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Abstract

We present a generalization of Segerberg’s onion semdiatidselief
revision, in which the linearity of the spheres need not acthe resulting
logic is called broccoli logic. We provide a minimal relatad logic, intro-
ducing a new neighborhood semantics operator. We then gtaivbitoccoli
logic is a well-known conditional logic, the Burgess-Vettmminimal con-
ditional logic.

Belief revision is the study of theory change in which a sdbofulas is as-
cribed to an agent as a belief set revisable in the face of néanation (Cf.
[6, 11]). A dominant paradigm in belief revision is the sdled AG M paradigm,
which describes a functional notion of revision (cf. [1]).na&tural semantics in
terms of sphere systems (cf. [8]) was given by Grove in [7] arldgical ax-
iomatization was extensively studied by Segerberg (cf] &2 the forthcoming
[13]). The resulting logic is called “dynamic doxastic log{DDL). A gener-
alization of theAGM approach in which revision is taken to be relational rather
than functional was first studied by Lindstrom and RabireaNcf. [9]), and was
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models used in this paper, and Johan van Benthem for suggéistt broccoli logic is really the
minimal conditional logic. Finally, | thank the anonymowe$arees for their helpful suggestions in
improving the paper.



pursued in [4]. Their motivation was to formalize cases irichban agent may
obtain incomparable belief sets after revision with newiinfation. In this paper,
we will pursue this generalization and propose a relatitedief revision logic.
We call the resulting logic “broccoli logic'BL) and the type of revision it depicts
“broccoli revision”. As it turns out, and this will be the nmaiesult of this paper,
BL already exists, in the guise of what we call “minimal corahtl logic” (MCL
for short), studied by Burgess and Veltman (cf. Burgess fig] @eltman [14]).

In section 1, we outline onion semantics and the intende@ngéimation to
BL. In section 2, we give a minimal relational logiMRL) with its complete
proof system. The semantics of this logic is ffieet a neighborhood semantics
(cf. [5]), but we will interpret it in terms of revision insh€. In section 3, we will
propose ways of expendifgRL to get a complete proof system fBL and we
will point at a major dfficulty in this task, namely to provide a so-called arrow-
condition for generalized selection functions. Finalggtson 4 will show how the
guest for a generalized selection function, with the prewhidificulties inherent
in the project, is avoidable by showing tHait is equivalent taVICL.

1 Onion and broccoli logics

This section presents the onion and broccoli semantics. Wedgfinitions of
onion and broccoli models and provide the semantics for thedoli modal op-
erators.

1.1 Onions

An onion is a linearly ordered sphere system that satisfjifiecondition. More
precisely,

Definition 1.1. LetU be a nonempty set. AonionO < £(U) is alinearly ordered
set of subsets dfi satisfying the following condition (the limit conditionjor all
XcU:

[ JonX#0=3Zc0styYeO(YnX#0iffZCY)

The limit condition states that every set intersecting anmmtersects a smallest
element. LeDe X = {Y € O : YN X # 0}. We use the notationZu(O e X)’
to express thaf is a minimal element of the onia@ intersectingX, i.e., for all



Y € O e X,Z C Y. The limit condition can succinctly be written as:

| JonXx#0=3Zu0eX).

1.2 Broccoli semantics

We want to pursue a generalization of onion logic by droppimegrequirement of
linearity, thus generalizing the limit condition.

Definition 1.2. Let U be a nonempty set. Broccoli flower8 C £(U) is a set of
subsets satisfying a generalized limit condition.

There are two ways to specify the generalized limit conditd definition 1.2.
LetBIX={YNX:YeB} ForallXcU,if | JBnNX # 0, either:

1. ISCBst.VWYeBYNX#0=3Z e S(Zu(BeX) AZCY)),or
2. ISC Bst.YY e BYNX 0= 3Z e S((ZN X)u((BIX) e X) AZCY)).

Intuitively, a generalized limit condition states that Bveet intersecting a broc-
coli flower intersects every members of a Saif smallest elements of the flower.
In the first case, the members®fre minimal sets of the broccoli that have a non-
empty intersection wittX. In the second case, the membersSdfiave minimal
intersection withX.

With a generalized limit condition in hand, it is meaningtaldefine coun-
terfactual modalities. Two natural candidates Bir (with their respective dual)
come to mind. Let-’ stand for the material conditional. The first modality says
thaty — ¢ holds throughout every minimalsphere; the second says that> ¢
is consistent with every minimal-sphere. We will follow Chellas [5] and write
these two counterfactuals as the unary modalitig pnd o).

