∧ ϕ](¬ψ ∧ ϕ) is an instance
of axiom (2) and by axiom (4), ⊢ [¬ψ ∧ ϕ]¬ψ. Therefore,⊢ [ϕ]¬ψ. �

Example 4.4. MCL ⊢ [ϕ ∧ ψ]θ → [ϕ](ψ→ θ).

Proof. Assume⊢ [ϕ ∧ ψ]θ. By monotonicity,⊢ [ϕ ∧ ψ](¬ψ ∨ θ). But ⊢ [ϕ ∧
¬ψ](¬ψ ∨ θ). Therefore,⊢ [ϕ](¬ψ ∨ θ), i.e.,⊢ [ϕ](ψ→ θ). �

As we can see from examples axiom (2) and examples 4.3 and 4.4,conditions (I ),
(M) and one direction ofA of section 3 are derivable inMCL. We see at once that
MCL has the properties we were looking for inBL (cf. 3), and we will now show
that it can getall properties ofBL. The general reason behind these considerations
becomes clear in the next subsection.

4.3 Minimal conditional logic is broccoli logic

LetM = (U,R,V) be a finiteMCL model. We will transform this model into a
broccoli model, by constructing a broccoli flower at each world of M, taking the
downward closed sets of worlds according to the underlying order (see picture 7).

More precisely, letCx(y) = {z ∈ U : z≤x y}, thenBROC(x) = {Cx(y) : y ∈Wx}

is the induced broccoli at worldx. In particular, sinceM is finite, the generalized
limit condition of definition 1.2 holds. An induced broccolimodelBROC(M) is
then given by:

BROC(M) = {BROC(x) : x ∈ U}

The semantics of [ϕ]ψ in the induced broccoli model is given by the following:

BROC(M), x � [ϕ]ψ iff ∀Zµ(BROC(x) • |ϕ|)(Z ∩ |ϕ| ⊆ |ψ|).

The main result of this section now follows from lemma 4.5.

Lemma 4.5.M, x � [ϕ]ψ iff BROC(M), x � [ϕ]ψ.
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Figure 7: Induced broccoli model from theMCL model of picture 6.

Proof. In the one direction, assume thatM, x � [ϕ]ψ. Let Cwµ(BROC(x) • |ϕ|),
and letv ∈ Cw∩ |ϕ|. By the truth definition for [ϕ]ψ,∃z≤x v such thatM, z � ϕ∧ψ
and∀y <x z,M, y 2 ϕ. But z must be equal tov. Otherwise,Cz ⊂ Cv ⊆ Cw

(the latter inclusion uses the transitivity of≤x), which implies thatCz would be
a proper subset ofCw intersecting|ϕ|, contradicting our assumption. Thus,v ∈
|ψ|, which implies thatCw ∩ |ϕ| ⊆ |ψ|. Therefore, asCw was chosen arbitrarily,
BROC(M), x � [ϕ]ψ.

In the other direction, assume thatBROC(M), x � [ϕ]ψ and suppose thatM, y �
ϕ for somey ∈ U. ThenCy∩ |ϕ| , ∅. Hence,∃Cw ⊆ Cy such thatCwµ(BROC(x) •
|ϕ|) (by the limit condition!) andCw ∩ |ϕ| ⊆ |ψ|. But sinceCw ⊆ Cy,w ≤x y.
Assume thatw is not a minimal world satisfyingϕ ∧ ψ with respect to≤x, then
∃w′ <x w such thatM,w′ � ϕ∧ψ. This implies thatC′w ⊂ Cw andC′w∩|ϕ|∩|ψ| , ∅,
contradicting the minimality ofCw. Therefore,w is a minimal world satisfying
ϕ ∧ ψ and sincew ≤x y, we get thatM, x � [ϕ]ψ. �

We are now ready for our main theorem.

Theorem 4.6.Broccoli logic= MCL.

Proof. To show thatMCL is BL, we need to show 1) that all axioms of section 4.1
are valid inBL, whose semantics was given in section 1 and 2) that if a principle
is not derivable inMCL, then there is a broccoli countermodel.

Showing that theMCL axioms are valid in theBL-models of section 1 is
straightforward. We show that axiom (5) is valid and leave the others to the reader.
LetM be an arbitrary broccoli model and letu ∈ U be arbitrary. If¬〈ϕ]⊤ < u,
i.e., if there is no revision byϕ, then the thesis is vacuously true. Hence, assume
that there is a revision byϕ. Assume furthermore thatM, u � [ϕ]ψ ∧ [ϕ]θ. Since
M, u � [ϕ]ψ, |ϕ| ∩ |ψ| , ∅. Let Zµ(B • |ϕ ∧ ψ|) be a minimal set ofB intersecting
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|ϕ ∧ ψ|. Then for everyz ∈ Z, x ∈ |ϕ| ∩ |ψ| implies thatz ∈ |ϕ| ⊆ |θ|. Hence,
M, u � [ϕ ∧ ψ]θ.

To show that if a principle is not provable inMCL, then there is a broccoli
countermodel toϕ, we use the completeness result of Burgess. IfMCL 0 ϕ for
someϕ, then there is a finite modelM = (U,R,V) and a worldu ∈ U such that
M, u 2 ϕ. 5 By lemma 4.5,BROC(M), u 2 ϕ. Therefore,BROC(M) is a broccoli
countermodel toϕ. This completes the proof of theorem 4.6. �

Corollary 4.7. BL is decidable.

5 Conclusion

Our goal was to generalize onion semantics to capture relational belief revision;
the result wasBL. It turns out thatBL is equivalent to a well-known conditional
logic, the Burgess-Veltman minimal conditional logic. This is a fortunate out-
come, as it saves a lot of work in coming up with a completenessresult expanding
on the minimal revisional logic of section 2. The major difficulty along the latter
line was to devise an appropriate generalized arrow condition yielding generalized
selection functions, and this is still an open question. Another open question is the
role played by the [ϕ〉modality inBL: what is the complete minimal logic of [ϕ]ψ
and [ϕ〉ψ over the Burgess-Veltman models? An advantage ofMCL over BL is
that it avoids the problem of choosing an appropriate generalized limit condition
by dropping the sphere representation altogether. A lessonshould be drawn here,
namely that, as so often over the past years, we see that logics of belief revision
are largely conditional logics.
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