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Abstract

We study a propositional polymodal provability logic GLP introduced
by G. Japaridze. The previous treatments of this logic, due to Japaridze
and Ignatiev (see [11, 7]), heavily relied on some non-finitary principles
such as transfinite induction up to ε0 or reflection principles. In fact, the
closed fragment of GLP gives rise to a natural system of ordinal notation
for ε0 that was used in [1] for a proof-theoretic analysis of Peano arithmetic
and for constructing simple combinatorial independent statements.

In this paper, we study Ignatiev’s universal model for the closed frag-
ment of this logic. Using bisimulation techniques, we show that several
basic results on the closed fragment of GLP, including the normal form
theorem, can be proved by purely finitary means formalizable in elemen-
tary arithmetic. As a corollary, the system of ordinal notation for ε0 based
on the closed fragment of GLP is shown to be provably isomorphic to the
standard system of ordinal notation up to ε0. We also settle negatively
some conjectures by Ignatiev.

1 Introduction

Giorgi Japaridze introduced a polymodal logic of provability GLP back in 1986
[12, 13]. The logic was formulated in a propositional language with infinitely
many modalities [0], [1], [2], . . . , and was supplied with a specific provability
interpretation. The first modality denoted the provability predicate for Peano
arithmetic PA, and the others denoted the predicates of provability by one,
two, three, etc., nested applications of the ω-rule over PA, thus filling in the
gap between the set of provable in PA and the set of true arithmetical sen-
tences. Japaridze proved a highly nontrivial arithmetical completeness theorem
for GLP, which was one of the first genuine extensions of Solovay’s theorems
[16] to polymodal provability logics.

∗Supported by grants from Russian Foundation for Basic Research (RFBR), Russian pres-
idential program of support of leading scientific schools, and by Netherlands Organization for
Scientific Research (NWO).
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Japaridze’s work was simplified by Konstantin Ignatiev [11] who showed
that the arithmetical completeness theorem of Japaridze holds for more general
sequences of theories. Ignatiev also studied modal logical properties of GLP,
in particular, he proved the analogs of Craig’s interpolation theorem and of de
Jongh–Sambin’s fixed point theorem for GLP. He also obtained an effective
normal form result and constructed a universal model for the closed fragment
of GLP. This beautiful model will play an important role in the present paper.

The results of Japaridze and Ignatiev, albeit only for a restricted language
with just two modalities, were later incorporated into a well-known textbook
by George Boolos on the logic of provability [7]. Boolos himself contributed by
proving that Japaridze’s logic was arithmetically complete for the interpretation
of the second modality as the ω-provability in second order arithmetic.

An interest in Japaridze’s logic was renewed after the first author of this pa-
per established its connection with a proof-theoretic ordinal analysis of Peano
arithmetic à la Gentzen. In [4, 1] a new simple consistency proof for PA by
transfinite induction based on Japaridze’s logic and its models, called graded
provability algebras, was given. The closed fragment of GLP under the natu-
ral ordering relation ‘ϕ implies consistency of ψ’ played the role of a suitable
ordinal notation system for the ordinal ε0. In [5], an interesting combinatorial
independent principle suggested by Japaridze’s logic was studied and was shown
to be independent from PA. In [3], an extension of Japaridze’s logic defining
an ordinal notation system up to a larger proof-theoretic ordinal Γ0 was intro-
duced. Thus, methods of provability logic provided a new and interesting type
of ‘natural’ ordinal notation systems and contributed to a better understanding
of relationships between formal theories and their proof-theoretic ordinals.

This paper is devoted to a question which has become sufficiently impor-
tant in view of the general methodology of applying provability logic to proof-
theoretic analysis of theories such as PA. The system of ordinal notation based
on the closed fragment of GLP was shown in [1] to be order-isomorphic to the
standard system of ordinal notation for ε0 based on Cantor normal forms. How-
ever, a relatively simple proof of that theorem given in [1] used the arithmetical
soundness of Japaridze’s logic and the validity of all formulas ¬[n]⊥ under the
arithmetical interpretation. The latter fact is proof-theoretically strong, that is,
not formalizable in PA itself (see Lemma 2.2 below). Hence, it was not a priori
clear if the two systems of ordinal notation were provably equivalent in PA, and
hence if Gentzen’s and Beklemishev’s results were really the same.

Similar kinds of problems were already known from Ignatiev’s work. In fact,
as Ignatiev noted in [10], ‘all reasoning [in his paper] about the closed fragment
of GLP uses ε0-induction and thus cannot be formalized in PA, but only in
PA ∪ {the ε0-induction schema}. Since this theory has the same theorems as
PA′,1 a natural conjecture is that several modal properties of GLP, such as the

1Ignatiev calls PA′ the extension of PA by its local reflection principle. Actually, by a result
of Kreisel and Lévy [15] the ε0-induction schema is equivalent to a stronger uniform reflection
principle, which would be the correct reading of that passage.
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Craig interpolation property, cannot be proved in PA. However, the author has
no idea how to prove it.’

In this paper we shall examine the situation concerning the closed fragment
of GLP, which is particularly interesting from the point of view of the applica-
tions to proof theory. The problem of provable isomorphism of the two systems
of ordinal notation for ε0 turns out to be equivalent to a purely modal logical
question about GLP: Is the consistency of the extension of GLP by formulas
of the form ¬[n]⊥, for all n, provable in PA? Notice that we are talking here
about consistency of a decidable propositional logic. Surprisingly enough, the
two different consistency proofs known so far relied on some principles outside
PA. An obvious proof by the arithmetical interpretation of GLP used the uni-
form reflection principle. An alternative proof based on Ignatiev’s model — the
only known Kripke model for the logic in question — used transfinite induction.
In fact, Ignatiev’s model is a converse well-founded ordering of height ε0, and
the standard interpretation of Löb’s axiom in a Kripke model simply means
converse well-foundedness.