Definition 1.3. M = (U, {Bu}ueu, V) is abroccoli modelif U is a set of worlds,
{Buleu is a family of broccoli flowers for each worlde U satisfying either gen-
eralized limit condition, and/ is a valuation assigning sets of worlds to proposi-
tions.

In what follows, we suppress the indexvhenever it is clear from context.

Definition 1.4. We say thaty is true at worldu in a broccoli modeb), written
M, u k ¢ iff (taking standard truth definition for the propositional déinel Boolean
cases):



Figure 1: Broccoli semantics of the counterfactual opesatgy and ).

1. MUk [@ly iff YZu(B o |e)(Z N ¢l < y), and
2. M u ke [ iff YZu(B o o) (Z N lel N []) # 0.

Here, as usualy| = {u: M, u k ¢}. We call|¢| theassociated propositioto ¢.

These two modalities are meaningful with either generdllzeit condition pro-
posed above. Figure 1 illustrates the semantics of botratqrst

2 Minimal relational logic

Our first goal is to get a logic that captures a notion of bek¥ision in which
revision is relational rather than functional. That is, wanivto allow for incom-
parable revisions with respect to a belief set. With thappse in mind, we need
a language that can express notions like “all sets obtainddmnrevision by are
y-sets” and ¥ is consistent with all sets obtained under revisiorgbyln coun-
terfactual terminology, the same claims read as “all minipraets arey-sets”
and “all minimalg-sets interseal-sets”. In this section, we introduce a minimal
relational logic that captures the core of these ideas.i@e2t1 introduces the
language and the semantics of this minimal logic. We willinsgitive interpreta-
tions of the semantics in terms of revision, but this is onlkéep the motivation
of the paper prominent. We give the axiomatization of theimah logic in section
2.2 and prove it to be complete in section 2.3.

2.1 Language and semantics

We use a standard propositional language whose primiti@dadn connectives
are negatior~ and disjunctiorv, augmented with two modalitieg]y and ).

4



u

Figure 2: Minimal relational model

Definition 2.1. Given a finite set of propositional variablesaminimal relational
modelis a triple U, R, V), where:

e U is a nonempty set, the universe;
e R= (R, : pisaformulaR, c U xP(U)}; and
e V:P— P).

Definition 2.2. Let M be a model and letv € U. The truth-definition for atomic
propositions, negations and disjunction is standard. Welsat the formulap is
true at pointu in a minimal relational modebi, writtent, u E ¢ if :

MUk [ply iff VX((U,X) € Ry = Vve XN, VEY)
M, uke [y iff VX((U,X) € Ry = Ave XN, VEY))

The semantics of the modalitieg][and [¢) contains two levels of quantification
and should be read in two stages: 1) the left bracket picks@et ofp-subsets
of the universe and 2) the right bracket evaluates witdeetrue in these subsets.
Notice that the semantics given by minimal relational medela neighborhood
semantics (cf. [5]). Indeed, the relati®is a relation between worlds and subsets
of the universe. The modality] is the usual neighborhood universal modal-
ity, but indexed with associated propositidas It comes with its dual modality
{¢) with the obvious semantics. The interesting addition of language is the
modality [p), which expresses that every $&f-related tou satisfiesy in at least
one point. In neighborhood terminology, this modality eegses that every-
neighborhood contains at least opgooint. This latter modality also come with
its natural duaky]. In the remainder of this paper, we shall no longer appeal to
neighborhood semantics. We will instead provide an ingtgtion in terms of
revision, but the reader who prefers to think in terms of hba@rhood semantics
is urged to do so and to see in what respect it is a generailizatithis logic.

Figure 2 presents a simple minimal relational model, in \White worldu is
Ry-related (illustrated with arrows) to the sets of workindY and such that
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Figure 4: Intended semantics of the Broccoli revision ofmesdp]y and fp)y.

