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Stefan Bold, Benedikt Lowe

ABSTRACT. In this paper, we give a thorough and basic introduction to the
main techniques dealing with computation of cardinals under the Axiom of
Determinacy by measure analyses. As an application, we give a simple induc-
tive measure analysis (without invoking Jackson’s “description theory”) that
allows the computation of further Jénsson cardinals.

The Axiom of Determinacy AD is a game-theoretic statement expressing that all
infinite two-player perfect information games with a countable set of possible moves
are determined, i.e., admit a winning strategy for one of the players. The restriction
to countable sets of possible moves makes AD essentially a statement about real
numbers and sets of real numbers, and traditionally it has been investigated by
descriptive set theorists.

As a consequence, it comes as a surprise to see that AD has strikingly pecu-
liar consequences for the combinatorics on uncountable cardinals such as W,: for
example, the Axiom of Determinacy implies that every algebra on N, has a proper
subalgebra of cardinality X,,. How can an axiom that talks about the existence of
real numbers have consequences for a cardinal like R,,7

There are (at least) two parts to this answer: First of all, under the assumption
of AD, a cardinal like N, is not so far removed from the reals as we like to think.
If we let

© := sup{a; there is a surjection from R onto a},

then it is a consequence of Moschovakis’ Coding Lemma (observed by H. Friedman
and Solovaym) that © is far bigger than N,. As © is the reflection of the real
numbers in the ordinals, (part of) the combinatorial theory of cardinals kK < © is
affected by the theory of the reals. For instance, using the surjection 7 : R — &, we
can translate statements of the first-order theory of x into statements of second-
order arithmetic (with parameter 7).

But as the second part of the answer, we can go beyond this vague statement
and make it more concrete. By a general argument of Solovay, we can connect games
to the existence of ultrafilters on cardinals Kk < ©: Using a surjection 7 : R — &,
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we can play a usual game (with at most countably many moves) and interpret it
(by coding) as a game on k. These games are called Solovay games. Solovay
developed a general technique of associating Solovay games G4 to subsets A C k
in such a way that

S, := {A C k; Player I has a winning strategy in G4}

defines an ultrafilter on k. The first application of this technique was Solovay’s
famous proof of the measurability of X; under AD (for a proof, ¢f. [Ka94, Theorem
28.2]). Moreover, Solovay’s proof tells us that the wi-complete ultrafilter on N; is
the club filter Cg, .

An early extension of Solovay’s technique to yield strong combinatorial results
for uncountable cardinals was Martin’s 1973 theorem that established the strong
partition property!? of X; under AD [Ka94, Theorem 28.12]. This connected the
theory of AD with the study of infinite exponent partition relations and opened
many other possibilities for analysing the structure of uncountable cardinals under
AD. Kleinberg (1977) proved that strong partition cardinals s together with a
normal measure p on k generate a sequence (k¥ ; n > 1) of partition cardinals
(called a Kleinberg sequence; cf. Theorem 3), and computed the sequence derived
from the strong partition property of Xy: x¢ = R,,. This result yields the mentioned
combinatorial property of V.

Nowadays, we know much more about infinitary combinatorics under AD than
in 1977, and it was mainly the work of Steve Jackson [Ja88, Ja99| that gave
us many more strong partition cardinals and normal measures on cardinals below
N.,. However, a uniform analysis of all cardinals in terms of measures is still a
desideratum. Jackson and Khafizov [JaKhoo] have provided a full analysis for
cardinals k < 85 = R o« 1 which has been used by the second author in [L602] to
compute more Kleinberg sequences, but so far, there is no uniform way of giving a
full measure analysis.

In this paper, we give a survey of measure analyses under AD in Section 1 (based
on work of Jackson and the second author). In Section 2, we discuss the general
theory of order measures that form the theoretical foundations of the main result
of this paper. Sections 1 and 2 are to be understood as a survey of techniques that
are either folklore results or essentially due to Jackson. Though none of the results
of these sections are original, the presentation is new and much more thorough
and detailed than in any existing publication. Our goal was not just to provide
the techniques needed for our proof, but to give a general introduction for the
uninitiated reader who has not read any of Jackson’s papers.

Then, in Section 3, we give a simple inductive argument (that avoids Jackson’s
description theory) for a measure analysis with just two measures that reaches the
first w? cardinals after a strong partition cardinal. As an application, we give the
computation of the Kleinberg sequences of the w;-cofinal measure on odd projective
ordinals in Section 4. Using further results of Kleinberg’s, we answer an open
question from [L602].

2] Cf. Section 1 for definitions.
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1. Mathematical Background

In this paper, we shall be working in the system ZF+DC+AD. Very few results
need the full strength of AD: it is enough for many results to work in ZF 4+ DC,
assume that k is a strong partition cardinal and have enough choice available to
make sure that the club filter on k is o-complete.

1.1. Basics. We define the iterated successor operation on cardinals x as fol-
lows by transfinite recursion:
o k0 =g,
o k(@) = (k(@)* for all ordinals o, and
e kN =J{r(®; a € A} for limit ordinals .

Let k be a cardinal. We shall say that x has the strong partition property
if the partition relation x — (k)* holds, i.e., if for every partition of [k]" into two
blocks there is a homogeneous set of order type «. Note that the strong partition
property cannot hold for any cardinal if we assume the Axiom of Choice AC: by a
result of Erdés and Rado (¢f. [Ka94, Proposition 7.1]) any partition relation with
infinite exponents violates AC.

Let us define the A-cofinal filter C) as the filter generated by the A-closed
unbounded sets in &, i.e.,

A €C): <= thereis aclub set C C « such that {a € C; cf(a) = A} C A.

Clearly, C%, is the ordinary club filter on w;. As usual, we call a o-complete ultrafil-
ter a measure, and we call it normal if it is closed under diagonal intersection. If
p is a normal filter on wy, then it must contain the club filter C; . If u is a measure
on k and « is an ordinal, then (because of DC) the ultrapower o /u is wellfounded

and thus isomorphic to an ordinal. We identify it with its Mostowski collapse.

