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ABSTRACT. We define extensions of the Axiom of Blackwell Determi-
nacy in analogy to extensions of the Axiom of Determinacy. We prove
that the Axiom of Real Blackwell Determinacy is strictly stronger than
the Axiom of Blackwell Determinacy, and show that several strong vari-
ants of Blackwell determinacy are inconsistent (as is known for their
perfect information analogues).

1. INTRODUCTION

Rather surprisingly, the theory of Blackwell determinacy (i.e., determi-
nacy properties of Blackwell’s “games of slightly imperfect information”
[Blp69, Blp97]) turned out to be parallel to the usual theory of perfect in-
formation (Gale-Stewart) determinacy: Martin, Neeman and Vervoort have
proved in [MaNeVe03] that many axioms of Blackwell determinacy are equiv-
alent to the corresponding axioms of perfect information determinacy. The
pattern of these equivalences is so strikingly universal that Tony Martin
made the following conjecture:

For every boldface® pointclass I' the following two statements
are equivalent:

(1) “Every A € T is determined,” and

(2) “Every A €T is Blackwell determined.”

This conjecture is widely believed to be true but despite the fact that
the conjecture has been proved in many cases, it is still open in its full
generality, and even for the case I' = p(R), i.e., the claim that the Axiom
of Determinacy AD and the Axiom of Blackwell Determinacy BI-AD are
equivalent. In this paper, we go beyond BI-AD and start an investigation of
its extensions in order to see whether the development of extensions of AD
is mirrored in analogous results for extensions of BI-AD.

For AD, there are extensions of two types known: long games and games
with uncountable sets of possible moves. By a theorem of Blass’ from [Bl; 75],
these two types of extensions are connected: the Axiom of Determinacy for
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games of length w? and the Axiom of Determinacy for real number moves
are equivalent.?

For Blackwell determinacy, in this paper we shall only explore the exten-
sions by allowing uncountable sets X of possible moves, and leave the very
interesting topic of long Blackwell games for future research.

As it turns out, we have to be careful with the definitions here, as the mere
definition of Blackwell determinacy presupposes the existence of a measure
on the Borel o-algebra of X% which in turn requires some fragment of the
Axiom of Choice (cf. § 2). The central argument of this paper uses the fact
that in the relevant cases choice games (games whose winning strategies
induce choice functions) are essentially finite. This is discussed in detail in
§ 3.

The following sections, §§ 4 and 5 contain our main applications. In § 4,
we discuss the Axiom of Real Blackwell Determinacy BI-ADgr. Using the
choice games of § 3, we are able to prove that BI-ADg is strictly stronger
than BI-AD. Finally, in § 5, we use the techniques of § 3 to limit possible
extensions of BI-AD. Similar to the well-known limitations to extending AD,
we can prove that BI-ADyg) and BI-AD,,« are inconsistent with ZF. It is
currently still open whether BI-AD,,, is inconsistent.

2. DEFINITIONS

Throughout we shall work in the theory ZF+AC,,(R). This small fragment
of the axiom of choice is necessary for the definition of axioms of Blackwell
determinacy. As customary in set theory, we write R for w* and [X]* for
the set of subsets of X of cardinality k.

We shall not go into details of the motivation and definition of the original
Axiom of Blackwell Determinacy BI-AD here and refer the reader to [Ma98],
[L602al, [L602b], and [L604]. Our definition is equivalent to Vervoort’s orig-
inal definition in [Ve95]; c¢f. [L604, Theorem 2.5 (b)].

We want to define an extension of the Axiom of Blackwell Determinacy
for an arbitrary set X of possible moves. Let us denote by X®ve® the set of
finite sequences of elements of X of even length, by X©9 the set of such
sequences of odd length, and by Prob(X) the set of probability measures on
X with countable support, i.e., those measures g on X such that there is
a countable subset Y C X such that u(Y) = 1. The restriction to measure
with countable support is crucial here and is discussed briefly in [MaNeVe03,
Remark 3.1].

We call a function o : XEv* — Prob(X) a (mixed) strategy for player
I and a function ¢ : X?99 — Prob(X) a (mixed) strategy for player II.