Y is true at every world oK andY. Hence, according to the minimal semantics
of definition 2.2, [p]y is true atu. This is enough to illustrate the semantics of
our minimal relational logic, but to give a motivation forqguing this semantics,
we illustrate its role inBBL. Figure 3 depicts a broccoli flower consisting of two
sets (doted lines) of whicK andY are subsets. Irrespectively of the generalized
limit assumption ultimately adopted, assume that theseswis are minimap-
sets (or that the seb$ andY have minimalg|-intersections). Our goal is to add
restrictions on the relatioR,, in order to get the sets andY as two minimal sets
returned under revision by. This is illustrated in picture 4. In the picture on the
left-hand-side, §]y is true at worldu, since every set obtained under revision by
¢ is ay-sets. Similarly, )y is true atu in the right-hand-side picture, singeis
consistent with every revision ly.

We see the motivation of the minimal relational logic of thregent section.
In a full-blown BL, either additional restrictions on the relati&or so-called
‘generalized selection functions’ will play the role of sefing minimal revised
sets. Once these sets are selected, the minimal relatiogial df the present
section will provide the logic to evaluate what holds in #hests. We will discuss
selection function in section 3 below. For the remaindethes section, we will



present the logic of minimal relational logic and prove cdsbgness. Our goal is
to get a firm grasp of the core of future expansiomto

2.2 Proof system

The following set of axioms and rules is complete with re$p@onion selection
models:

Axioms:

Classical tautologies

(W = =[p]-y

(ply = —[p)—y

[el(y — 6) — ([¢ly — [¢]0)
(el — (el(¥ v 6)

[l A <p]0 — (pl(¥ A 6)
(] T — [¢ly

Noohs~whE

Rules

=

Modus Ponens.

Necessitation forq] and [p).

3. If ¢ andy’ are formulas dtering only iny having an occurrence @fin
one place where’ has an occurrence 6f, and ifd = ¢ is a theorem, then
¢ = ¢’ is also a theorem.

no

Rule 3,substitution of equivalentss applied indiscriminately inside or outside the
modal operators. We count the presencegdinside [¢] and [p) as occurrences
of ¢. For example, ify = 0, then both ]y = [¢]6 and [/]a = [f]a are instances
of rule 3.

Axioms 2 and 3 provide the dual modalities @f fand [¢) respectively. Ax-
iom 4 is a typicalk axiom for the modality ] and yields modus ponens under
the scope of$].! Axioms 5 is a monotonicity axiom for the modalify]. Intu-
itively, if  is consistent with some revision lpy then anything weaker than

There is no correspondirig axiom for the [p). Consider a mode\l such that the set c U
is the only subset dfJ that ise-related to the worldi € U, i.e, Ry = {(u, X)}. Suppose that both
W] N X # 0 and|—y| N X # 0, butthatlg| n X = 0. Thenu k= [p)(y — 6) (sincel-y| N X # 0) and
uE [, butu & [)0. Hence, Py (y — 6) — ([ — [¢)0) is not valid.



is also consistent with some revision py Finally, axiom 6 provides a minimal
interaction between the modalities:lfis consistent with every revision lgyand
there is a revision by such tha¥ is consistent, then there is a revisiondgrguch
that bothys andé are consistent. Finally, axiom 7 says that if there is nosiew

by ¢, then every §] formula holds vacuously. This is akin to saying that every
necessary formula holds at en end-point in a Kripke model.

Now, Suppose thaly] T € u for someu € U.2 Then, for every € u such
that [p)¥ € u, axiom 6 gives thaty](y A T) € u. By monotonicity of(¢] (axiom
5), (¢]y € u. Hence, if there is a revision hy and ify is consistent with every
revision byyp, then there is a least one revisiongphat withesses the consistency
of y. This is desirable for a belief revision logic.

2.3 Completeness

Soundness is a matter of routine. We show the soundnessarhgg) and leave
the others to the reader. Assume thatu £ [¢]y A (p]0. ThenMi,u E {¢]6 i.e.,
AX((u, X) € RyAVYv e X, N, vE 6). Butd, uk [¢]y implies thatvv € X, 0, v E .
Hence,Yv e X, M, vE ¢ A 6. Therefore IX((u, X) € Ry AVv e XN, VE Y AS,
e, ML uE (v A0).

For the completeness part, 8t consists of all maximal-consistent sets
of formulas. For each formula, we define an accessibility relatidmfp| between
worlds and subsets of worlds bf£. For all worldu € U<, if (¢]T ¢ u, then we
put Rﬁl = (). Otherwise, for every subsexsc U< and formulasy andy, we say

that the ordered paiu(X) Rfal iff X satisfies the two following conditions:

1. forallx e X, if [¢]¥ € u, theny € x; and
2. for every )y € u, X contains at least one worldwith ¢ € v.