The strong partition property of x implies the existence of many concrete mea-
sures on k, as the following theorem of Kleinberg shows:

THEOREM 1. Let  be a cardinal with the strong partition property and A < k
a regular cardinal. Then C) is a normal measure. In addition, if k is not weakly
Mahlo, then these are the only normal ultrafilters on &.

ProOF. [Ka94, Theorem 28.10 & Exercise 28.11]. O

In other words, the strong partition property of x not only gives the existence
of measures, but in our case (our cardinals will be below X, and thus not weakly
Mahlo) also a structured pattern of all of the normal measures on  (indexed by
the regular cardinals below x).

In addition, the strong partition property also connects to other combinatorial
properties that are well known from usual (AC-) combinatorial set theory: A cardi-
nal k is called a Jénsson cardinal if the partition relation k — [£] <% holds, i.e.,
for every partition of [k]<* into k blocks there is a set H of order type s with the
property that [H]<“ doesn’t meet all blocks.!!

A cardinal « is called a Rowbottom cardinal if for all A < & the partition
relation k& — [k]5% , holds, i.e., for every partition of []<“ into A blocks there is

[3]This is equivalent to saying that every algebra (in the sense of universal algebra) on « has a
proper subalgebra of size k. [C096] is a nice survey of the algebraic side of the Jénsson property.
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a set H of order type x with the property that [H]<“ meets only countably many
blocks.

DEFINITION 2. Let x be a strong partition cardinal and g a normal measure
on k. We then define a sequence of wellordered structures (k# ; n < w) as follows:
o k) =K,
o K41 = (kh)"/p, and
o k! :=sup{kt ; n € w}.

This sequence is called the Kleinberg sequence derived from .

THEOREM 3. Let s be a strong partition cardinal and u be a normal measure

on k. Then

(1) s and k% are measurable,

(2) for all n > 2, cf(kt) = Kb,

(3) K is a Jénsson cardinal, and

(4) k! is a Rowbottom cardinal.
Moreover, if x4 = k%, then &%, | = (k)" for all n € w, and Kh — (k) for all
a < Kb

Proor. Cf. [KI77]. O

1.2. The Axiom of Determinacy. Let us connect the theory of strong par-
tition cardinals to the Axiom of Determinacy AD. The Axiom of Determinacy
implies a certain fragment of AC that will be useful later:

LEMMA 4. Let k < ©. Then AC, (k") holds, i.e., every countable family of
nonempty subsets of k” has a choice function.

PROOF. Since k < ©, Moschovakis’ Coding Lemma (cf. [Ka94, Theorem
28.15]) yields a surjection 7 : w¥ — k™. Suppose that for each ¢ € w, the set
X; C k" is nonempty. Then let G x, ic.) be the following game:

Player I plays a natural number n, Player II then plays in w moves a sequence
y € w¥. Player II wins Gx, ;icw) if 7(y) € X,. Clearly, player I cannot have a
winning strategy, so by AD, player II has one. But a winning strategy for player 1T
is a choice function for the family (X;; i € w). O

In descriptive set theory, definable analogues of the cardinal ® have been in-
vestigated, the so-called projective ordinals

0l = sup{¢ ; ¢ is the length of a prewellordering of w* in AL}

In the early 1980s, a lot of combinatorial consequences of AD for the projective
ordinals were known, among them the following:

THEOREM 5. Let n be a natural number. Then:
(1) (Kunen, Martin 1971) 83,5 = (83,,,1)%,
(2) (Kechris 1974) &3, is the cardinal successor of a cardinal of cofinality
(.L)7
(3) (Martin, Kunen 1971) all 8} are measurable and distinct,
(4) (Martin, Kunen 1971) 83 = Ry, 83 = N4 1, and d; = N, 4o,
(5) (Martin, Paris 1971) 6} — (61)%1, and for all a < &3, the relation 8% —
(63)® holds,
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(6) (Martin 1971) for all @ < w; the partition relation 6§n+1 — (éénﬂ)a
holds,
(7) (Kunen 1971) the w-cofinal measure C¢,  is a normal measure on 851
2n+1

1
: 1 62n+1 w _ 51 _ 1 +
with 52n+1 /Ctséﬂ+1 = 52n+2 = (62n+1) , and

1 1
(8) (Martin, Jackson 1980) 81 /Cat = Nuzr = (85 and 81% /e =
Row 1 = (65)@"+D and these two cardinals are measurable.

PROOF. A proof of all parts except for the last can be found in [Ke78]. Fact 5
comprises of Theorem 3.12, Theorem 3.10, Theorem 5.1, §6, Theorem 12.1, Corol-
lary 13.4, Theorem 11.2, and Theorem 14.3 of [Ke78]. The last is part of [Ja99,
Chapter 7]. O

Theorem 5 gives an indication of how representing cardinals as ultrapowers of
measures helps in computations. Let us make this more explicit in one example:
Suppose we are working in AD, we know that 6% = Ny and we know that for each
n > 2 there is some measure p on Ny such that Jéwl/u = R,,. Suppose furthermore
that it is our goal to compute 5% (so, we are trying to prove part of Theorem 5 (4)).
Tony Martin showed that (5:13 < W41 (just from the existence of sharps; ¢f. [Ka94,
p. 428]); by Theorem 5 (3), we know that &3 > &3 = R, is a regular cardinal, so
there are only two options left: either 5}; = N,, for some n > 2 or 5;, =N,41-

We can finish our computation of é with the following lemma which will be of
use later in the proof of our main theorem:

LEMMA 6. Let x < X be cardinals, p a measure on x and cf(A) > k. Then
cf(\¥/p) = cf(N).

