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Abstract

We present some results concerning definability of classes of topo-
logical spaces in hybrid languages. We use language Lt described
in [9] to establish notion of “elementarity” for classes of topological
spaces. We use it to prove the analogue of Goldblatt-Thomason the-
orem in topological spaces for hybrid languages H(E) and H(@). We
also prove a theorem that allows to reformulate definability result
of Gabelaia ([10]) for modal logic in terms of elementary topological
space classes.

1 Introduction

In the history of modal logic, the topological semantics was introduced before
Kripke semantics. The pioneering work of McKinsey and Tarsky in 1944
[13] offered proofs of completeness for S4 with respect to topological spaces.
With the advent of frame semantics, however, the topological semantics lost
popularity. Yet the ideas behind topological semantics are probably just as
intuitive as the idea of possible worlds. In topological semantics the box
(2) means “the property is true in every point of some neighborhood of the
current point”, which closely resembles the kripkean meaning of the box:
“the property is true in every point accessible from the current point”. The
spacial interpretation of the box allows us to look at the modal logic as a
language for talking about topological spaces — figures (rather than graphs
in relational semantics).

Hybrid languages (see [2]) are extensions of modal languages with nom-
inals and other constructions that augment their expressive power. In fact
some hybrid languages are as expressive as first-order logic. Nominals are
basically propositional variables that depict singleton sets, thus, if modal
logic allows naming of regions, hybrid logic allows naming of points as well.
Hybrid languages can have a global satisfaction operator that internalizes
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the notion of satisfiability in the model into the language. Hybrid logic was
initially presented along with traditional relational semantics, but ideas pro-
posed by it can be adopted in a natural way to the topological semantics
case.

In this paper we will talk about definability. The definability of some
property is a possibility to express it (define it) in some language. Formally
speaking, a property corresponds to the class of objects that satisfy it and
the property is definable in some language L if there exists a sentence φ of
that language such that φ is true precisely for the objects belonging to the
class, i.e. φ is true precisely for the objects satisfying the property. In the
relational case the basic modal language interpreted on frames behaves like
second-order logic: this is due to the fact that the quantification over sets is
built into the definition of truth of a modal formula on a frame. If we restrict
ourselves to the frame classes that can be defined in the first-order language
then the Goldblatt-Thomason theorem (see [3]) can give an answer to the
question: “Is this frame class definable in basic modal language?” The work
of David Gabelaia [10] proposes a variant of that theorem for topological
semantics. Balder ten Cate’s work [4] proposes another variant for hybrid
languages in relational semantics. In this paper we will give the missing
piece of the puzzle and will present a third variant for hybrid languages in
topological spaces.

We assume acquaintance with the syntax and relational semantics of
modal [3] and hybrid logic [2] as well as with basic notions of general topol-
ogy [7]. We will not deal with the binding operator; only languages H(@)
and H(E) will be considered. This paper builds on fundamental notions
elaborated upon in [10, 9, 4].

2 Topological semantics for modal logic

First of all let us introduce the basic definitions.

Definition 1. The basic modal language consists of a countable set of propo-
sitional letters p, q, r, . . . and a unary modal operator 2. The well-formed
formulas φ of the basic modal language are built as follows:

φ ::= p |⊥| ¬φ | φ ∨ φ | 2φ

3φ is an abbreviation for ¬2¬φ, φ→ ψ is an abbreviation for ¬φ∨ψ, φ ≡ ψ
is an abbreviation for (¬φ ∨ ψ) ∧ (φ ∨ ¬ψ).

Definition 2. A topological model M is a triple (T, τ, V ) where (T, τ) is a
topological space and the valuation V sends propositional letters to subsets
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of T . We inductively define a formula φ to be true at point x in a model M

(noted M, x |= φ) as following:

M, x |= p iff x ∈ V (p)

M, x |=⊥ never

M, x |= φ ∨ ψ iff M, x |= φ or M, x |= ψ

M, x |= ¬φ iff M, x 2 φ

M, x |= 2φ iff ∃O ∈ τ such that ∀y ∈ OM, y |= φ

Sometimes, for topological space T = (T, τ) when it is clear from the context,
we will use T to refer to T .

If M, x |= φ for all x ∈ O where O ⊆ T we write O |= φ. Similarly M |= φ
means that M, x |= φ for any x ∈ T . If T = (T, τ) is a topological space
we write T |= φ when (T, τ, V ) |= φ for any valuation V . If K is a class of
topological spaces we write K |= φ when T |= φ for any T ∈ K.

Definition 3. We say that a set of formulas Γ defines a class of structures
(frames or topological spaces) K if for any structure T we have that T ∈ K
iff ∀φ ∈ Γ T |= φ (T |= Γ).

In frame semantics we have a result that allows us to determine whether
a given class of frames is definable in modal language:

Theorem 1 (Goldblatt-Thomason theorem). A first-order definable
class of frames is modally definable if and only if it is closed under taking
bounded morphic images, generated subframes, disjoint unions and reflects
ultrafilter extensions.

In order to translate the definability result for frames into definability
result for topological spaces we need to specify the topological analogues
of closure conditions. [10] describes such analogues to introduce definabil-
ity result for modal logic in topological semantics. We will reproduce the
definitions that we will need here, in a slightly modified form.