Definition 2.3. Let p € P be a proposition. LeV<(p) = |p| and letRf = {Rﬁl ;

¢ is a formula, then the modeit = (U4, RE, V4) is thecanonical minimal re-
lational model

The completeness of the proof system in section 2.2 followrs fa standard truth-
lemma:

Lemma 2.4. For all u € U< and for all formulag, 6 € u iff M, uk 6.

2We read(¢] T as “there is a revision by”.



We will give the proof of the truth-lemma once we have stated proved the
following crucial lemmas.

Lemma 2.5.1f (¢]a € u, then there exists a subsetcXU< such that ﬁglux, and
for every world xe X, @ € Xx.

Proof. Let [¢)0 € u, and let
vV ={B:[¢]B €U U {6} U{al

thenv™ is consistent. Suppose thatis not consistent, then there exists..., d, €
v~ such that (A 6 A @) —» —6. Forevery 1<i < n,

oiev = J[g]dieu (Definition ofv™)
= Al¢]di € u (Truth definition)
= [¢p] Adi€u (Axiom 4)
= ([¢]l Adi A{pla) €u (since(p]a € u)
= (g](AdiAa)eu (axiom 6)
= (p]-H€u (by the monotonicity axiom 5)
= —[p)Peu (axiom 3)

and this is a contradiction, sincg)p € u by assumption. Thereforg, is consis-
tent. Letv be a maximal extension of .
For everyy, such thatd)6, € u, letw; be obtained from the above construction,
and let
X={w; : [p)6 € u,b € w}.

ThenX satisfies conditions (1) and (2) and for every X, a € X. O

Corollary 2.6 (Corollary to the proof of lemma 2.5)f [¢)/ € u, then the set
w = {y} U{0: [¢]@ € U} is consistent.

Lemma 2.7. If {¢)y € u, then there exists a subsetcXU< such that Iliglux, and
there exists a world x X such thaty € x.

Proof. Assume () € u. Then there is a maximal consistent setuch that
Y € V. The proof thav exists is standard (see [2], Lemma 4.20).

By corollary 2.6, for every formula;, if [ )a; € u, then the sedv, = {a;}U{6 :
[¢]6} is consistent. By Lindenbaum’s lemma, there exists a madorssistent set
w; extendingw, such thaty; € wi. LetW = {w; : [p)a; € U}

Finally, letX = {v} U W. Itis not difficult to check thaﬁi'ux, andy ev. O
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We are now ready for the proof of the truth-lemma.

Proof of Lemma 2.4Thanks to axioms 5 and 7, {{] T ¢ u, then [p)¥ € uand
[¢]w € ufor all . Sincel‘-ﬁf@| = (0 when{¢]T ¢ u, the lemma is trivially satisfied.
Thus, we assume for the remainder of the proof tgdt € u. The proof now
proceeds by induction on the complexity @f The interesting cases are when
0 = [¢]w or 6 = [p)y. The first directionq € u = M, u E 6) follows from the
conditions imposed oR/. We prove thaill, ur 6 = 6 € u.

Supposegd]y ¢ u. Sinceu is a maximal consistent set of formulagy]y € u.
By axiom 2, this implies thafe)-¢ € u. By lemma 2.7, there exists a subset
X € UZ such thaRfduX and a worldx € X such thathi, x £ —. Hence, by
truth-definitionI, u E (@), i.e., M, u E =[¢]y. Thereforedk, u £ [¢]y.

Finally, suppose thatyy ¢ u, then-[¢)) € u. Hence{¢]-¢ € u (axiom 3).
By lemma 2.5, there exists a sub¥ett U< such thaRfoluX and for every world
X € X, = € X. By inductive hypothesis, for everye X, M, X £ —. Therefore,
by truth-definition I, u & [p)y. O

3 Generalized selection functions

Selection functions are a natural level in between onionaseits and the gen-
eral neighborhood models of the preceding section. A seledtinction takes
a propositionp as an argument and return a segment from the set of clpsest
worlds (cf. [8]). In this section, we show what propertiesugtably generalized
selection function should satisfy to play the same role #&cten functions in
onion semantics, and we point to thefdiulties of the generalization. We start
with selection functions for the original case of onion misde