PROOF. “<”: For a < A, let ¢ : K — A be the constant function ¢, (§) = .
We shall show that {[c.],; o € A} is cofinal in A*/p:

Let f € A" be arbitrary. Since cf()\) > &, the range of the function f is bounded
in A, i.e., there is an a* € A such that {f(§); £ € k} C a*. Then [f], < [ca+]pu-

“>”: Now let X C X*/u be a cofinal subset. If £ € X, there is some a € A
such that § < [co], by the above argument. Let c¢ be the least such ordinal. We
claim that A := {a¢; £ € X} is a cofinal subset of A: Let v € X be arbitrary. Since
X was cofinal, pick some &, € X such that &, > [cy],. But then, ag, € A with
ag, > 7. So, Ais cofinal in A\. But Card(4) < Card(X), so cf(\) <cf(A"/p). O

As a consequence of Lemma 6, we get from our assumptions that cf(R,,) = Ry
for n > 2, and thus these cardinals are singular. This leaves 5% = Ny41 as the last
remaining possibility and the computation of 5}; is finished.

By carrying information about the cofinality of the cardinals, the representation
of the W,, as ultrapowers allowed us to exclude them from the list of candidates for
being 5%. This will be a recurring idea for the main proof in this paper. This little
argument is paradigmatic for measure analyses; ideas like this were fully exploited
in the work of Steve Jackson when he computed all of the projective ordinals under
the assumption of AD.

THEOREM 7. Assume AD. Let e := 0 and e, 11 := w®@™) (i.e., e, is a expo-
nential w-tower of height 2n — 1). Then for every n € w,

1
52n+1 = Nen“’l?
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and all odd projective ordinals have the strong partition property.

PROOF. The original paper is [Ja88]; a more accessible (but still very involved)
proof of the case n = 2 can be found in [Ja99]. O

The proof of Theorem 7 is outside of the scope of this paper, but deeply con-
nected with the techniques we are using. Jackson’s proof gives more than just a
computation of the projective ordinals. Along the way, Jackson gives an analysis
of many (in a sense, almost all) cardinals x < R, = sup{d.,; n € w} in terms of
ultrapowers of the projective ordinals.

1.3. Measure Analyses. By the term “measure analysis”, we shall under-
stand informally the following procedure: given a strong partition cardinal x and
some cardinal A\ > k, we assign a measure p on k to A such that k"/u = A. A
central tool for measure analyses is the following theorem of Martin’s on measures
on strong partition cardinals:

THEOREM 8 (Martin). Let x be a strong partition cardinal and let p be a
measure on k. Then the ultrapower " /u is a cardinal.

PrROOF. [Ja99, Theorem 7.1]. O

Of course, a measure analysis can only be fruitfully applied if it is a uniform
assignment of measures to cardinals. In order to provide such an assignment, we
shall use the notions of ordinal algebras and canonical measure assignments that
were developed by Jackson and the second author in the fall of 2003 (more details
will be contained in the paper [JaL&oc]).

An ordinal algebra is an algebra 20 with binary operations @ and ® on a set
of generators U together with an epimorphism

o:Freeg (V) — a

where « is an ordinal such that the relations of & are given by x = y for all z, y such
that o(x) = o(y). We introduce a notation for finitely iterated sums and products:

Vn:=V®d...®V, and
—_——

n

Ve .= V®...®V.
——r

The ordinal « is called the height of 2, in symbols ht(2(). An ordinal algebra
2 is little more than a formal syntactic way of describing the ordinal ht(2(). It is
uniquely determined by the order type of its set of generators. We write 2, for the
ordinal algebra with generators of order type a. Let us look at the simplest ordinal
algebras as an example:
o (a=1). If Y ={Vy}, then o(Vy) =0, so Vo & Vo =V and Vo ® Vy = V,
so 2 has one element, and ht(2) = 1.
o (a=2). If Y ={Vy,V1}, then o(Vy) =0 and o(V1) = 1, so Vo@® Vy = V,
V0®V0 ZVO, V0®V1 :VO7 V1 ®V1 :Vl, SO ht(Q[ = W.

PROPOSITION 9.

1 a=1
ht(An) =< 0" l<a=n<w
W > w.
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ProOOF. We'll prove the claim by induction on a. Suppose that ht(,) = w*".
Let us add a new generator V to 2, in order to construct A,41. Note that o(V)
must be ht(A,) = w*”. Since o is an epimorphism, we get that

o(VE™) = (W) = w@™ g0
ht (Ao 1) = sup{w@ ) n e w} = W@ = w

O

As a side remark that cannot be fully explored in this paper, we should like to
mention that Proposition 9 is the ordinal-theoretic reflection of Jackson’s compu-
tation of the projective ordinals: if 83, , = X441, then 5§n+1 = N we 1 since the
cardinal structure between 83, and &3, 11 is determined by the ordinal algebra
e

1.4. Algebras of measures and measure assignments. Given a strong
partition cardinal k and an ordinal algebra (2, 0), we shall now sketch how we
assign measures on k to the elements of the ordinal algebra. We want to assign
measures to the generators and then homomorphically extend the assignment to all
elements of the ordinal algebra. The usual notions of sum and product of measures
are not appropriate for this, as they tend to give equivalent measures. We therefore
need to capitalize on the strong partition property of x and the fact that this gives
us an algebraic structure on a particular class of measures, the order measures. We
have to prepare the definition of order measures and the operations on them with
some preliminary definitions:

Let  and a be ordinals. A function f : & — & is continuous(¥ if and only if
for all limit ordinals A < a,

fON) =sup{f(§); & < A}

The function f has uniform cofinality w if there is a function h : w X a — &,
which is increasing in the first argument, such that for v < «, we have (for k < w
and v > w)

fk) = sup{h(n,k); n €N}, and
fly+1) = sup{h(n,7);n €N}

We say that a function f : @ — & has type « if it is increasing, continuous and has
uniform cofinality w. If X C k, we write ]—'f for the set of functions from « to X
that are of type a. We write F, := F5. If C C £ is club and and « is an element
of k, we write C,, for the club set of elements in C that are greater than «, i.e.,
Co:={peC;p>al

Now let {g;; i < n) be a sequence of successor ordinals less than x and (p; ; i <
n) a sequence of measures such that p; is a measure on g; and k% /u; = & for all
i <n.Let g:=),_, 0; Forany function f: o — &, we can define (for each i < n)

fl(a) ::f ZQ]“‘O( )

g<i

[4lFor increasing functions, this is the ordinary notion of continuity for the order topology on
ordinals.