Despite this fact, we show that no strong assumptions are necessary here, and
the consistency of the above logic can be established by purely finitary means
formalizable in elementary arithmetic EA (or I∆0+exp [9]). Main results on the
closed fragment of Japaridze’s logic necessary for the proof-theoretic analysis of
PA can also be obtained by finitary means. Our proof is based on the analysis
of Ignatiev’s model and a realization that transfinite induction for definable
subsets of the model is a proof-theoretically much weaker principle. We present
a proof based on semantical bisimulation arguments (see also Joosten [14]). (An
alternative more syntactic proof based on refinements of a normal form theorem
is also possible, but it is more cumbersome.) We conclude that the systems
of ordinal notation based on GLP and on Cantor normal forms are provably
isomorphic, and hence Gentzen’s original result is captured by the provability
algebraic approach.2

2 Preliminaries

The axioms of GLP. From the point of view of a finitary treatment there
are two problematic axiom schemes in GLP: Löb’s axiom and the montonic-
ity axiom. Therefore we introduce some subsystems of the closed fragment of
GLP. As our basic system I we choose a polymodal version of K4 given by the
following rules and axiom schemes:

Axioms: (i) Boolean tautologies;

(ii) [x](ϕ→ ψ) → ([x]ϕ→ [x]ψ);

(iii) [x]ϕ→ [y][x]ϕ, for x ≤ y;

2It was shown in [2] that using some tricks one can avoid the above mentioned problem of
equivalence of ordinal notation systems and directly obtain Gentzen’s result for the standard
ordinal notation system from the treatment of Peano arithmetic based on GLP.
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(iv) 〈x〉ϕ→ [y]〈x〉ϕ, for x < y.

Rules: modus ponens, � ϕ ⇒ � [x]ϕ.

As usual, 〈x〉ϕ abbreviates ¬[x]¬ϕ.
The system GLP−, denoted LN by Ignatiev for a language with N modal-

ities, is obtained from I by adding Löb’s axiom:

[x]([x]ϕ→ ϕ) → [x]ϕ.

Japaridze’s logic GLP is obtained from GLP− by adding the monotonicity
axiom:

[y]ϕ→ [x]ϕ, for y ≤ x.

We notice an obvious property of all these systems, which we call shift in-
variance. Let x ↑ ϕ be the result of replacing in ϕ every modality [y] by [x+ y].
Then GLP � ϕ implies GLP � (x ↑ ϕ), for any formula ϕ. The converse
implication also holds, which follows from the work of Ignatiev.

Arithmetical interpretation. Fix an r.e. theory T in the language of Peano
arithmetic containing a sufficiently strong fragment of PA such as Kalmar ele-
mentary arithmetic EA. Let [0]T denote a Σ1-provability predicate for T , and
[n]T a Σn+1-provability predicate for the extension of T by all true arithmetical
Πn-sentences. A standard arithmetical interpretation of the polymodal lan-
guage, somewhat different from the original interpretation by Japaridze, reads
[n] as [n]T , for each n. An arithmetical realization is a finite function f mapping
propositional variables to arithmetical sentences. Let fT (ϕ) denote the result
of substituting arithmetical sentences for the variables of ϕ according to f and
translating the modalities as above. It is well known (and a matter of routine
checking) that all axioms of GLP are valid under this interpretation.

Lemma 2.1 GLP � ϕ implies EA � fT (ϕ), for any arithmetical realization f
of the variables of ϕ.

Japaridze [12] and Ignatiev [11] showed that the converse implication also
holds provided T is arithmetically sound, that is, if all theorems of T are true
in the standard model.

We note that the condition of soundness of T is equivalent to the truth of all
formulas of the form 〈n〉T
. Indeed, if T proves a false Σn-sentence, for some n,
then the extension of T by all true Πn-sentences is contradictory. Hence, 〈n〉T

is false. On the other hand, if T is sound, then the extension of T by all true
Πn-sentences is also sound, and hence it is consistent.

Soundness of T is formally expressed by the uniform reflection principle for
T , that is, the schema

RFN(T ) : ∀x ([0]Tϕ(ẋ) → ϕ(x)),

for all formulas ϕ. The previous argument can be formalized in EA and yields
the following lemma (see [1]).
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Lemma 2.2 Over EA, the schema {〈n〉T
 : n < ω} is equivalent to RFN(T ).

Hence, {〈n〉EA
 : n < ω} is equivalent to the uniform reflection principle for
EA. Kreisel and Lévy [15] have shown that EA + RFN(EA) is equivalent to PA.

Let GLP∗ denote an extension of GLP by all axioms of the form {〈n〉
 :
n < ω} and with modus ponens as the only rule of inference.

Proposition 2.3 GLP∗ is consistent.

Proof. By induction on the length of a GLP∗-derivation it is easy to show
that, if GLP∗ � ϕ, then PA � fEA(ϕ), for any realization f of the variables of
ϕ. Indeed, all formulas of the form fEA(〈n〉
) are provable in PA, by Lemma
2.2, and Lemma 2.1 accounts for the axioms of GLP. Since PA is consistent, ⊥
is not derivable in GLP∗. �

Of course, this simple argument uses a strong assumption of consistency of
PA. In the present paper we shall give a different proof of this fact which is
formalizable in EA.

The closed fragment of GLP. Let S denote the set of all words over the
alphabet N, including the empty word Λ. Sx will denote the set of words over
the alphabet {y ∈ N : x ≤ y}. To each element α = x1x2 . . . xk of S we associate
its modal interpretation, that is, the closed modal formula

〈x1〉〈x2〉 · · · 〈xk〉
, (1)

We do not distinguish between the word α and formula (1). We also identify Λ
with 
.