3.1 Onions and selection functions

Definition 3.1. A function f : P(U) — P(U) is aselection functiorif it satisfies
the following conditions, wherX Cc U :

f(X) € x (INC)
XCy= (f(x) #0 = f(y) #0) (MON)
XCy=Xnfy) 0= f(x) = Xn f(y) (ARR)

The third condition is called tharrow conditionand is the source of the major
difficulties in the original development of broccoli semantics.
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Let U be a finite set and |é¥ be a selection function od. Let

So = F(U)
SI'H-l = Sn U F(U - Sn)

SinceU is finite, there is a smallest such thaS,,.1 = S,,. We leave to the reader
to verify that the seOr = {S, : n < m} is an onion and thaD- andF agree?
Hence, models for onions may be given in terms of selectiantfans.

Definition 3.2. Let U be a setF a selection function oty andV a valuation
on a given set of propositional variables. We say that (U, F, V) is anonion
selection model

The truth-definition for the modalityg] in onion selection model is given by:

M, vk [y i Fu(lel) < .

The complete logic for onions consists of the axioms (1), §2d (4) of section
2.2 together with the additional axiomy,(M) and A):

[ele (1
(o — T (M)
(o — ([ Aylo =[el(y — 0) (A

Axioms (1), (M) and @A) are obvious analogues of conditiondIC), (MON) and
(ARR of definition 3.1. The total resulting system is almost Le€#&famous con-
ditional logicVC, provided that we add an assumption of centrality (cf. [§).10

3.2 Broccoli and generalized selection functions

Now, consider the issue of generalizing this format in a hioear broccoli setting.
(INC) and (MON) are easily generalized iBL to the following conditions,
forall X, Y C U:

YeFX)=YCX (INC%)
YcXanddZe F(Y)st.Z#0=3Zec F(X)s.t.Z+# 0) (MON)

30 andF agreeff

1. Oe N X #0 = FX=XnNSy for somek.
2. OeNX=0=>FX=0.

11



Figure 5: Counter-model tw)y — ([¢](y — 6) — [¢ A ¥]6)

with the identical corresponding axiomg and (M). On the one hand, (] T ¢
ufor some worldu € U (i.e. if there is no revision by) then fp]¢ € u by axiom 7.
But if there is no revision by, thenF(X) is empty, andI(NC*) holds vacuously.
On the other hand, if there is a revisionpythen () and (NC*) express the same
thing. Similar considerations will convince the readerttfid) and MON*) go
together.

A difficulty arises when attempting to generalize conditidRR in a sim-
ilar fashion. The choice of the generalization depends engégneralized limit
condition adopted. For example, a generalizationAd®®R) that seems natural is:

3. YCX=(AZeF(X)stYNZ£0=YNZeF(Y) (ARR)

but (ARR) holds only if we insisted on keeping the generalized linoihdition

1 of section * Now, only one half of pA) can be kept inBL, viz. (o) —
([e A ¥]0 — [¢](y — 0)). The other half makes a crucial appeal to linearity,
as may be seen from the counter-model of picture 5. Furth@rntiois counter-
model invalidatesp)y — ([¢](¥ — 0) — [¢ A ¥]6) under both limit conditions.

It is an open question to find an appropriate axiom that cpmeds to condition
(ARR), or alternatively, to find an appropriate generalizatibGARR that yields

a generalized selection function fBL. This promises to be aflicult task. But
instead of pursuing this enterprize further, we pause aadvetheBL may not
be obtained from an entirely fierent approach, viz. by showing that the logic
already exists! The fact that it is is the third and final ciinttion of this paper.

“We shall make such an assumption for the remainder of therpagless if stated otherwise.
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4 Broccoli logic and minimal conditional logic

Minimal conditional logic MCL) was studied by Stalnaker, Pollock, Burgess and
Veltman to capture the idea that a conditiogal=  is true if an only if the
conjunctiony A =y is less possible than the conjunctigna , and no more.
Their modeling comes with a reflexive and transitierder for each worlc and
no spheres need occur. In a sphere system, two worlds lyitigeosame sphere
agree on which worlds are farther away and which are closkis dssumption
is dropped inMCL. Hence, if two worldsx andy are equally far away in the
underlying order from the real worldand if the worldz is farther away than the
world y, no conclusions may be drawn as to whether warisl farther from the
real world than worldx, or vice versa. Instead of changing the onion picture by
allowing non-linearly ordered sphere system as we wish ia &, MCL ignores
spheres altogether. It has been fiiclilt task to find completeness fMCL, and
we refer the reader to Burgess [3] for a detailed proof. Téctien will show how
to avoid similar completenessfliculties with BL by showing that it is actually
equivalent taVICL.