Definition 4. Let T = (T, τ) and S = (S, σ) be topological spaces, a map
f : T → S is called interior if for any O ∈ τ , f(O) ∈ σ and for any U ∈ σ,
f−1(U) ∈ τ (it is equivalent to saying that f is open and continuous at the
same time).

Definition 5. Let T = (T, τ) be a topological space and S its open subset.
A topological space S = (S, σ) where σ = {O∩S | O ∈ τ} is an open subspace
of T .
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Definition 6. A collection F of subsets of some set X is called a filter if it
satisfies the folowing conditions:

1. if A,B ∈ F then A ∩B ∈ F

2. if B ⊃ A and A ∈ F then B ∈ F

3. X ∈ F

A filter F is called proper, if ∅ /∈ F .
Let T = (T, τ) be a topological space. A filter F ⊆ P(T ) is called open

if for any O ∈ F , I(O) ∈ F where I(O) =
⋃

U∈τ,U⊆O U stands for O interior.
This is equivalent to the existence of a base of the filter containing only open
sets.

We say that a set of ultrafilters O is an extension of a filter f if O = {u ∈
X|f ⊆ u}

We call an Alexandroff extension of a topological space T = (T, τ) the
following topological space T ∗ = (Uf (T ), τ ∗). τ ∗ topology is generated by
the collection of all sets of the form {u ∈ Uf (T ) | F ⊆ u} where F is an open
filter (i.e. the set is open iff it is obtained by unions and finite intersections
from sets of a mention form).

If one wants to draw parallels between relational and topological seman-
tics, one can say that interior maps are to topological spaces what bounded
morphisms are to Kripke frames; open subspaces are like generated submod-
els and Alexandroff extensions are like ultrafilter extensions. Alexandroff
extension is in some sense a completion of a topological space: it introduces
enough extra points so that arbitrary intersections of open sets would be
an open set (topological spaces with such a property are called Alexandroff
spaces).

We will need some machinery to work with Alexandroff extensions: the
∗-map. Following [10] we give the following

Definition 7. Let T be a topological space, ∗ : P(T ) → P(T ∗) is a map
which is defined as follows:

O∗ = {u ∈ Uf (T )|O ∈ U}

We will use notation a∗ instead of {a}∗ for singleton sets. Here are some
properties of ∗-map without proofs (they can be found in [10])

Proposition 2.

1. x∗ is principal ultrafilter of x
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2. (A ∩B)∗ = A∗ ∩B∗, (A ∪B)∗ = A∗ ∪B∗

3. ∗ sends open sets to open sets

And here are some properties we will need later.

Proposition 3. {x∗|x ∈ O} ⊆ O∗. If O is finite then {x∗|x ∈ O} = O∗.

Proof. Take any x ∈ O, hence O ∈ x∗ and by definition of ∗-map x∗ ∈ O∗.
Now let O be finite and prove the reverse inclusion. Take any u ∈ O∗.
We need to prove that there exists x ∈ O s.t. u = x∗.We will argue by
contradiction. Suppose that for every x ∈ O there exists Ax ∈ u s.t. x /∈ Ax.
Then ∩x∈OAx ⊆ X −O, hence, by filter definition X −O ∈ u, which entails
O /∈ u, which in its turn contradicts u ∈ O∗. a

Proposition 4. Every open set of Alexandroff extension of some topological
space T contains an open set that is either ∗-image of an open set of T or
an infinite intersection of ∗-images of open sets of T .

Proof. The base of Alexandroff extension topology are sets of ultrafilters
which are extensions of open filters. So, every open set A of Alexandroff
extension of T contains a set O, that contains ultrafilters that are extensions
of an open filter F . It remains to be proved that

O =
⋂

X∈F

X∗

Indeed, take x ∈ O, then X ∈ x for all X ∈ F , hence x ∈ X∗ for all X ∈ F .
Next, take x ∈

⋂
X∈F

X∗ then X ∈ X for all X ∈ F or in other words F ⊂ x,

hence x ∈ O.
Particularly, in case when F = {X | X ⊃ O} for some open set O,

A = O∗. a

With these definitions we can formulate the theorem of David Gabelaia
that is an analogue of Goldblatt-Thomason theorem for topological seman-
tics.

Theorem 5. The class K of topological spaces which is closed under forma-
tion of Alexandroff extensions is modally definable iff it is closed under taking
opens subspaces, interior images, topological sums and it reflects Alexandroff
extensions
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3 Hybrid definability on frames

Hybrid languages are extensions of modal languages. Let us briefly recall
their syntax and relational semantics.

Definition 8. Hybrid languages have nominals (which we denote by letters
i, j, k, . . .) in addition to propositional letters. Language H(@) is given by
the grammar:

φ ::= p | i |⊥| ¬φ | φ ∨ φ | 2φ | @iφ

Language H(E) is given by the grammar:

φ ::= p | i |⊥| ¬φ | φ ∨ φ | 2φ | @iφ | Eφ

Aφ is an abbreviation for ¬E¬φ.

Definition 9. A Kripke frame is a pair F = (W,R) where W is a set called
the domain (support) of F and R is a binary relation over W . A Kripke model
M is a pair (F, V ) where F is a Kripke frame and V is a function (called
valuation) that maps propositional letters to subsets of W and nominals to
singleton subsets of W . Sometimes, when it is clear from context, we will
use the name of frame (F) to refer to its domain.