For each x ∈ N there is a natural ordering <x on Sx defined by

α <x β ⇐⇒ GLP � β → 〈x〉α.
It is immediately seen that <x is transitive. For any x, we have the following
lemma (provably in EA).

Lemma 2.4 <x is irreflexive if and only if GLP∗ is consistent.

Proof. In view of Löb’s axiom, α <x α iff GLP � α → 〈x〉α iff GLP � ¬α.
Let n be greater than any letter occurring in α. We verify by induction on the
length of α that

GLP � 〈n〉
 → 〈n〉α.
Indeed, the statement is obvious if α = 
. If α = 〈m〉β, then, by the induction
hypothesis,

GLP � 〈n〉
 → 〈n〉β
→ 〈n〉
 ∧ 〈m〉β, by the monotonicity axiom
→ 〈n〉
 ∧ [n]〈m〉β, by Axiom (iv)
→ 〈n〉〈m〉β, by Axiom (ii).
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If GLP � ¬α, then GLP � [n]¬α and hence GLP � [n]⊥. This yields the
inconsistency of GLP∗. Conversely, if GLP∗ is inconsistent, then by the de-
duction theorem GLP � [n]⊥, for some n. Then for α = 〈n〉
 one has α <x α,
for any x, hence <x is not irreflexive. �

We conclude that the orderings <x are indeed irreflexive, but our current
proof of this fact relies on the assumption of consistency of PA, in view of
Proposition 2.3.

We formulate a normal form result for the closed fragment of GLP. We
first define a subset NF ⊂ S of normal forms. Let w(α), width of α, denote
the number of different letters occurring in α. Normal forms are defined by
recursion on their width.

• Λ and any word of width 1 belongs to NF.

• Assume w(α) > 1 and let x = min(α). Then graphically α = α1x · · ·xαk,
where all αi do not contain x and hence w(αi) < w(α) for 1 ≤ i ≤ k.
Then α ∈ NF iff all αi ∈ NF and, for all 1 ≤ i < k, αi+1 �<x+1 αi. (Note
that αi ∈ Sx+1.)

The following propositions are an alternative version of Ignatiev’s normal
form theorem (see [1, 3]).

Proposition 2.5 Every word is equivalent in GLP to a unique word in a nor-
mal form.

Proposition 2.6 Every closed formula is equivalent in GLP to a boolean com-
bination of words.

Proposition 2.7 below (see [1]) implies that the ordering (S,<0) is well-
founded and isomorphic to ε0 modulo equivalence in GLP. We define a natural
function o mapping words to ordinals below ε0.

Let o(0k) = k. If α = α10α20 · · · 0αn, where all αi ∈ S1 and not all of them
empty, then recursively define

o(α) = ωo(α−
n ) + · · · + ωo(α−

1 ),

where β− is obtained from β ∈ S1 by replacing every letter m+ 1 by m.

Proposition 2.7 For all α, β ∈ S,

GLP � α↔ β iff o(α) = o(β);
GLP � β → �α iff o(α) < o(β).

Notice that by the shift invariance of GLP

α <0 β ⇒ x ↑ α <x x ↑ β. (2)

The converse implication also holds, and in fact x ↑ · is an isomorphism of
(S0, <0) onto (Sx, <x) (see Corollary 7 in [3]).
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Ignatiev’s model. One of the aims of this paper is to popularize a beautiful
Kripke model U for the closed fragment of GLP constructed by Ignatiev. The
model is an infinite structure equipped with infinitely many irreflexive ordering
relations R0, R1, R2, . . . , which has a remarkable self-similar (or ‘fractal’) kind
of symmetry.

First, we introduce some notation. If K is a structure with the above signa-
ture, let K+ denote the structure with the same universe whose relation R0 is
empty and whose relation Rn+1 coincides with Rn on K, for each n < ω.

Every ordinal α > 0 can be written in the form α = β + ωγ . By Cantor’s
normal form theorem, γ is uniquely defined. We denote γ by d(α) and stipulate
d(0) = 0.

We define U as a direct limit of structures Uα constructed by stages α < ε0.
Thus, we simultaneously define Uα and the canonical embeddings iβα : Uβ → Uα,
for all β < α, by induction on α.

U0 consists of a single point 0 with empty relations. Assume all Uβ , for
β < α, are constructed. Let Vα := lim−→{Uβ : β < α} and let Wα := U+

d(α).
Then Uα is defined to be the disjoint union of Vα and Wα, with all the inherited
ordering relations. Besides, R0 on Uα is extended by putting any element of Wα

below any element of Vα, that is, xR0y whenever x ∈ Wα and y ∈ Vα.
The embeddings iβα, for β < α, are defined in an intuitively obvious way as

follows. Let jα : Vα ↪→ Uα and hα : Wα ↪→ Uα denote the canonical embeddings
associated with the disjoint union, and let jβα : Uβ → Vα be the embedding
associated with the direct limit. Then iβα = jα◦jβα is the required embedding of
Uβ into Uα. This completes the inductive definition of Uα and of U := lim−→{Uα :
α < ε0}.

From now on we can think of Uα as being a substructure of U ; direct limits
then simply become unions. The nodes of Wα, that is, the nodes from Uα \⋃

β<α Uβ will be called the nodes introduced at stage α. Since Wα is isomorphic
to U+

d(α), there is a function p : U → U mapping a node x introduced at stage α
to the corresponding point in Ud(α); we let p(0) = 0.

We also inductively define the root α̂ of Uα. By definition, 0̂ = 0, and α̂ is
the node of Wα corresponding to the root of Ud(α), in other words, the unique

node x ∈ Wα such that p(x) = d̂(α). The model U has no root.
The main axis M ⊂ U is the set of all nodes of the form α̂, for α < ε0. This

set plays a special role in the treatment of U . It is linearly ordered by R0 and
has order type ε∗0 (the converse of ε0).