8 STEFAN BOLD, BENEDIKT LOWE

and get a sequence f := (f;; i < n) of functions f; : g; — . If the original f was
of type o, then f; € F,, and f;11(0) > sup f;. We definel®!

lift(7,9) = {ACk ; thereisaclubset C' C k such that for all f € FY
we have ’_[fo]}l«m ceey [fn—l]linf1_| €A }
= {ACk ; thereisa clubset C C & such that
for all zy € .7:5;, T € fgcf“pz“ ey Tp1 € Fop 0 "2
we have "[zo]ug, -+, [Tn—1]p, , €A}

THEOREM 10 (Lifting Theorem). Let x be a strong partition cardinal and
n € w. Let g € k™ be a sequence of successor ordinals and i a sequence of measures
such that y; is a measure on g; and k% /u; = & for all # < n. Then lift(j, 0) is a
measure on K.

ProoF. Using Lemma 4, we can choose from countable families of nonempty
sets of subsets of , so the club filter on x is o-complete and thus lift(f, ¢) is a
o-complete filter. We have to show the “ultra” property:

Let A C x be fixed and let ¢ := ), 0;. We define a colouring of k¢ as follows:

1 if I—[fO]Hov B [fnfl],un—l—l € Aa
0 otherwise.

Q&ﬂ(f)iz:{

If we can show that there is a club set C' such that F QC is homogeneous for c4 j,
then we’re done (since then either A € lift(i, 9) or x\A € lift(i, 9)).

For an element g € k“*2, k < w, v > w and A a limit ordinal, we define

g(k) := sup{g(n,k);n e N},
g(vy+1) = sup{g(n,v); n €N}, and
g(A) = sup{g(n); n < A}

and define an auxiliary colouring of k“*¢ by

G(9) = caul9)-

Since k — (k)" holds, there is a homogeneous set H of size x for G. Let C be the
set of limit points in H. Clearly, C is a club subset of k, so we shall be finished if
we show that .FQC is homogeneous for c4 ;. We shall show that for each f € .7-"90,
there is some g € H“*? such that c4 z(f) = G(g).

Let f € fgc. By assumption (f has uniform cofinality w), there is some h :
w X o — K such that for all k¥ < w and w < v < g, we have

f(k) = sup{h(n,k); n € N},
fly+1) = sup{h(n,v); n €Nk
in other words, h = f. We define
9(n,v) :=min{s € H;6 > h(n,7)}.
Since f(y+1) = sup{h(n,7); n € N} € C, we get that j = h = f. O

[5]Here and for the rest of the paper, "-,-7is the Godel pairing function, i.e., a definable
bijection between k X k and k. Similarly, "-7: k™ — k is a definable bijection between k" and k.
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With Theorem 10 we can now define the most important notion for measure
analyses under AD: If p is a measure on k, we say that u is an order measure
if u = 1ift(7, g) for some sequence of successor ordinals § € k™ and 7 a sequence
of measures such that v; is a measure on g; and % /y; = & for all i < n. In this
case, we call germ , := i/ the germ of ;i and o.t., := ¢ the order type of u. To
denote the elements of the germ and the order type we write germ ,, := v; and
ot.,;:=0;. Weletln, := lh(germu) —1=n-—1.

Mt

OBSERVATION 11. The w-cofinal measure C is an order measure since CyY =
1ift (144,),w + 1) where p, is the principal measure that concentrates on w. Sim-
ilarly, C¢t = lift(CY ,w1 + 1). (clearly, if 4 is a measure on &, then we can see it
trivially as a measure on k + 1 by giving the additional point measure 0).

We can now define a binary operation on order measures: Let p and v be
order measures with y = lift(germ,,0.t.,) and v = lift(germ,,0.t.,). Then
the sum of the order measures p and v, written p @ v, is the order measure

lift(germ,,_,,0.t.,0,) With

germ,, _, := germ,” germ,

u 3

and
ot., . =o0t, ot.,.

Let us spell out what this means concretely. For this, we will write sup @ :=
sup{supz;; i < 1h(Z)}, use the abbreviation “Z¥ € ]-"ocjt_u” for the statement “for

. Csu @i . —
all i < Iny,, we have z; € Fy """ 12 (6] and write [7]germ,, for the sequence

<[x0]germu‘07 R} [mlnu]germp,,lnu>:

Acepudv < thereisa club set C C & such that
for all @ € FC, , 77 € Foy®® we have
— =
r[x]germu [v]germ, ' € A.

We can also define a binary operation ® that is based on taking products of
germs and order types in the same way that @ is based on sums. Since ® will play
no role in this paper, we shall not discuss it in detail. With the operations & and
®, we can now come back to the notion of a “measure assignment”:

A measure assignment for x and 2 is a function meas assigning an order
measure on  to each generator of 2. If the function meas is well-behaved, we can
extend the function meas to a function on 2 with the binary operations @ and ®.!"]
We now call a measure assignment canonical if for all z € 2 with o(z) = 1 + «,
we have

k" /meas(z) = k(T
and the ultrapower does not depend on the presentation of x (in the sense of
Footnote [7]).