Section 4.1 provides theICL semantics, section 4.2 gives the complete proof
system and section 4.3 shows the equivalenddGt. andBL.

4.1 Minimal conditional logic

A Minimal conditional logic modeis a triple U, R, V), whereU andV are as
above, and?? is a ternary relation o) that respects reflexivity and transitivity
(cf. [3]). The relationRxyzshould be read as “according to wontdworld y is

no farther away than world’. We shall write the more suggestiye<, z instead

of Rxyz We letW, = {y : Az y <, z} be thezone of entertainabilityor world

u € U. Intuitively, worlds outside the zone of entertainability u are worlds so
far away that their distance from the real world is not apiatde. Theminimal
conditional logic languageontains a set of propositional variables, together with
negation-, disjunctionv and a counterfactual modality] for every formulap.

Definition 4.1. We say that the formulag]y is true at worldu in the modeb,
and we writeéli, u E [¢]y, iff:

Yy e Wy, N V(p),F3ze Wy NV (p)[z <, Y&YW e W, NV (p)(W <y Z2—> W e V()]

Notice that the semantic definition af]iy does not contain a minimality condi-
tion. However, if the model is finite andlt,u £ [¢]¥, then there is a minimal

13



Figure 6: Simple model such that]p is true at worldu. The dotted arrows stand
for sequences of-related worlds.

world z € U such thatz € V(¢) N V(). Since we will only use finite models for
our equivalence result, we use the minimality formulatiorevaluating ¢y for
the remainder of this paper. The semantic condition rediaces

Yy e Wy NV(p),d3ze Wy NV (p)[Z <y Y&YW <, ZW ¢ V(p)&ze V(¥)].

Figure 6 depicts a simple model satisfyimgq. There are two minimap-worlds,
zandz, andy is true at both worlds. Hence, is true at every minimap-world.
We turn to the proof system ofiCL.

4.2 Proof system

The following set of axioms, with the same set of rules as forimal relational
logic presented in section 2.2, is complete K€L (cf. [3]):

. Classical tautologies

- lele

- ely Ale]0 — [el(v A 6)
- el(y A 6) — [ly

- el A lel0 — [o Aylo
ely A6l — [@ Vv bly

DU WNPRF

We give some examples of derivable theses.

Example 4.2. MCL + [¢]y A [¢ A¥]0 — [¢]0

14



Proof. Assume 1} [¢]y and 2)r [¢ A ¢]6. By axiom (2)F [¢ A =¢](e A =)
and by axiom (4} [¢ A —¥]-y. Hence, by monotonicity in the consequent
(axiom (4) again)} [¢ A —=¢](=¢ Vv 6). Now, from assumption 2) and axiom
(4),+ [ Ay](=y v 6). Combining the two latter results, we get thdip](—y Vv 6).
But sincer [¢]y by assumption (1), we get tha{y]0, as desired. O

Example 4.3. MCL r {(o)y — ()T

Proof. We prove the contrapositive. Assume thdt/] L. Then both- [y]-¢ and
F [v]e. Hence, by axiom (5) [y A ¢]—w. Butk [—y A o](=y A @) is an instance
of axiom (2) and by axiom (4} [-¢ A ¢]—-y. Thereforef [¢] . O

Example 4.4. MCL + [¢ A ¥]0 — [¢](y — 0).

Proof. Assumer [¢ A ¢]6. By monotonicity,r [¢ A ¢](=y Vv 6). Butr [p A
-y](=¢ Vv ). Thereforef [¢](—y V 0), i.e.,+ [¢](y — 6). |

As we can see from examples axiom (2) and examples 4.3 andohditions (),

(M) and one direction of of section 3 are derivable iIMCL. We see at once that
MCL has the properties we were looking forB (cf. 3), and we will now show
that it can geall properties oBL. The general reason behind these considerations
becomes clear in the next subsection.

4.3 Minimal conditional logic is broccoli logic

Let M = (U,R V) be a finiteMCL model. We will transform this model into a
broccoli model, by constructing a broccoli flower at eachldiof 9t, taking the
downward closed sets of worlds according to the underlyndgio(see picture 7).