U can be considered as a Kripke frame for the language of GLP. The validity
of formulas is defined as usual, in particular,

U , u � [n]ϕ ⇐⇒ ∀v ∈ U (uRnv ⇒ U , v � ϕ),

for any ϕ. It is easy to see that the axioms of GLP− are valid in U . Indeed, Rn

are converse well-founded ordering relations satisfying the additional condition

∀x, y (xRny ⇒ ∀z (xRkz ⇔ yRkz)), if k < n.
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〈ω + 1〉
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〈ω2〉

〈ω2 + 1〉

〈ω2 + ω〉

〈ωω + 1〉

〈ωω+1〉

〈ωω+1 + 1〉

〈ω, 1〉

〈ωω〉

〈ω2, 2〉
〈ω2, 1〉

〈ω + ω, 1〉

〈ω2 + ω, 1〉

〈ωω, 1〉〈ωω, 2〉
· · ·〈ωω, ω〉

〈ωω+1, 1〉

〈ωω+1, 2〉〈ωω+1, ω〉
〈ωω+1, ω + 1〉

〈ωω+1, ω, 1〉

〈ωω, ω, 1〉

Figure 1: The universal model for GLP0.
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This condition guarantees the validity of axioms (iii) and (iv) of GLP−. How-
ever, it is notably not the case that Rn ⊆ Rk for k < n. Hence, the monotonicity
axiom fails in U for a suitable evaluation of variables.

Ignatiev has established (using strong assumptions) that U is not only a
model but also a universal model for the closed fragment of GLP.

Proposition 2.8 If ϕ is a closed modal formula, then

GLP � ϕ ⇐⇒ U , u � ϕ, for all u ∈ U .

In fact, Ignatiev shows that any closed formula unprovable in GLP is false at
some node of the main axis of U . A strong completeness of U , also established by
Ignatiev, is that there is a canonical bijection between nodes of U and maximal
GLP-consistent sets of closed formulas. With a node x ∈ U we associate the
set of all closed formulas valid at x. Thus, U can be seen as a canonical model
for the closed fragment of GLP.

To give a recursive presentation of U we associate with every node x ∈ U an
infinite sequence 	α = (α0, α1, . . .) of ordinals < ε0 as follows.

Let α0 be the first ordinal α such that x ∈ Uα. Since α0 is the first one,
x �∈ ⋃

β<α0
Uβ , therefore x ∈ Wα. Let x1 = p(x) and let α1 be the first ordinal

α such that x1 ∈ Uα. The process can be continued. We notice that, by the
construction of U ,

α1 ≤ d(α0), α2 ≤ d(α1), . . . (3)

Hence, the chain of ordinals strictly decreases until 0 is reached. If αm = 0, then
αn = 0, for all n ≥ m. Hence, the sequence (α0, α1, . . .) ends with an infinite
tail of zeros.

It is not difficult to see that such a sequence 	α uniquely characterizes an
element x ∈ U . Indeed, any element x ∈ U is characterized by the least α such
that x ∈ Uα and by the position of x in the model Wα � U+

d(α0)
. This posi-

tion is, by the induction hypothesis, uniquely characterized by the subsequence
(α1, α2, . . .). It is also easy to see that to every sequence satisfying (3) one can
find a corresponding element of the model.

Notice that, for any α < ε0, the sequence α̂ = (α, d(α), d(d(α)), . . .) repre-
sents the root of Uα. The set of all such sequences constitutes the main axis of
U .

See Figure 1 for a drawing of an upper part of U . On this picture, R0 is
the transitive closure of the relation represented by single arrows. Double and
triple arrows represent R1 and R2, in a similar way. All sequences assigned to
the nodes end up with an infinite tail of zeros which is not shown. It is useful to
think of this picture as being embedded into a three-dimensional space in which
0-arrows connect the ‘planes’ of points connected by 1- and 2-arrows, and in
every such plain 1-arrows connect the ‘lines’ of points connected by 2-arrows,
etc. In general, the whole of U can be thought of as being embedded into an
ω-dimensional space, in which the infinite sequences of ordinals associated with
the points represent the coordinates.
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The accessibility relations can be easily expressed in terms of such co-
ordinates. Assume x, y ∈ U with the corresponding sequences 	α and 	β =
(β0, β1, . . .).

Lemma 2.9 xRky holds iff ∀i < k αi = βi and αk > βk.

Proof. We prove the statement by induction on k. Consider k = 0. Nodes of
U introduced at the same stage are never connected by R0. Therefore, xR0y iff
y has been introduced at an earlier stage than x. Hence, xR0y iff α0 > β0.

Consider k > 0. xRky holds iff x and y have been introduced at the same
stage γ = α0 = β0 and x1Rk−1y1, where x1 = p(x) and y1 = p(y). The se-
quences associated with x1 and y1 are (α1, α2, . . .) and (β1, β2, . . .), respectively.
By the induction hypothesis, x1Rk−1y1 holds iff ∀i (0 < i < k ⇒ αi = βi) and
αk > βk. Putting this together with α0 = β0 yields the result. �

Thus, U can be given the following isomorphic presentation. Let Ω denote
the set of all ω-sequences 	α = (α0, α1, . . .) of ordinals below ε0.

Uα = {	α ∈ Ω : α0 = α and ∀k < ω αk+1 ≤ d(αk)};
xRky ⇔ (∀i < k αi = βi and αk > βk).

This presentation of U is, in fact, elementary recursive. An infinite sequence
of ordinals satisfying (3) is uniquely determined by its maximal non-zero piece.
Hence, the elements of U can also be represented by finite sequences of non-
zero ordinals < ε0 satisfying condition (3). Since the ordinals below ε0 can be
coded in an elementary way by their Cantor normal forms, and the coding of
sequences is available in EA, the predicates x ∈ U , x ∈ Uα, xRny can be defined
in a natural way by bounded formulas in EA.