The Kripke semantics of hybrid languages is defined as follows. For model
M = (W,R, V ):

M, w |= p iff x ∈ V (p)

M, w |= i iff x ∈ V (i)

M, w |=⊥ never

M, w |= ¬φ iff M, w 2 φ

M, w |= φ ∨ ψ iff M, w |= φ or M, w |= ψ

M, w |= 3φ iff ∃v ∈ W such that Rwv,M and v |= φ

M, w |= @iφ iff M, v |= φ where V (i) = {v}
M, w |= Eφ iff ∃v ∈ W such that M, v |= φ

@i and E are interpreted in the same fashion in topological semantics.

In [4] it is proven that a certain elementary class of frames can be defined
in hybrid logic if it obeys some closure conditions. To formulate this result
we will need the following notion:
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Definition 10. A frame G is an ultrafilter morphic image of frame F if
there exists a bounded morphism f : F → ueG, such that |f−1(x)| = 1 for
every principal ultrafilter x ∈ ueG (that is to say, f is injective on principal
ultrafilters).

Our aim in this paper is to introduce a topological analogue of the fol-
lowing theorems:

Theorem 6 (Hybrid definability for H(@)). An elementary class of
frames K is definable using basic hybrid language H(@) if it is closed un-
der ultrafilter morphic images and under generated submodels.

Theorem 7 (Hybrid definability for H(E)). An elementary class of
frames K is definable using basic hybrid language H(E) if it is closed un-
der ultrafilter morphic images.

To illustrate these results let us consider the following property:

There exist two distinct linked points (i.e. ∃x, y x 6= y such that Rxy) (1)

and apply the mentioned theorems to find out whether it is definable in
hybrid language.

Consider the set of natural numbers equipped with minimal relation R
s.t. Rnn for every natural number n. Let us call this frame NR. Now let us
construct the frame F whose support is a set of all ultrafilters over NR and
the accessibility relation Z is the following (we write πn to denote a principal
ultrafilter of n): for every point u except π1 and π2, Zuu, Zπ1π2 and Zπ2π1.
The frame F satisfy the given property.

Then take arbitrary non-principal ultrafilter u ∈ NR and construct a
surjective bounded morphism f : F → ue NR as follows: for every non-
principal ultrafilter x ∈ F , f(x) = x, f(π1) = u, f(π2) = u and ∀n >
2f(πn) = f(πn−2). f is injective on principal ultrafilters (it is non-injective
only on u in fact). f maps every isolated reflexive point of F except u, π1

and π2 to isolated reflexive point of ue NR, so back and forth conditions for
mentioned points can easily checked, it is easy then to verify “manually” the
back and forth conditions for u,π1 and π2 as well.

But NR does not satisfy (1). Using theorems 6 and 7 we conclude that
(1) is not definable neither in H(@), nor in H(E).

4 The elementarity notion for

topological spaces

The original Goldblatt-Thomason theorem uses the notion of elementarity
of a frame class. It is not evident, however, which topological space classes
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Figure 1: Modal logic situation

should be considered elementary.
The notion of elementarity is indeed very important. The definability

result in [10] imposes an extra constraint on a class of frames in question: it
should be closed under Alexandroff extensions, which corresponds to requir-
ing closedness under ultrafilter extensions in relational semantics. It does
not make a serious problem in modal logic, because every modally definable
elementary class of frames is closed under ultrafilter extensions.

Now consider a class K of all frames with irreflexive accessibility relation.
It is elementary and hybrid definable (with a formula i→ 2¬i, for example).
The frame of natural numbers with natural strict order belongs to K. Its
ultrafilter extension contains reflexive points and thus does not belong to K.
That elementarity plus hybrid definability does not imply closedness under
ultrafilter extensions (see figures 1 and 2)! In hybrid logic conditions of
being closed under ultrafilter extension and elementarity are “symmetric”.
We would like to have elementarity requirement in our topological version
of the theorem because it looks more natural. Another argument for finding
appropriate notion of elementarity is the fact that we could then reuse proof
techniques from the proof of theorems 6 and 7.

To address this problem we propose to use a language Lt described in [9]
and consider a class of topological spaces “elementary” if it can be defined
by a formula of that language.

We start with a monadic second-order language L2, which is interpreted
over so-called weak structures.

Definition 11. Take first-order similarity type L, which consists of set of
predicate symbols and function symbols. Consider then a first order-language
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Figure 2: Hybrid logic situation

Lωω associated L which is defined as usual (with only negation and disjunc-
tion as primitive connectives). A monadic second-order language L2 is ob-
tained from Lωω by adding a symbol ∈ and set variables (we will denote them
with capital letters: X,Y,Z,W,. . . ) and allowing new atomic formulas of the
form t ∈ X, where t is the term and X is the set variable. Moreover, if φ is
a formula, then ∀Xφ and ∃Xφ are also formulas.

Definition 12. (T, τ), where T is a first-order structure and τ ⊆ P(T )
is called a weak structure. If τ is a topology on T then (T, τ) is called a
topological structure.