More precisely, leCy(y) = {z€ U : z <4y}, thenBROQX) = {Cx(y) : y € Wy}
is the induced broccoli at world In particular, sincét is finite, the generalized
limit condition of definition 1.2 holds. An induced broccofiodelBROQM) is
then given by:

BROQM) = {BROQX) : x € U}

The semantics off]y in the induced broccoli model is given by the following:
BROQM), x k [¢]y iff VZu(BROQX) e [¢)(Z N ¢l C [¥]).
The main result of this section now follows from lemma 4.5.

Lemma 4.5. M, X E [¢]y iff BROQM), X E [¢]y.
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Figure 7: Induced broccoli model from th@CL model of picture 6.

Proof. In the one direction, assume theit, x £ [¢]y. Let C,u(BROQX) e |¢|),
and letv € C,, N|¢l|. By the truth definition forg]y, 3z <, vsuch thatht, zx p Ay
andVy <4 z9,y ¥ ¢. Butzmust be equal te. Otherwise,C, c C, ¢ C,
(the latter inclusion uses the transitivity gf), which implies thatC, would be
a proper subset df,, intersectingle|, contradicting our assumption. Thuse
Iy, which implies thatC,, N |¢| C |y¢|. Therefore, a£,, was chosen arbitrarily,
BROQM), X E [¢]y.

In the other direction, assume tiBEROQM), X E [¢]y and suppose thak, y E
¢ for somey € U. ThenC, N |¢| # 0. Hence AC,, € C, such thaC,u(BROQX) e
lgl) (by the limit condition!) andCy N |¢| € [y|. But sinceC,, € C,,w <, V.
Assume thatv is not a minimal world satisfying A ¢ with respect to<y, then
Iw <4 wsuch thatt, w £ o Ay. Thisimplies thaC;, c C,, andC/,Nlg|N[y| # 0,
contradicting the minimality oC,,. Therefore,w is a minimal world satisfying
¢ Ay and sincew <, y, we get thatht, X £ [¢]y. O

We are now ready for our main theorem.
Theorem 4.6. Broccoli logic= MCL.

Proof. To show thaMCL is BL, we need to show 1) that all axioms of section 4.1
are valid inBL, whose semantics was given in section 1 and 2) that if a leci
is not derivable irMCL, then there is a broccoli countermodel.

Showing that theMCL axioms are valid in théBL-models of section 1 is
straightforward. We show that axiom (5) is valid and leawedthers to the reader.
Let 9t be an arbitrary broccoli model and lete U be arbitrary. If={(¢]T ¢ u,

i.e., if there is no revision by, then the thesis is vacuously true. Hence, assume
that there is a revision by. Assume furthermore that, u £ [¢]¥ A [¢]6. Since
M, U E [@]y, ol Ny # 0. Let Zu(B o |p A y]) be a minimal set of3 intersecting
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lo A yl. Then for everyz € Z,x € |¢| N || implies thatz € |¢| € |6]. Hence,
M, UE [ AY]6.

To show that if a principle is not provable MCL, then there is a broccoli
countermodel t@, we use the completeness result of BurgessM@L ¥ ¢ for
someyp, then there is a finite modél = (U, R, V) and a worldu € U such that
M, Uk ¢. ° By lemma 4.5BROQM), u ¢ ¢. Therefore BROGM) is a broccoli
countermodel te. This completes the proof of theorem 4.6. |

Corollary 4.7. BL is decidable.

5 Conclusion

Our goal was to generalize onion semantics to capture oektbelief revision;
the result wasBBL. It turns out thaBL is equivalent to a well-known conditional
logic, the Burgess-Veltman minimal conditional logic. $hs a fortunate out-
come, as it saves a lot of work in coming up with a completeresgdt expanding
on the minimal revisional logic of section 2. The majoffidulty along the latter
line was to devise an appropriate generalized arrow camdyiielding generalized
selection functions, and this is still an open question. tAapbopen question is the
role played by the4) modality inBL: what is the complete minimal logic op]w
and [p)y over the Burgess-Veltman models? An advantagM@fL over BL is
that it avoids the problem of choosing an appropriate géimechlimit condition
by dropping the sphere representation altogether. A lesisould be drawn here,
namely that, as so often over the past years, we see thas lofjizlief revision
are largely conditional logics.
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