Despite the fact that U has an elementary presentation, we remark that the
validity of Löb’s axiom in U is equivalent to the converse well-foundedness of an
ordering of height ε0. Hence, it cannot be established in (a conservative second-
order extension of) Peano arithmetic. This is precisely the source of difficulty
with the proof of consistency of GLP∗ via Ignatiev’s model. A way out is to
realize that one actually only needs to prove the validity of the set of closed
instances of Löb’s axiom in U . This fact is much weaker proof-theoretically, but
it requires some analysis of definable sets of nodes in U .

3 Bisimulations and a soundness proof

In this section we give a proof of the consistency of GLP∗. Our proof will make
an extensive use of the standard notion of n-bisimilarity (see e.g. [6]). Let a
Kripke model A (in the language of GLP) be given. We define n-bisimilarity
equivalence relations �n on A, for each n < ω, by induction on n.

Definition 3.1 (n-bisimilarity) Let x, x′ ∈ A.

• x �0 x
′ if x and x′ force the same variables.
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• x, x′ are n+ 1-bisimilar if

– x �n x
′;

– ∀ i<ω ∀y (xRiy ⇒ ∃y′ (x′Riy
′ & y �n y

′));

– ∀ i<ω ∀y′ (x′Riy
′ ⇒ ∃y (xRiy & y′ �n y)).

Let dp(ϕ) denote the modality depth of ϕ, that is, the maximal number of
nested modalities in ϕ. The following lemma is standard.

Lemma 3.2 For any x, y ∈ A, if x �n y then

x � ϕ⇔ y � ϕ,

for every ϕ with dp(ϕ) ≤ n.

Proof. By an easy induction on n with a subsidiary induction on the length of
ϕ. �

We are going to study the n-bisimilarity relation on Ignatiev’s model U for
the closed fragment of GLP. Notice that, for a language without variables, all
nodes of U are 0-bisimilar.

Lemma 3.3 For any ordinals α, β < ε0,

(i) β < α & γ < d(α) ⇒ β + ωγ < α;
(ii) β < α & γ ≤ d(α) ⇒ β + ωγ ≤ α.

Proof. By elementary observations on the Cantor normal forms of α and β. �

Definition 3.4 An ordinal α has nested width at most n, we write nw(α) ≤ n,
if the Cantor normal form of α contains at most n terms, and each exponent of
each term has nested width at most n.

We note that for each α there is an n with nw(α) ≤ n, and that nw(α) ≤ n
implies nw(α) ≤ n+ 1. As all our ordinals are below ε0, we see that, for any
p and α, there are only finitely many β < α with nw(β) ≤ p. Hence, we can
define alternative fundamental sequences as follows:

α〈p〉 := max{ξ < α | nw(ξ) ≤ p}.
We also stipulate 0〈p〉 = −1, where −1 is smaller than any ordinal. It is
immediate that ∀p α〈p〉 < α, for each α. If α is a limit ordinal, we have
supp<ω α〈p〉 = α. We also note that α〈p〉 is monotone in both α and p.

The following is our main technical lemma.

Lemma 3.5 Let 	α, 	β ∈ U be such that, for all i,

αi > βi〈p〉 and βi > αi〈p〉.

Then, 	α �p
	β.
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Proof. By induction on p. The case p = 0 is trivial, so let us consider the
induction step. We assume that for all i, αi > βi〈p+ 1〉 and βi > αi〈p+ 1〉. We
have to see that we can reply any Rn-step from 	α to 	α′ with an Rn-step from
	β to a 	β′ so that 	α′ �p

	β′ and vice versa. By symmetry, it is sufficient to only
consider one step.

So, we assume 	αRn
	α′. Then, ignoring the tails of 0s, 	α and 	α′ have the form

	α = α0, · · · , αn−1, αn, · · · and
	α′ = α0, · · · , αn−1, α

′
n, · · · , α′

m.

We now reply this step in 	β by going to a 	β′ with the same length as 	α′ defined
as follows.

β′
m := α′

m〈p〉 + 1,
β′

k := α′
k〈p〉 + ωβ′

k+1 , for n ≤ k < m;
β′

k := βk, for 0 ≤ k < n.

We now have to check two things. First, we have to see that 	β′ ∈ U and 	βRn
	β′.

Second, we should see that indeed 	α′ �p
	β′.

Thus, we should check that, for all i, β′
i+1 ≤ d(β′

i) and, moreover, β′
n < βn.

Now, β′
i+1 ≤ d(β′

i) is easy to see once we know that, indeed, β′
n < βn. In order

to check that β′
n < βn, we reason as follows. By induction and using Lemma

3.3, we see that
α′

i ≥ β′
i, for n ≤ i ≤ m. (∗)

Combining this with 	αRn
	α′ we obtain that β′

n ≤ α′
n < αn. By an easy induction

we see that nw(β′
i) ≤ p+ 1, for n ≤ i ≤ m. Thus, αn〈p+ 1〉 ≥ β′

n. Combining
this with our assumption that βn > αn〈p+ 1〉, we conclude βn > αn〈p+ 1〉 ≥
β′

n.
Now we prove 	α′ �p

	β′. In view of the induction hypothesis, it is sufficient
to show that, for all i,

(a) α′
i > β′

i〈p〉,
(b) β′

i > α′
i〈p〉.