The interpretation of L2 formulas over weak structure (T, τ) is defined
naturally: ∈ is interpreted as “a member of” and set variables can be only
instantiated with values from τ . Language L2 (over weak structures) is re-
ducible to a two-sorted first-order language: one sort corresponds to individ-
uals, another corresponds to sets. The idea is to define formula translations
from L2 to two-sorted first-order language and vice versa and describe how
to construct a model for two-sorted first-order language out of topological
model in a satisfiability-preserving fashion. This is done for full second-order
language and omega-sorted language first-order language in the chapter 4 of
[6], the same techniques can be applied in our case.

This allows to prove all usual first-order theorems: the Compactness, the
Completeness and the Löwenheim-Skolem theorems to name a few.

Proposition 8 (Compactness theorem). A set of L2 sentences has a
weak model if every finite subset does.
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This is true, however, only for the class of weak models. Since we are
working with some special kind of models, that is weak modes where τ is a
topology, we need to somehow “tame” L2 to keep nice first-order properties.
And that is why we introduce Lt.

Definition 13.

An L2 formula φ is positive in set variable X if all free occurrences of
X are under an even number of negation signs. An L2 formula φ is em
negative in set variable X if all free occurrences of X are under an odd
number of negation signs

Lt contains all atomic L2 formulas and is closed under conjunction,
disjunction, negation, first-order quantification and the following re-
stricted form of second-order quantification:

- if formula φ is positive in set variable X and t is a term then
∀X (tεX → φ) is a formula

- if formula φ is negative in set variable X and t is a term then
∃X (tεX ∧ φ) is a formula

Lt possesses many regular properties of first order-languages with respect
to topological structures : Compactness, Löwenheim-Skolem and Complete-
ness. We can use usual first-order model theory constructions, for example,
if we are working with ultraproducts we get “for free”  Loś theorem for Lt

(in fact, for L2 as well). Lt is nice also because it is precisely invariant for
topologies fragment of L2, i.e. every formula of Lt is equivalent to L2 formula
invariant for topologies:

Definition 14. A collection τ of subsets of some set T is said to qualify for
open base if for any two sets X, Y ∈ τ their intersection X ∩ Y is a union of
elements from τ . If τ qualify for open base then topology generated by τ is
noted τ̃ . Putting it the other way, τ̃ contains precisely all possible unions of
elements of τ . If for some topology σ, σ = τ̃ then τ is called an open base of
σ.

Definition 15. Formula φ is called invariant for topologies if

(T, τ) |= φ iff (T, τ̃) |= φ

for every weak model (T, τ) where τ is an open base.

10



L2 being actually a “first-order-like” language for talking about weak
models, we want to use all usual first-order machinery with it. For example,
the notion of ω-saturated model can be introduced for L2 with the reservation
that when considering a set of formulas we can only use the formulas with free
variable of the same sort — point or set. All usual model-theoretic results
concerning ω-saturated models can thus be translated for L2.

Definition 16. We say that an L2-structure (A, σ) based on a space A is
2-saturated (ω-saturated) if any finitely realizable type Γ(x) (or Γ(X)) with
a parameter b ∈ A or B ∈ σ (with countable set of parameters from A or σ)
is realizable.

Another construction we will need for Lt is ultraproduct. Following [1]
we use the following definition of it:

Definition 17. Let us take a collection of arbitrary topological models
(Ti, τi)i∈I . Let U be an ultrafilter over I. The sets of the form

∏
U Oi where

Oi ∈ τi are called open ultraboxes. A topological space with the support∏
U Ti and topology generated by open ultraboxes is called a topological ul-

traproduct of (Ti, τi) and is denoted by
∏

U(Ti, τi). If all topological spaces
(Ti, τi) are the same, the structure is called topological ultrapower.

Topological ultraproduct is an operation on topological spaces which has
the same properties with respect to Lt as ultraproduct to first-order lan-
guages:

Theorem 9. Let (Ti, τi)i∈I be a set of topological models, φ an Lt formula,
U an ultrafilter over an index set I. Then

{i | (Ti, τi) |= φ} ∈ U iff
∏

U(Ti, τi) |= φ

Proof. It suffices to use the fact that  Loś theorem holds for L2 and that Lt

is invariant for topologies. a

Ultrapowers are in some sense “completions” of original models that en-
rich them with lots of points but preserve the properties that can be described
in Lt language. They are analogous in some sense to Alexandroff extensions,
we will make this statement more precise in the next section.

Last notice we should make is about the way a saturated model can be
obtained. From model theory we can adapt various means of constructing
2- or ω-saturated weak structures. What if we want a saturated structure
which is a topological space? The simplest idea is if in weak structure (S, σ),
σ qualifies for open base then we can work with.
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Theorem 10. Let (S, σ) be an α-saturated weak structure and let σ qualify
for an open base. Let Σ(X) be a type (the free variable being a set) such that
for any formula φ ∈ Σ, ∃Xφ is equivalent to an Lt sentence. If Σ(X) is
finitely realizable in (S, σ̃) then it is realizable in (S, σ̃). Also, for any type
Σ(x) if it is finitely realizable in (S, σ̃) then it is realizable in (S, σ̃).