[G]Here, supxr_1 := —1.
ME.g., i o(V1) =1, o(V2) = w, meas(V1) = u and meas(V2) = v, then v and p @ v should
not be radically different (as they correspond to the same ordinal w = 1 + w).
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Rephrased in this language, we can say that Kleinberg’s Theorem 3 gives a
canonical measure assignment for 8y and A, = 912+e0.[8] The mentioned analysis
by Jackson and Khafizov can now be phrased as follows:

THEOREM 12 (Jackson-Khafizov). There is a canonical measure assignment for
85 = 6541 and 2, = e, .

In general, we expect that there is a canonical measure assignment for Jén 11
and e, . The main result of this paper is a very modest first step towards such a
result. Let us look at 2A3. If we restrict 23 to the operation @, we get an ordinal
algebra Ql? of height w? that we shall call the @-reduct of 23. We shall be able
to show that for all n > 0 there is a canonical measure assignment for &3, 41 and
A9 (Corollary 24).

1.5. Applications. If we have a canonical measure assignment and some in-
formation about the measures assigned to the generators, then we can use this
in order to get information about the cardinals being represented. As mentioned,
Kleinberg’s Theorem 3 gives us partition properties for cardinals that can be repre-
sented as iterated ultrapowers of normal measures. If we can connect the iterated
ultrapowers of normal measures to the ultrapowers with measures occurring in the
algebra of measures, then we can compute the Kleinberg sequences. In general, we
can embed the sum of two measures into the iterated ultrapower:")

PROPOSITION 13. Let k be a strong partition cardinal and let ;1 and v be order
measures, both on x. Let A > k be a cardinal. Then

N (@ v) < (/)"

PROOF. For f:x — Xdefine f:k— A\ /v by f(Ta@) =[5 — f(Ca 3],
We shall show that f — f induces an embedding from \*/(u@®wv) into (A /v)" /. 110]
If [fluer < [9]u@w, then there is a club set C' C & such that for all & € fgt.“ and

L Coupsz
all y € Fo ™" we have

f(r[;])germ“, - [g]}germ,, —l) S g(r[;])germ“, A [_ngermy —l) .

Momentarily fixing & in this statement and observing that Cg,pz is club in &, we
get that there is a club set C' C & such that for all & € fgt.u we have

75" f(CTelgerm, “By < 57— g elgerm, ~5

which by definition of f — f translates to [f]# < [d]pu- a

Blof course, Kleinberg’s ultrapower representations of the X,, are not of the form "/ for a
measure u; cf. Corollary 17.

(911t is not a coincidence that our measure assignment in Corollary 24 only works for the
@-reduct. In order to extend our argument to full ordinal algebras, we should need an analogue
of Proposition 13 for the operation ®, i.e., an operation that corresponds to ® in the same sense
as iterated ultrapowers correspond to &®.

(101 order to show that f— f induces an embedding, we have to show two properties:

the function is welldefined, i.e., if [f] @v = [glu@wv, then [f], = [§]u, and

the function induces an injection, i.e., if [f]uav < [glu@w, then [flu < [9],-

Obviously, the proofs of these two statements are typically parallel, and we reduce them in most
places of this paper to one proof where we show the implication for <. This is supposed to be
understood properly as “</=".
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The identification of iterated ultrapowers (as they occur in Kleinberg sequences)
and ultrapowers with order measures is the methodology behind Kleinberg’s original
computation and its generalizations to 3, ; (using Theorem 5 (7)). This will be
discussed in Corollary 17, after we provided the last missing piece in the inductive
mosaic.

2. Embeddings between ultrapowers of order measures

In this section, we’ll give the necessary embedding results for order measures
needed in our inductive proof of the main theorem.

LEMMA 14. Let k be a strong partition cardinal and let p and v be order
measures on k. Then
(1) &%/p < &"/(p@®v), and
(2) Ky < K5 D D).

Proor. For f : k — kK, we define fo, f1 : K — Kk by fo(r&“ﬁj) = f(Tam
and fi("T@~ 7)== f("37). Now f — fo induces an embedding from s/ into
k"/(p®v) and f — f1 induces an embedding from " /v into x%/(u & v). As the
proofs are identical, let us just look at (2):

[fl <lg]ls < thereis a club set C C k such that
N

for all 7 € FC, we have f("[ylgerm, ") < 9( [Ylgerm, )-
= there is a club set C' C k such that

for all # € FS, | 7€ Foq™™ we have
— — — —
fl(r[l']germu,\[y]germy—l) S gl(’_[l']germ“/\[ ]germy—l)

<~ [fl]u@v < [91];@”.
U

LEMMA 15. Let A < k be regular cardinals and v < A. Let C be a given club
set in k and I": [k]7 — k. Then there is a club set C* C C such that for all « € C*
and z € [a]", we have I'(z) < a.

PRrROOF. Let C* := {a € C; cf(a) > A and for all = € [a]” we have I'(z) < a}.
Obviously, C* is closed. We’ll show that it is unbounded in k: fix some £ € k. For
n < A, let us define recursively &, 1 = max{§, + 1,sup{I'(z); = € [£,]"}} and (if
n is a limit) &, = sup{&¢; ¢ < n}. Let a = sup{&,; n < A}, so cf(a) = A (as
the sequence is strictly increasing). Since A is regular and v < A, we have that
aecCr. O

PROPOSITION 16. Let A < k be regular cardinals with k — (k). Let u be an
order measure on x with o.t.,, ; < A for all ¢ <In,. Then

(k" /)" < K"/(n@Cy).

PROOF. For f : k — k define f : k — k by f(rd’”‘ﬂj) := f("@"). By Lemma 14
this induces an embedding from " /u into k" /(u®CY). We’'ll show that this embeds
K"/p into a proper initial segment of x*/(1 @ C¥) which is enough by Martin’s
Theorem 8. Let f € k" be arbitrary and let 7 be defined by n("a@~g7) := 3. We
shall show that

[fluscy < [Tluacy-
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By applying Lemma 15 several times, we can get a club set C' such that for all
a € C, we have

(1) if 8 < a, we have f(8) < «,
(2) for all i <lny, if z; € [a]*®#7, we have [2i]germ, , < @, and
(3) if 3 € [a)™, we have "7 < a.