Let us first prove (a). By (∗) we see that α′
i ≥ β′

i > β′
i〈p〉, for n ≤ i ≤ m. For

i < n, we have α′
i = αi > βi〈p+ 1〉 ≥ βi〈p〉 = β′

i〈p〉.
For n ≤ i ≤ m, (b) follows by the definition of 	β′. Clearly, β′

m = α′
m〈p〉+1 >

α′
m〈p〉. For n ≤ i < m, either ωβ′

i+1 ≤ α′
i〈p〉 whence β′

i = α′
i〈p〉+ωβ′

i+1 > α′
i〈p〉,

or ωβ′
i+1 > α′

i〈p〉 whence β′
i = α′

i〈p〉 + ωβ′
i+1 ≥ ωβ′

i+1 > α′
i〈p〉. For i < n we

reason as in (a).
The induction hypothesis now yields 	α′ �p

	β′, and we are done. �

We remark that this lemma provides a sufficient but not a necessary condi-
tion for p-bisimilarity. Clearly, 0̂ �0 1̂ but not 0 > 1〈0〉 = 0.

The next lemma is an immediate corollary of the previous one.
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Lemma 3.6 Assume an 	α ∈ U and an n < ω are fixed. Let 	β be defined by
backwards recursion as follows:

βk :=




0 if αk = 0;
αk〈p〉 + ωβk+1 if n ≤ k and αk �= 0;
αk if k < n.

Then, 	α �p
	β, 	αRn

	β and ∀k ≥ n nw(βk) ≤ p+ 1.

Proof. The sufficient condition from the previous lemma is easy to check by
backwards induction, similarly to the argument in the lemma itself. The con-
dition concerning the nested width of ordinals βk is clearly satisfied. Using
Lemma 3.3 it is easy to check that βk ≤ αk, for all k > n. Hence, βn < αn and
therefore 	αRn

	β. �

Corollary 3.7 Any point 	α ∈ U is p-bisimilar to some point 	β on the main
axis.

Proof. In the previous lemma, take n = 0. �

Turning to a proof of consistency of GLP∗ we first note an obvious lemma.

Lemma 3.8 If ϕ is a closed formula that is provable in GLP, then there is a
proof of ϕ in which only closed formulas occur.

Proof. If such a proof contains propositional variables, we may substitute 

for them and obtain the desired proof. �

We shall denote by GLP0 the system GLP where the axiom schemes are
restricted to closed formulas. By the above lemma, GLP is conservative over
GLP0.

The following proposition states that GLP0 is sound with respect to U . We
first give an argument using the assumption of converse well-foundedness of U .
Then we shall refine this proof to obtain an argument formalizable in EA.

Proposition 3.9 If GLP0 � ϕ, then U � ϕ.

Proof. By induction on GLP0-proofs. The validity of Löb’s schema follows
from the fact that the model is transitive and conversely well-founded. The only
axiom that needs some special attention is the monotonicity axiom:

〈n〉ϕ→ 〈m〉ϕ, for m ≤ n.

It suffices to show that U � 〈n+ 1〉ϕ→ 〈n〉ϕ. So, suppose that for some 	α ∈ U
we have 	α � 〈n+ 1〉ϕ. Thus, for some 	α′ with 	αRn+1

	α′, we have 	α′ � ϕ. Let
p := dp(ϕ). Given 	α′ and n, by Lemma 3.6, we construct a 	β such that 	αRn

	β

and 	α′ �p
	β. By Lemma 3.2, 	β � ϕ, hence 	α � 〈n〉ϕ. �
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4 Finite approximations

The given proof of Proposition 3.9 uses the fact that U is a conversely well-
founded model. Here, we present a proof of soundness that is based on certain
finite Kripke models approximating U and is formalizable in EA. These are
defined as follows.

Definition 4.1 Fn
α := {	β ∈ U | β0 < α ∧ ∀i nw(βi) ≤ n}. The Ri relations on

Fn
α are defined as before.

Notice that, for any α < ε0 and any n ∈ ω, Fn
α is finite. The following quite

general observation explains the role of the models Fn
α .

Let A be any Kripke model (in the language of GLP), and let B ⊆ A be a
submodel of A, that is, a structure obtained by restricting all the relations in
A to a fixed subset of A and preserving the forcing of all the variables.

For n > 0, we write B ≺n A if, for each x ∈ B and y ∈ A such that xRky,
there is a y′ ∈ B such that y′ �n−1 y in A and xRky

′. In this case, we say that
B is an n-elementary submodel of A. We also stipulate B ≺0 A.

Lemma 4.2 Suppose B ≺n A. Then, B, x � ϕ iff A, x � ϕ, for any x ∈ B and
any ϕ with dp(ϕ) ≤ n.

Proof. For n = 0 the statement is obvious. For n > 0, it follows by an easy
induction on the length of ϕ.

Assume ϕ = 〈k〉ψ and A, x � ϕ where x ∈ B. Then there is a y ∈ A such
that xRky and A, y � ψ. By the given condition, there is a y′ ∈ B such that
xRky

′ and A, y′ � ψ, since y′ �n−1 y and dp(ψ) < n. Hence, by the induction
hypothesis, B, y′ � ψ and B, x � 〈k〉ψ. The other cases are quite obvious. �

Lemma 4.3 Fp
γ ≺p U , for any γ and p.

Proof. Consider any 	α ∈ Fp
γ . Assume 	αRn	α

′. Construct a 	β from 	α′ as in
Lemma 3.6, taking p − 1 for p. Observe that 	αRn

	β and 	β �p−1
	α′. Since

nw(βk) ≤ p, for k ≥ n, and βk = αk, for k < n, we see that 	β ∈ Fp
γ . �

We shall write GLP0 �q ϕ to indicate that ϕ is provable in GLP0 with a
proof that uses only formulas of depth at most q.

Theorem 1 If GLP0 �q ϕ then Fq
γ � ϕ, for any q, γ and ϕ. Moreover, this

fact is formalizable in EA.