Proof. Straightforward, to prove the first claim one should use the fact that
any formula that is equivalent to an Lt formula and Lt formulas are invariant
for topologies. a

5 Topological ultrapowers and Alexandroff ex-

tensions

We will present here a topological analogue of theorem 3.17 from [3]. The
proof techniques used are essential for the main result of the paper. More-
over, the following theorem will allow us to extend the Goldblatt-Thomason
theorem variant presented in [10] to the class of Lt-definable frames.

Theorem 11. For every topological space T = (T, τ) there exists an ultrafil-
ter U and ultrapower

∏
U T and an onto interior map f :

∏
U T → T ∗.∏

U T
f

##FFFFFFFF

T T ∗

Proof. Let us consider a L2-based language containing unary predicates
PX(x) for every X ⊆ T , interpreted naturally on T : PX(x) holds iff x ∈ X.
The obvious properties of these predicates are:

- T |= ∀x(PX(x) ∧ PY (x) ≡ PX∩Y (x))

- for every X,Y ⊆ T such that X ⊆ Y , T |= ∀x(PX(x) → PY (x))

- T |= ∀x(¬PX(x) ≡ PT−X(x))

It is known from model theory (see [5], theorem 6.1.4 and 6.1.8 or [12],
theorem 9.5.4) that there exists an ultrafilter U such that ultrapower

∏
U T

is a countably saturated model (as a weak structure). From now on we
will consider

∏
U T as a topological structure, keeping in mind that it is

generated by a countably-saturated weak structure. Let us define the map
f :

∏
U T → Uf (T ) in the following way:

f(x) = {X ⊆ T |
∏

U T |= PX(x)}
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Claim 11.1. f is well-defined, i.e. for any x ∈
∏

U T , f(x) is an ultrafilter.

We will use the properties of predicates PX(x) to prove this. Take any two
members of f(x), say X and Y , since

∏
U T |= PX(x) and

∏
U T |= PY (x)

then
∏

U T |= PX(x) ∧ PY (x) which is equal to
∏

U T |= PX∩Y (x), hence
X ∩Y ∈ f(x). Then suppose again, that X is a member of f(x) and X ⊂ Y ,
we get

∏
U T |= PX(x), but since X ⊂ Y ,

∏
U T |= PY (x) and Y ∈ f(x).

Finally, taking arbitrary X we observe that either T |= PX(x) or T 6|= PX(x)
what actually means that either T −X ∈ f(x) or X ∈ f(x).

Let us denote by V (X) the set of x ∈
∏

U T such that
∏

U T |= PX(x).

Claim 11.2. f is open

We will prove openness of f in two steps. First, we will prove the following
equation. For any open ultrabox O =

∏
U Oi where Oi ∈ τ it is true that

f(O) = {u ∈ Uf (T )} | {X ⊆ T | V (X) ⊇ O} ⊂ u}

Second, we will show that {X ⊆ T | V (X) ⊇ O} is an open ultrafilter. Since
open ultraboxes form the base of topology of

∏
U T , the equation implies

that open sets are mapped to open sets.
f(O) ⊆ {u ∈ Uf (T ) | {X ⊆ T | V (X) ⊇ O} ⊂ u}
Take x ∈ O and let y = f(x). For any X such that V (X) ⊇ O, it is true

that x ∈ V (X) and hence X ∈ y, or in other words y ∈ {u ∈ Uf (T )} | {X ⊆
T | V (X) ⊇ O} ⊆ u}.

f(O) ⊇ {u ∈ Uf (T ) | {X ⊆ T | V (X) ⊇ O} ⊆ u}
Take v ∈ {u ∈ Uf (T ) | {X ⊆ T | V (X) ⊇ O} ⊂ u}, i.e. v ⊇ {X ⊆ T |

V (X) ⊇ O}. We claim that for every Y ∈ v we have that V (Y ) ∩ O 6= ∅.
Suppose for the sake of contradiction that there exists some Y ∈ v such that
V (Y ) ∩ O = ∅. It follows that Uf (T ) − V (Y ) = V (T − Y ) ⊇ O, hence
T − Y ∈ v, which contradicts the fact that v is an ultrafilter.

Now consider a set of formulas

Σ(x) = {x ∈ O} ∪ {PX(x) | X ∈ v}

It is finitely realizable on
∏

U T and since
∏

U T is countably saturated,
it is realizable and there exist some x ∈

⋂
X∈v

V (X) ∩ O; it is easy to check

that f(x) = v.
Finally, we need to show that F = {X ⊆ T | V (X) ⊇ O} is an open

filter. It is easy to see that it is really a filter, so we only prove that if Y ∈ F
then I(Y ) ∈ F where I(Y ) is the interior of Y . Indeed, for any Y such that
V (Y ) ⊇ O there exists K ∈ U such that Oi ⊆ Y for all i ∈ K. Hence,
Y ⊇

⋃
i∈K

Oi and since
⋃

i∈K

Oi ⊂ I(Y ) we have that O ⊆ V (
⋃

i∈K

Oi) ⊆ V (I(Y )).

It follows that I(Y ) ∈ F .
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Claim 11.3. f is continuous

Take arbitrary open set O ⊆ T ∗. When proving continuity we can as-
sume without loss of generality that O belongs to T ∗ open base. In other
words, there exists open filter F , such that O consists precisely of ultrafilters
extending F . According to proposition 4, O is an intersection of O∗

i where
Oi ∈ F are open sets.