Now take & € fgt_“ and y € ffjr“ff arbitrary. Since y(w) € C and x; € [y(w)]tw

x}germuj < y(w), and then

lE

for all ¢ < In,,, by property (2) and (3) of C we get "~
F(T@lgerm, T) < y(w) by property (1) of C. So,

—
~

F(lelgorm, “ oy ) < m2("@lgerm, " Wlueo, )

and we are done. O

We're now able to use the embedding results we have so far to inductively
identify the elements of the Kleinberg sequence of the w-cofinal measure with ul-
trapowers on 83, E

COROLLARY 17. There is a canonical measure assignment for &3, 11 and As.

PROOF. This is a simple inductive argument using Propositions 13 and 16 and
Kleinberg’s Theorem 3. For details, ¢f. the argument for (IH,) in the proof of
Theorem 23. ]

COROLLARY 18. If m < w and 0 < n < w, then the cardinal X _ 4, is Jénsson.

We go on to relate the w-cofinal measure to the wi-cofinal measure, proving
that the wy-cofinal measure generates an ultrapower larger than any of the finite
iterations of the w-cofinal measure.

LEMMA 19. Let s be a strong partition cardinal, u an order measure on x and
n € w , then
(1) k"/C¢ @n < K"/C¥', and
(2) K"/ n®C @n <K~ /p®Cr.

PROOF. Since the proof for (1) is nearly identical to that for (2), just slightly

simpler, we shall only present a proof for (2). Remember that germg =1 = Cg, and
germew g, = ([fw}s- - -, H{w})- Let n be the following measure on w11
" —_———

n

Aen & thereisaclub C CwVag < -+ < ap-1 €C (@€ A).

Let m :=In, and define for each f : x — & a function f :k — K by

—_—

FB Wlgormewn ) = F(T5 Wlew, ™) = [d = £(TFy(@) s
where 3 € [x]™ and gTa)) stands for (y(ap), ..., y(an—1)).

(1] This defines a measure because w1 is a strong partition cardinal; the argument is essentially

the same as in the Lifting Theorem 10.
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First we have to prove that f is welldefined. If [les, = [V'les, there is a club
set C C wy such that y(y) = y/(v) for all v € C, from which it follows imme-

IR I A S
diately that f("5"y(a)™) = f("67y ()7) for all & € [C]™, ie., f("87 [y]cﬁl—l) =
B es, ).

Now we can show that f — f induces an embedding from «*/u @ C¥ ® n into
K"/ @ Cr. Assume [f] gcoon < [9lueceon, i-e., there is a club C' C & such that

for all # € FS,  and all § € Fay®? | we get

O.t.c:®n

r_> ~T 7 h r—> ~T T a
.f( [l']germ [y]gel‘mcu®n ) S g( [x]germ“ [ ]germcw(gn )
H K =t

Now because of the peculiar nature of germg ., which is just n times the
principal ultrafilter, we can simplify the ¢-part of this expression. For an arbitrary
D C k&, let Qp :={8; there is some z € [C]¥ such that § = sup z}. Then

— — D n
{[y]germc%@m HNTAS fo-t-c%@m} = [QD]

With this notation, we get that there is a club C' C & such that for all ¥ € fgt.u
and all @ € [Q¢,

™, we have
sup

—

f(r[;]}germLA&—l) S g(r[l‘]germ I,AO_F)'
+ '

Let Lim(wy) := {# € wi; §is a limit ordinal}. Then for y € fﬁsff and @ €
—_—

[Lim(w7)]™ we have y(a) € [Qc,,,.]™, so (by the above)

—

J( @l germ, ~9(@)") < g(" [elgerm, ~y(@) ).

Cosup #

This means that for all # € }"gt.“ and y € F_ """ exists a club set " := Lim(w;) C

w
wy such that

— — — —

Yog < -+ < ap_1 € (o f(’_[x]germuf\y(a)—l) < g(l—[m]gel‘m“’\y(a)_‘)’

i.e., by definition of 7,
— —_— —_—

(@ — f("[elgorm, ~9(@) ]y < [@ = g(" [#lgorm, ~y(@) ]y-

But this means [f],gee1 < [G] o0 -
O

LEMMA 20. Let w < kK < © be a regular cardinal and p a measure on x. Then
K" /u has cofinality greater w.

PRrROOF. Let (a;; ¢ € w) be a sequence in "/u. Lemma 4 allows us to pick
a sequence (f;;i € w) € (k") such that [f;], = o; for i € w. For £ € k let
9(&) := sup;e,, fi(§). Since kK > w is regular, we have g € £" and for all i € w, we
have [f;], < [g], € K"/ u, so the sequence (a; ; @ € w) cannot be cofinal in k% /p. O

PRrROPOSITION 21. Let k be a strong partition cardinal,  an order measure on
Kk and n € w , then

(K" /) @HD < w5/ (@ Cer).
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PROOF. By repeatedly applying Proposition 16 we get that for any n € w
(5% /i)™ < 55/ ( & C2 @ ).
By taking the supremum over n on both sides and using Lemma 19 this yields

(57/1)©) < sup(s"/u & C¥ ©n) < K" @ C2,
new

but we know from Lemma 20 that cf(k"/p & C2*) > w, so

(5" /1)) < K"/ (e C).