Proof. Clearly, if dp(ϕ) ≤ q and GLP0 � ϕ, then U � ϕ and hence Fq
γ � ϕ,

by Lemmas 4.2 and 4.3. However, this argument passes through an infinite
structure U . To avoid this problem, we give a direct proof by induction on the
length of a derivation in GLP0 (γ and q are parameters of the induction). We
then indicate how to formalize this proof within EA.

First, we observe that Lemmas 3.5 and 3.6 also hold for the model Fq
γ and

the associated notion of p-bisimilarity if p < q. One easily checks that the
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given proofs of these lemmas work in Fq
γ , since the constructed points 	β′ and 	β

actually belong to Fq
γ .3

Parallel to the proof of Proposition 3.9, we should now consider any axiom
of GLP0 of depth at most q and see that this axiom holds in Fq

γ . Löb’s axioms
are now valid in Fq

γ simply because this model is finite. Thus, verifying a Löb’s
axiom in Fq

γ amounts to an application of ordinary induction; the complexity
of the associated induction formula is shown below to be elementary.

Again, the only really interesting case is to show that

Fq
γ � 〈n+ 1〉ϕ→ 〈n〉ϕ.

Indeed, consider some 	α ∈ Fq
γ with 	α � 〈n+ 1〉ϕ. Consequently, for some

	α′ ∈ Fq
γ with 	αRn+1

	α′ we have 	α′ � ϕ. Let p := dp(ϕ). As dp(〈n+ 1〉ϕ →
〈n〉ϕ) ≤ q, clearly p < q. Construct 	β from 	α′ and n as in Lemma 3.6. By this
lemma, 	αRn

	β, 	α′ �p
	β, and 	β ∈ Fq

γ , by the condition on the nested width of 	β.
Hence, 	β � ϕ and 	α � 〈n〉ϕ.

The above proof is an argument by induction. It would be available in
EA if we manage to represent a truth-definition for the model Fq

γ by a multi-
exponentially bounded arithmetical formula. It is easy to define an elementary
formula (in x, γ and q) expressing x ∈ Fq

γ . In addition, we have to show that
the relation Fq

γ , x � ϕ (in q and the codes of x, ϕ, and γ) is elementary and that
its basic properties are verifiable in EA. Notice that this relation is naturally
defined by bounded recursion on ϕ where the bound is essentially determined
by the size of the representation of elements of the model. It is sufficient to only
consider models of the form Fn

ωm
, for which we shall estimate the maximal size

of the elements under a natural encoding. Here, ω0 = 1 and ωn+1 = ωωn .
We presuppose that the ordinals are represented by terms using the functions

+ and ωα and a constant 0. Let α be such a term. Its length is the number of
symbols, whereas the height h(α) of α is defined by: h(0) = 0, h(ωα) = h(α)+1,
and h(α+ β) = max(h(α), h(β)). Clearly, h(ωn) = n+ 1.

Let f(m,n) denote the maximal length of a natural term representation for
ordinals of nested width at most n and of height at most m. Clearly, f(0, n) = 1
and f(m + 1, n) ≤ cnf(m,n), for some constant c. Thus, we obtain f(m,n) ≤
(cn)m. The length of the non-zero part of a sequence 	α ∈ Fn

ωm
is at most m+1.

Hence, the length of a natural representation of 	α is bounded by an elementary
function of order O(f(m+ 1, n)(m + 1)). The Gödel number of 	α will then be
bounded by a certain elementary function b(m,n) = 22O(m log n)

.
Using this bound, one can define the forcing relation Fq

γ , x � ϕ by bounded
recursion on the length of ϕ. For example,

Fn
ωm
, x � [n]ϕ iff ∀y ≤ b(m,n) (y ∈ Fn

ωm
∧ xRny → Fn

ωm
, y � ϕ).

Thus, the forcing relation can be naturally represented in EA. Then it is a
routine matter to check that EA proves the usual inductive clauses for the forcing

3Externally, this is obvious, since p-bisimilarity in Fq
γ coincides with the one induced from

U , by Lemma 4.3.
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relation on Fn
ωm

. To formalize the proof of Theorem 1 one also has to formalize
the bounded recursive definition of p-bisimilarity (Definition 3.1) and to prove
Lemmas 3.5 and 3.6. This is unproblematic. �

Corollary 4.4 Consistency of GLP∗ is provable in EA.

Proof. We reason in EA. Suppose that GLP∗ is inconsistent. Then, for
some m, GLP0 � [m]⊥, by Lemma 3.8. Hence, for some n, we also have
GLP0 �n [m]⊥. By Theorem 1, Fn

ωm
� [m]⊥, which contradicts the obvious

validity Fn
ωm
, ω̂m � 〈m〉
. �

Thus, we obtain from Lemma 2.4 the desired property of the orderings <x.

Corollary 4.5 Provably in EA, (Sx, <x) is an irreflexive ordering.

Remark 4.6 Having defined the forcing relation uniformly for all the models
Fn

ωm
, one can now also define a forcing relation for the whole model U :

U , 	α � ϕ ⇐⇒ ∃n,m (n ≥ max(dp(ϕ), nw(	α)) ∧ ωm > α0 ∧ Fn
ωm
, 	α � ϕ).

The formula on the right hand side is bounded, because n and m can actually
be bounded by the code of ϕ and the code of 	α. Modulo some work one can
verify in EA the inductive clauses for the definition of forcing in U , which allows
to speak within EA about validity in U .

5 Further corollaries

Theorem 1 allows us to obtain finitary (formalizable in EA) proofs of some other
basic results on GLP. In this section we presuppose familiarity with [1, 3].

First, we deal with the unique normal form theorem for words (Proposi-
tion 2.5). We formulate a sharper version of it which will also yield a simpler
axiomatization of GLP0.

Let Im be I together with the restricted monotonicity schema

〈x〉α→ 〈y〉α, for x ≥ y and α a word from Sy.

Let Iml be Im plus the restricted Löb’s schema

[x](α→ 〈x〉α) → [x]¬α, where α ∈ Sx.