We have that
f(

⋂
X∈F

V (X)) = O

Indeed, take x ∈
⋂

X∈F

V (X), then X ∈ f(x) for all X ∈ F which means that

f(x) ∈ O. Now take x ∈ O, considering the set of formulas

Σ(y) = {PX(y) | X ∈ x}

and using countable saturatedness of
∏

U T we find a point y ∈
∏

U T such
that f(y) = x. Using a similar argument it can be shown that

⋂
X∈F

V (X) is

not empty.
There remains to prove that

⋂
X∈F

V (X) is open. Take some x ∈
⋂

X∈F

V (X)

and use countable saturatedness for the set of formulas (note that x is a
parameter here)

Σ(X) = {x ∈ X} ∪ {∀y(y ∈ X → y ∈ PO(y) | O ∈ F}

Note that we have right to use this set of formulas (according to theorem 10),
since every formula it contains is equivalent to a formula in Lt. We have
proved that for any x ∈

⋂
X∈F

V (X) there exists an open set containing x that

is contained in
⋂

X∈F

V (X). We deduce that
⋂

X∈F

V (X) is open.

Claim 11.4. f is onto

Take u ∈ T ∗. Consider the set of formulas Σ(x) = {PX(x)|X ∈ u}. Σ(x)
is finitely satisfiable in

∏
U T . Indeed, for every finite δ = {PXi

(x)} ⊂ σ, since
u has a finite intersection property, satisfiability of P∩Xi

entails satisfiability
of δ. But since

∏
U T is countably saturated then there exists x ∈

∏
U T such

that
∏

U T |= Σ(w), hence f(w) = u.

a

As a nice byproduct we get a reformulation of Gabelaia’s theorem about
modal definability in topological spaces (theorem 2.3.4 in [10]). Theorem 11
allows us to state the theorem 5 for topological space classes definable in Lt:
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Theorem 12. The class K of topological spaces which is definable in Lt

is modally definable iff it is closed under taking opens subspaces, interior
images, topological sums and it reflects Alexandroff extensions

Proof. The proof proceeds the same way as in original theorem up to the
following moment:

Note that (P∗)
∗ is nothing else but the Alexandroff extension

of P and thus belongs to K by the conditions we imposed on this
class; but then so is H, being the interior image of the space from
K. So H∗ ∈ K.

Instead we use the fact that K is closed under ultrapowers and interior
images, thus by theorem 11 P ∈ K entails (P∗)

∗ ∈ K. a

6 Hybrid definability on topological spaces

Let us finally turn back to our main objective — providing topological ana-
logue of theorems 6 and 7. Elementarity notion being reintroduced for topo-
logical spaces, we now need to spell out the ultrafilter morphic images notion.

Definition 18. Let T and S be topological spaces. S is called topological
ultrafilter morphic image of T if there is a surjective interior map f : T → S∗

such that |f−1(u)| = 1 for every principal ultrafilter u ∈ S∗ (one can say
figuratively “f is injective on principal ultrafilters”).

The following lemmas make sure that topological ultrafilter morphic im-
ages are compatible with hybrid definability.

Lemma 13. H(E) formulas validity is preserved under topological ultrafilter
morphic images.

Proof. Let T = (T, τ) and S = (S, σ) be topological spaces and f : S →
T ∗ an interior map. We need to prove that if T 6|= φ then S 6|= φ. To
show that it suffices to consider standard Alexandroff extension valuation
on T ∗ defined as V ∗(p) = {x ∈ Uf (T )|(T , V ), x |= p}, where p can be both
proposition letter and nominal, the valuation V ′ on S defined as V ′(p) = {x ∈
S|(T ∗, V ∗), f(x) |= p} and then apply inductive argument on the structure
of φ. a

We now have all the definitions to formulate the main result. The proof
is inspired by Balder ten Cate’s proof for relational case in [4].
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Theorem 14. A class of topological spaces K which is definable by Lt sen-
tence, is definable in H(E) iff it is closed under topological ultrafilter morphic
images.

Proof. Lemma 13 constitutes the proof of the left-to-right conjecture. It is
left to prove the right-to-left direction.

Take a set Th(K) of H(E) formulas valid on K. Suppose that T |= Th(K).
If we can show that T ∈ K, the theorem is proven. Just like in theorem 11
we introduce propositional letters pA for every subset A ⊂ T and nominals
iw for every w ∈ T . pA and iw are interpreted naturally on T . Let ∆ be a
set of the following formulas, A and B ranging over all subsets of T and w
ranging over all points of T :

pT−A ≡ ¬pA

pA∩B ≡ pA ∧ pB

pInt(A) ≡ 2pA

iw ≡ p{w}

Let ∆T = {Aδ|δ ∈ ∆}. By definition, ∆T is satisfiable on T .
Then ∆T is satisfiable on K. Since Lt has compactness theorem and

hybrid formulas can be translated into Lt we can only show that every finite
conjunction of formulas from ∆T is satisfiable in K. δ is satisfiable on T , it
follows that ¬δ is not valid on K, hence δ is satisfiable on K.

That means that there exist some topological space S ∈ K and valuation
V such that (S, V ) |= ∆T . Then model (S, V ) globally satisfies ∆.