3. An abstract combinatorial computation

In our computation we shall use two main tools, the first is the following theo-
rem which is an elaboration of the proof of the “moreover” part in Theorem 3:

THEOREM 22 (Ultrapower Shifting Lemma). Let § and + be ordinals and let x
be a k-complete ultrafilter on x with x*/u = k). If for all cardinals k < v < k()

e cither v is a successor and cf(v) > &,
e or v is a limit and cf(v) < &,

Proor. Cf. [L602, Lemma 2.7]. O

THEOREM 23. Let x be a strong partition cardinal and assume £"/C¥ = kT
and k" /C¥ = gD,
Then for all £ < w?, the following equalities hold:
. (K(s))n/c;n = (w148
e if 1 +&=w-m-+n then

RETD = R /(Cr @meCy @n) =
= (o (G R RGO C) )T C

n m

+ if £ is a successor or zero, or
Eny=¢ ~ ! ’
G { kD if € > 0 s a limit.
(€) _ K lfg = 0, or
o of(=) { w if € >0 is alimit.

PROOF. By assumption k is a strong partition cardinal, thus regular. Also, for
all limit ordinals ¢ < w?, the cofinality of k() is w. So the last part of our theorem
is trivial.

By Kleinberg’s Theorem 3 (1), (2) and (5), we have for n € w that cf (x(*+1)) =
k% (7). We'll now prove by induction that for n > 0, we have

K = K5JCY @m = (... (") CE) ). )R JC (f2) :

By assumption kT = £"/C¥, so the statement is true for n = 1. Assume the
statement holds for n, then
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kD = (gM)* = (k% /C¥ ®n)*  (Induction hypothesis)
< KPCY®@(n+1) (Proposition 16)
< (K"/CY @n)F/CY (Lemma 13)
= (kM)r/ce < g+ (Induction hypothesis)
< gt (Lemma 22)

We denote the conjunction of (f;) and (},) by (IH,).

We proceed by induction on &, using the following induction hypothesis: 1%

[ For all o < ¢, the following three conditions hold:
L (kY /C1 = lot1ta)
2. If a =3 +1is asuccessor and 1 + 3 =w-m + n then
(K@)R/Cor = P JC @ (M +1) B CY ®@n = (K/C @ m B CY @ n)"/C
w if @ > 0 is a limit,
kT if o is 1 or a double successor, or
k@) if o #£ 1 is zero or a single
SUCCEssor.

3. cf(wlotitaly .=

Obviously, if (IH,) and all (IH¢) (for £ < w?) hold, the theorem is proven.

By assumption, (k(®)*/C¥t = k*/C¥t = @+ and from Theorem 3 (1), we
know that this is a regular cardinal, so (IHp) holds.

For the successor step & — £ + 1 assume that (IH) holds. We first prove parts
1. and 2. of (IH¢11). Since £ + 1 is a successor ordinal, 1 + ¢ = w - m + n holds,
where m,n € w and not both are zero. We consider the three cases:

Case 1: m=0and n >0, i.e., E+1 =i+ 1, i € w. We have to prove

RFIFID = (D)8 oo = R 0t @ C2 @ (i +1) = (5°/C2 @ (i + 1)) /C2,

which we shall do by induction.
For ¢« = 0 we have

pOTIHD — (gt = (gr/cwn)t (Assumption)
< KF/CroCY (Proposition 16)
< (KP/CE)R/Cn (Lemma 13)
= (kT)r/Cen (Assumption)
< glotitl), (Lemma 22)

Assume the statement holds for 7, then

REFIHEDHD = (ot 1))+
= (k"/Cr@®CY®(i+1))" (Induction hypothesis)
< KPCOr@CYR(I+1+1) (Proposition 16)
< (RP/CY@(I+141))F/Cn (Lemma 13)
= (D0 e (1H.)
< gHHEHDHD) (Lemma 22)

Case 2: m>0and n =0, i.e., £+ 1=w-m+ 1. We have to prove
BRI — (gm0 = 7 O 6 (m 4 1) = (57/C21 @ (m))/C22,

[12]An ordinal ~ is a double successor is there is some § such that v = § + 2. An ordinal is a

single successor if it’s a successor but not a double successor; equivalently, if it is the successor of
a limit ordinal.
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which we shall do as usual by induction.
For m =1 we have

rlotltetl) — (glotywtl) = (gr/owr)(wtl) (Assumption)
< KR/CET @ Cn (Proposition 21)
< (KR/CEN)RE/CE (Lemma 13)
= (gt /e (Assumption)
< glotltetl) (Lemma 22)

Assume the statement holds for m, then

Ii(w+1+w-(m+l)+l) _ (ﬁ(w+1+w»m+1))(w+l)
= (k/C ® (m+1))“+)  (Induction hypothesis)
< KECr @ (m+1+41) (Proposition 21)
< (K"/C¢T @ (m+1))F/Cen (Lemma 13)
= (glotltomtl))r jcw (Induction hypothesis)
< glotltw(min+l), (Lemma 22)

Case 8: m>0and n >0, i.e., £+ 1 =w-m+n+ 1. We have to prove
(rlemEntye jowr = kR /091 @ (m+ 1) @ CY @ (n+ 1)

= (/i”/c,(:l @ m D C: X (n + ]_))N/C’:n _ K(w+1+w‘m+n+1).

Assuming the statement holds for £ = w - m + n, then

w+14w-m+n+1) (H(w+1+w<m+1))(n)

(K" /C¥ @ (m + 1)) (Case 2)

H(

IA I

(k"/C* @ (m 4+ 1) @ C¥)™=Y  (Proposition 16)
< KPICO@(m+1)@CYn (Proposition 16)
< (K"/CE* @m+ @CY @n)"/C (Lemma 13)
= (e o (1)
< gletltwmintl) (Lemma 22)

We shall now compute the cofinality of x“+1+E+1) in order to check that part
3. of (IH¢41) holds:

Case 1: £ < w. In this case, cf(k(€TY) = kT > k by (IH,). So, we can apply
Lemma 6 to A := x(&+Y. Thus

Cf(/ﬁ?(w+1+(§+l))) = Cf((fﬂ(&i_l))n/cgl)
= kT (TH.)