Proposition 5.1 Every word is equivalent in Im to a word in a normal form.
GLP-equivalent normal forms are graphically the same. Moreover, both facts
are formalizable in EA.

Proof (sketch). We inspect the lemmas leading to a proof of Proposition
2.5, which corresponds to Proposition 3 and Corollary 5 in [3]. Locally within
the present proof all the references will be to [3]. One has to check that the
arguments work in Im and are formalizable in EA.
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Lemma 1 works in I. Lemma 2 works in Im, hence every word can be
brought to a normal form in Im (Proposition 3).

Proposition 4 also holds in Im, but a word of caution is necessary: the
fact that the three cases α <x β, α = β and β <x α are mutually exclusive
presupposes the irreflexivity of the ordering. Hence, the uniqueness of a normal
form (Corollary 5) relies on Theorem 1 of this paper.

To formalize these arguments in EA one only has to notice that the length of
a word under a normalization procedure can only decrease. The arguments pro-
ceed by induction on length, and the lengths of the corresponding Im-derivations
are polynomially bounded in the length of a given word. Hence, these arguments
are formalizable in EA. �

We remark that Corollaries 6, 7, 8 and Lemma 9 of [3] are also formalizable
in EA.

Proposition 5.2 The ordering (S,<0) is EA-provably isomorphic to the stan-
dard system of ordinal notation for ε0.

Proof (sketch). We now understand the function o as a mapping from S to the
standard ordinal notations for ε0 and formalize in EA a proof of Proposition 2.7.
The most direct proof of this fact follows the one of Proposition 4 from [3].

By induction on the width w(αβ) one simultaneously proves that, for all
α, β ∈ S,

o(α) = o(β) ⇒ GLP � α↔ β;
o(α) < o(β) ⇒ GLP � β → �α.

Notice that, by the irreflexivity of <0, these implications are reversible.
Without loss of generality assume that the smallest letter occurring in αβ is

0. Write α and β in the form

α = α+
k 0α+

k−10 · · · 0α+
1 , β = β+

m0β+
m−10 · · · 0β+

1 .

We may assume that o(αi) ≥ o(αi+1), for all i. Otherwise, by the induction
hypothesis, α can be brought to an equivalent form satisfying the required
condition without changing its ordinal. (This is done as in Proposition 3 from
[3] by deleting some of the α+

i .) The same holds for β.
Assume o(α) = o(β). Then, since these ordinals are in normal form, one has

m = k and ∀i ≤ m o(αi) = o(βi). It follows by the induction hypothesis that
GLP � αi ↔ βi, for all i ≤ m. Then it is easy to infer that GLP � α↔ β.

Assume o(α) < o(β). Then, either ∀i ≤ k o(αi) = o(βi) and k < m, or there
is an s ≤ m, k such that o(αs) < o(βs) and ∀i < s o(αi) = o(βi). Following the
proof of Proposition 4, one can easily show that α <0 β in either case.

The given proof, being a simple kind of induction, is obviously formalizable
in EA, but notice that we also relied on Theorem 1 to inverse the implications.
�

The following statement formalizes Proposition 2.6.
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Proposition 5.3 Provably in EA, every closed modal formula is Iml-equivalent
to a boolean combination of words.

Proof (sketch). We examine the corresponding lemmas in [3]. A proof of
Lemma 10 works in Iml. Prima facie, it uses the irreflexivity of <x, however, a
small adaptation actually shows that this is not even necessary.

Lemma 11 holds in Iml by virtue of Lemma 10. The additional identities
used there hold in I. An application of Lemma 10 is the only use of Löb’s axiom
in the whole proof.

Let w(ϕ) denote the width of ϕ, that is, the number of different indices of
modalities in ϕ. Notice that there are only finitely many different formulas of a
fixed width and depth. Also, we notice that, obviously, normalization does not
increase the width.

By induction on the depth of ϕ we prove that there is a boolean combination
of words equivalent to ϕ whose depth does not exceed dp(ϕ). Basis of induction
and the cases of boolean connectives are trivial. Suppose ϕ has the form 〈x〉ψ
with dp(ψ) = dp(ϕ)− 1. There is a boolean combination ψ′ such that dp(ψ′) ≤
dp(ϕ) − 1 and ψ′ is equivalent to ψ. The transformations in Lemma 10 all can
only decrease the depth of 〈x〉ψ′. This proves the claim.

The number of different words of depth (=length) n and width m is bounded
bymn. Under a natural encoding, the length of any particular boolean combina-
tion can be bounded by a function of the form 2mO(n)

. Thus, given a formula ϕ
of depth n we can find an equivalent boolean combination of words whose length
is bounded by 2mO(n)

. We can also roughly estimate m,n ≤ |ϕ|, and hence the
length of a normal form of ϕ is bounded by a multi-exponential function of |ϕ|.
This bound allows one to formalize the inductive proof of the theorem in EA. �

On the basis of this result one can obtain (and formalize in EA) the following
two corollaries, which we mention without proof.

Corollary 5.4 Iml axiomatizes the closed fragment of GLP.

Corollary 5.5 GLP0 is complete with respect to U .

We have shown that many basic results on the closed fragment of GLP can
be obtained by finitary methods. The first author of this paper has proved the
following theorem, which contrasts with these results.

Proposition 5.6 For each n, any extension of GLP− in a language with n
modalities by a set of negated words is finitely axiomatizable. However, this
statement is unprovable in ACA0, a second-order conservative extension of PA.

A proof of this fact is obtained by showing that the ordering of words over the
alphabet {0, . . . , n} by implication in GLP− is a well-quasiordering, isomorphic
to the so-called Friedman’s gap-embedding relation on sequences of numbers.
This result is included in a recent paper by L. Carlucci [8].
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