We use again [5], theorem 6.1.4 and 6.1.8 (or [12], theorem 9.5.4) to
construct an ω-saturated ultrapower of model (S, V ),

∏
U(S, V ′).

The remaining part of the proof will be devoted to showing that T is the
topological ultrafilter morphic image of

∏
U S, which will allow us to deduce

T ∈ K. ∏
U S

f // T ∗

S T
We define interior map f :

∏
U S → Uf (T ) as

f(x) = {A ⊆ T |(S∗, V ′), v |= pA}

f is well-defined, i.e. for any given x, f(x) is an ultrafilter. Consider A,B ∈
f(x), we have by f definition that (

∏
U S, V ′), x |= pA and (

∏
U S, V ′), x |=

pB. It follows from the fact that ∆ is globally true in (
∏

U S, V
′) that

(
∏

U S, V
′), x |= pA∩B) which means that A ∩ B ∈ f(x). Using the same

16



technique it can be shown A ∈ f(x), A ⊂ B implies B ∈ f(x) and that for
any A ⊂ T , either A ∈ f(x) or T − A ∈ f(x).

Following the proof schema of theorem 11 it can be shown that f is an
interior surjective map.

The last statement to prove is |f−1(u)| = 1 for any u ∈ Uf (T ). Suppose
there exist x, y ∈

∏
U S and f(x) = f(y) = πw where w ∈ T and πw is a

principal ultrafilter containing {w}. By definition, (
∏

U S, V ′), x |= p{w}. By
global truth of ∆, (

∏
U S, V ′), x |= iw and (

∏
U S, V ′), y |= iw, hence x = y.

a

To characterize the H(@) definability we need the following easy result:

Lemma 15. H(@) formulas validity is preserved under taking open sub-
spaces.

Proof. There is no significant differences from the proof of corresponding
modal result (see [10]). a

The following theorem is a modified version of theorem 14 dealing with
H(@).

Theorem 16. A class of topological spaces K which is definable by Lt sen-
tence, is definable in H(@) iff it is closed under topological ultrafilter morphic
images and taking open subspaces.

Proof. The proof mostly repeats the proof of theorem 14.
The main difference is that the set of formulas ∆T is defined differently:

∆T = {@iw2δ|w ∈ T, δ ∈ ∆}

Later, when we consider a topological subspace S with valuation V which
satisfies ∆T we need an extra intermediate construction to continue the proof
the way it is done in theorem 14.

We build a topological space S̃ as follows. From the fact, that for some
w ∈ S, (S, V ), w |= ∆T it follows that for every point in S named by a
nominal iw there exist an open neighborhood Ow where ∆ holds. We define
S̃ as S restriction on

⋃
w∈T

Ow (which is an open set). Since S ∈ K and K is

closed under taking open subspaces, S̃ ∈ K as well. We then build
∏

U S̃ and
the rest of the proof goes as usual.

a
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The topological definability results obtained in this section look even more
analogous to the relational definability results if we take into consideration
the fact that H(E) (and hence H(@)) can be embedded into Lt:

STx(i) = x = xi (2)

STx(q) = x εQ (3)

STx(¬φ) = ¬STx(φ) (4)

STx(φ ∧ ψ) = STx(φ) ∧ STx(ψ) (5)

STx(φ ∨ ψ) = STx(φ) ∨ STx(ψ) (6)

STx(2φ) = ∃O(x εO ∧ ∀y(y εO → STy(φ))) (7)

STx(@iφ) = STx(φ)[xi/x] (8)

STx(Aφ) = ∀y STy(φ) (9)

where i is a nominal, xi is a corresponding constant, q is propositional letter
and Q is a corresponding set constant.

Theorem 17. If M is a topological model, then for all modal formulas ϕ

M, a |= ϕ iff M |= STx(ϕ)[a]

Proof. By induction on the complexity of ϕ. a

7 Separation axioms

It is interesting to apply the obtained results to classes of topological spaces
satisfying separation axioms. Recall the definition of the first three of them:

T0 For every two distinct points x and y there exists either an open set
Ox 3 x s.t. y /∈ Ox or an open set Oy 3 y s.t. x /∈ Oy.

T1 Every singleton set is closed.

T2 For every two distinct points x and y there exists two disjoint open sets
Ox 3 x and Oy 3 y.

In fact, we were “lucky” to be able to prove theorems 14 and 16 for
topological space classes definable in Lt and not for classes closed under
taking Alexandroff extensions, because of the following simple observation:
both T0 and T1 axioms are not preserved under Alexandroff extension. Take
some topological space T = (T, τ) with co-finite topology τ (i.e. a set is open
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iff it is co-finite). It is known that every non-principal ultrafilter contains
every co-finite set, and since they are the only open sets in our topology, all
non-principal ultrafilters of T ∗ are contained in one gigantic open set, and
there is no smaller open set containing non-principal ultrafilters. T is T0 and
T1, but T ∗ clearly does not satisfy T0 and T1.

It is known from general topology, that classes of T0-, T1- and T2-spaces
are closed under open subspaces. We estblish that T0− and T1-spaces are
also closed under taking ultrafilter morphic images.

Proposition 18. The class of T0-spaces is closed under topological ultrafilter
morphic images and open subspaces.