Case 2: w < ¢ < w?. In this case, there is an ordinal @ < & such that
£+ 1=w+1+ a, and the following equivalences hold:

a is 1 or a double successor <= ¢ is a successor,
«a # 1 1is zero or a single successor <= ¢ is a limit.

(%)
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Now, by (IH¢), we get that cf(k(&+1)) = cf(k(@F1+2)) > k. So, again applying
Lemma 6 to X := k¢t we get

(R HHED) = e (1))

cf (k&) (Lemma 6)
Cf(,‘@(“""l"'o‘) )7

thus by (x)

w1 1 Kt if £ is a successor, and
cl (R THHED) = { k@HDf ¢ s a limit.

This ends the proof of the induction step for & — & + 1.

Note that for the limit step £ = A\ we only have to check parts 1. and 3. of
(IH)). Let 0 < A < w? be a limit ordinal. This implies that for some a < \, we
have that w + o = A\. We now assume (IH,)) for n < A, and write (IH.,) for this
assumption. In particular (since < A), we know the cofinalities of all cardinals
between x and k@T1+e) > g@ta) — (V) This allows us to apply the Ultrapower
Shifting Lemma 22 for y =w + 1 and § = X

sup{k@T1HM . n < X} = sup{(skM)F/C¥;n < A} (TH<»)
< (k)r/e
< gty (Lemma 22)

sup{x@H1Hm ;5 < A}

This establishes (kM)*/C¥1 = k@ +1+3)  The claim about the cofinality of
x(@F1HA) s trivial for a limit ordinal A < w?. So (IHy) holds and we are finished
with our induction. O

4. Applications of the inductive analysis

We shall now rephrase Theorem 23 in terms of measure assignments and get
computations of further Kleinberg sequences as an application.

4.1. Application 1: Measure Analysis.

COROLLARY 24. Let n > 0. Then there is a canonical measure assignment for
83,41 and AT

PROOF. Let k := Jénﬂ and let Vo and V; be the generators of 2AF. We
let meas(Vy) := C¥ and meas(Vy) := C¥*. By Theorem 5 (7), we have that
k*/C¥ = xt. Furthermore, it is well-known that x*/C¢t = k(“+1) (a lower bound
is given by our Proposition 21, an upper bound requires some further computation).
Therefore, « satisfies the assumptions of Theorem 23 with po = C and p; = C*

which says that the measure assignment is canonical.!*?]
O

COROLLARY 25. Let n > 0 and m € w. Then Ng,_ 44.m+1 is Jonsson, and
Ne 12 is Rowbottom.

[13]Strictly speaking, we should still have to show that measure addition respects ordinal

addition. For instance, since o(Vo + V1) = 1 + w = 0o(V1), we should have that the measures
CY @ CZ' and Ci' give the same ultrapower. We leave this as an exercise for the reader who can
follow the proof idea of Proposition 19.
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PRrROOF. As in the proof of Corollary 24, we apply Theorem 23 to x := 5%n+1 =
Ne,+1 and the measures o 1= C and py :=C¥'. Let Ky, := x#! be the elements of
the Kleinberg sequence derived from g1, i.€., Kymy1 = (Km)"®/p1. Theorem 23 now
immediately gives us the computation of the k,, as:

Rm+4+1 = Nen+w~m+1-

Now the claim follows directly from Kleinberg’s Theorem 3. ]

Note that Corollary 25 also gives a computation of the Jénsson cardinals N,..;,+1
that were computed in [L602, Corollary 3.3], however, —as opposed to the proof in
[L602]- the proof given here does not refer to the full Jackson-Khafizov analysis of
ultrapowers.

4.2. Application 2: Some more Jénsson cardinals. Let us give another
computation of more Jénsson cardinals that resolves an open question from [L602]:
We mentioned in [L602, §4] that 8,012 is “the first infinite cardinal of which we
do not know whether it has any large cardinal properties under AD”. We shall
now show that it is a Jonsson cardinal. The proof is a straightforward analysis of
material that can be found in Kleinberg’s book [K177].

THEOREM 26 (Kleinberg). If x — (x)", p is a normal measure on Kk, A —
(A5 and & := A\*/u, then we have

K2
5 - [é‘]jﬁéNg'
Proor. [KI177, Theorem 4.9] O

LEMMA 27. Let £ be a cardinal such that & — [S]:iﬁo for some Ry < k < &.
Then ¢ is a Jénsson cardinal.

PROOF. Let F : [£]<¥ — ¢ be a colouring. Let s : £ — & be a surjection.
Define a new colouring G := s o F. By assumption, we have some C € [£]¢ such
that G[[C]"] is countable for each n € N. Let a € & be such that a is not hit
by G, and let 8 € £ be such that s(8) = a. Then g ¢ F[[C]<*]. This shows

£ — [~ 0
THEOREM 28. For every n < w, the cardinal Ne _ 1,42 is Jénsson.

PROOF. Let Kk, pug and pp as in the proof of Corollaries 24 and 25. Then
\ == K" /po = 85, ., which satisfies the partition relation A — (\)® for all v < A by
Theorem 3. We can again apply Theorem 23 and get an ultrapower representation:

Re, twt2 = K"/(1 @ po) = (K~ /10)" / p1.-

The partition relation yields A — (A\)"f", and thus Ne, +u41 := A*/py is Jénsson

by Theorem 26 and Lemma 27. g

Theorem 28 shifts the questionable honour of being “the first infinite cardinal of
which we do not know whether it has any large cardinal properties under AD” from
N,.042 to N,.043. A proof that N,.o43, and in general R0, is Jonsson seems to be
well in reach of the current methods. Let us define a quasi-Kleinberg sequences
by &%=k, K& := K" /g, and HS+1 = (k@)% /uy for n > 2. A Kleinberg theorem
(analogous to Theorem 3) for quasi-Kleinberg sequences would yield the Jénsson
property for the cardinals R0 p.
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