Proof. Let T be T0-space and f be an interior map from T to S∗ injective
on principal ultrafilters. Take any two distinct points x and y from S. Denote
a = f−1(x∗), b = f−1(y∗). Since f is injective on principal ultrafilters, a and
b are distinct and unique. Since T is a T0 space, there exists either an
open neighborhood Oa of a s.t. b /∈ Oa or an open neighborhood Ob of a
s.t. a /∈ Ob. We will consider the first case (the other one is completely
analogous). Denote Ox∗ = f(Oa), it is clear that y∗ /∈ Ox∗ . It follows that
there exists Ox s.t. x ∈ Ox and y /∈ Ox.

To prove this a simple argument by contradiction suffices. First of all,
without loss of generality we can consider Ox∗ to be an intersection of ∗-
images of open sets. Suppose every neighborhood of x contains y. Then
from the ∗-map properties it follows that y∗ ∈ Ox∗ which is contradiction. a

Proposition 19. The class of T1-spaces is closed under topological ultrafilter
morphic images and open subspaces.

Proof. Let T be T1-space and f be an interior map from T to S∗ injective
on principal ultrafilters. For every x ∈ S, x∗ is closed since it is interior
image of some closed singleton set in T . Then {x} is closed too, for if it is
open, then x∗ would be open too (by proposition 2). a

And indeed, T0 and T1 spaces can be defined by the following hybrid
formulas (taken from [10]):

t0 : @i¬j → @j2¬i ∨@i2¬@j

t1 : i ≡ 3i

Hybrid languages have been quite expressive so far, we could even express
T0 and T1 with them, which is not possible with modal languages. But it
turns out that neither H(@), nor H(E) are expressive enough to handle T2.
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Theorem 20. The class of T2 topological spaces in not definable in H(@)
and H(E).

Proof. We need to construct a counter-example to theorem 14 as follows:
we should find a T2 space S such that its topological ultrafilter morphic image
T is not a T2 space. Since T1 can be expressed in H(@) and hybrid formulas
validity is preserved under topological ultrafilter morphic images, T should
satisfy T1 but should not satisfy T2.

We suggest to put T = (N, τ) where τ is a co-finite topology.

Claim 20.1. The Alexandroff extension T ∗ has the following topology: a set
is open iff it contains the set F of all non-principal filters.

Every open set that belongs to the base of Alexandroff topology is the
set of all ultrafilters extending some proper open filter. But the only proper
open filters possible in T topology are filters that contain only co-finite sets,
because every set that is not co-finite has an empty interior that cannot
belong to a proper filter. But then F is contained in any open set from the
base of topology. Since any set in topology is a union of sets from the base,
the same statement can be made for any open set.

Now let us prove the right-to-left direction. Consider an open filter O
containing all co-finite sets that contain a. The set πa ∪F contains precisely
ultrafilters that extend O. The claim is proved.

To construct S we appeal to the notion of resolvable topological space
[11].

Definition 19. A topological space T = (T, τ) is called resolvable if T has
a pair of disjoint dense subset. More generally, X is said to be α-resolvable
for a cardinal number α if X has α-many pairwise disjoint dense subsets.

We now apply an argument similar to that used in [10] to prove the
undefinability of Ti axioms in modal language.

Let R = (R, ρ) be 22ℵ0 -resolvable topological space which satisfies T2

(according to [8] such a space exists). We will denote dense subsets of R
by Ri where i ∈ F where F is the set of all non-principal ultrafilters over
N. Thus R =

⋃
i∈F

Ri ∪ R̄. We can index dense subsets of R with points of

F because the set of dense subsets of R has the same cardinality as F . Let
S = (N∪R, σ) be a space with the following topology: the topology of R as
a subspace coincides with the one of R, R itself is an open set and sets of
the form X ∪O where X ∈ N and O is an open subset of R.

S is a T2 space. Indeed, any two points that belong to R can be separated
by two opens, since R is a T2 space. Any two points x, y ∈ N can be separated
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by open sets of the form {x} ∪ Ox and {y} ∪ Oy where Ox and Oy are open
sets from R such that Ox ∩Oy = ∅. Finally, two points x, y such that x ∈ N
and y ∈ R can be separated by the sets {x} ∪ Ox and Oy where again Ox

and Oy are open sets from R such that Ox ∩Oy = ∅.
Fix some i∗ and construct a function f : N ∪R→ T as follows:

f(x) =


πx if x ∈ N
i if x ∈ Ri

i∗ if x ∈ R̄

The f -preimage of any open set O ∈ T ∗ is of the form R ∪ X where
X ⊆ N, which is open. Any open set O ∈ N ∪R has non-empty intersection
with Ri for all i ∈ F , hence f(O) contains F and thus is open.

f is an interior mapping which is injective on principal ultrafilters by
construction. The counter-example is built. a

8 Conclusions

We have presented some results which propose a new topic for research in
logic — definability of topological spaces in hybrid languages. Although
we have obtained a Goldblatt-Thomason-like theorem, a lot of questions
remain to be answered. It would be interesting to examine how definability
is affected by enriching the hybrid languages with new operator like, for
example, binding operator. Another quite fascinating topic would be to
describe some interesting classes of topological spaces in hybrid languages
(or, using the results obtained, proving it impossible) and thus tracing the
boundaries of expressive power of hybrid languages for topological reasoning.
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