We now understand X as a topological space with the discrete topology
and take the product topology on XY, i.e., the topology whose basic open

2Cf. [L6R002] for an improvement of this equivalence to games of length w - 2 based
on a theorem of Woodin’s.
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sets are of the form
[s] :={x € X¥; s Cx}
for some s € X<¥. Given mixed strategies o and 7, let

o(s) if lh(s) is even, and
v(o,7)(s) = { Tésg if 1h§s§ is 0dd.
Then for any s € X<%, we can define
Ih(s)—1
o) i= [ vlos (st {sid):
i=0

This defines a function on the basic open sets of our topological space
X“. We would like to extend it to the Borel o-algebra on X*“, denoted by
B(X¥). However, we have to watch out that we don’t use more choice than
we have at our disposal. The distinction between Borel sets and Borel codes
is at the heart of this subtle problem: while the definition of y, , extends
naturally to Borel codes, extending it to Borel sets requires some choice.

A tree T C w<¥ is called wellfounded if it has no infinite branches, it
is called labelled if there is a function mapping its leaves (terminal nodes)
to elements of X<¥. The wellfounded labelled trees T = (T,¢) are called
X“-Borel codes, and we can recursively read off the definition of a Borel
set from a Borel code. Note that we can code such a T by an element of
R x X“. If T is an X“-Borel code, we let By be the Borel subset of X
defined by T in the usual way. We write BC(X¥) := {Br; T is an X“-Borel
code}. Given the function ps, defined on the basic open sets, it naturally
extends to BC(X¥).3

Proposition 1. Assume AC,(R x X*). Then BC(X%) = B(X¥).

Proof. We only have to show that BC is closed under countable unions.
Let A, € BC(XY), so Cp, := {T; Br = Ay} is non-empty. By the above
remark, this is essentially a countable family of subsets of Rx X*“. Therefore,
AC, (R x X¥) allows us to simultaneously pick T,, € C), and then construct
a Borel code for |, An. O

new

In the following, we let WO be the set of all reals coding a wellorder, and
WO, be the set of all reals coding a wellorder of length a.. We let W be the
set {WO,; o € w1} (a set of sets of reals in bijection with the ordinal wy).

Proposition 2. The following fragments of the Axiom of Choice are prov-
able in our base theory:

(1) AC,(R x R¥),

31t is useful to keep in mind that the statement “Lebesgue-measure is o-additive”
is a fragment of the Axiom of Choice that can be false in some models of ZF. In the
“Consequences of the Axiom of Choice” project [HoRu98], it is Form 37; ¢f. also [KeTa03].
For the case of BI-ADg, de Kloet [dK05] has a proof that p. - extends to the Borel o-
algebra that doesn’t mention Borel codes, but follows more traditional measure-theoretic
ideas.
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w(R X (w1)).

Proof. Clearly, if there is a surjection from X to Y, then AC,(X) implies
AC,(Y). Based on this, it is easy to see that all of our claims follow if we
can construct a surjection from R onto wy“:

Fix a surjection 7 : R — w; and a bijection "-,-7: w X w — w. We shall
now define a surjection 7 : R — w1, As usual, for n € w and z € R, we
define

(@)n(m) := (", m7)
splitting up the real number x into countably many reals. We define #(x)(n) :=
7((@)n)-

Let us show that 7 is a surjection: if f € w1¥, let us use AC,(R) in order
to simultaneously get a family of z,, € WOy(,). Let z("n,m™) := z,(m).
Then 7(z) = f. O

Since we ensured that we have enough choice available to extend ps, to
all Borel subsets of X%, we can continue with our definition of Blackwell
determinacy for X € {R,w;, WUR,w; UR,w1¥}:

Given a Borel probability measure p on 8B(X%), we denote outer and
inner measure in the usual sense with ™ and p~, i.e., u=(A) = 1 if there
is a Borel set B C A such that u(B) =1, and u*(A) = 0 if there is a Borel
set B D A such that u(B) = 0.

Given a mixed strategy o for player I, and a mixed strategy 7 for player
II, we say that ¢ is optimal for the payoff set A C X if for all strategies
7, for player II, u; . (A) = 1, and similarly, we say that 7 is optimal for
the payoff set A C X¥ if for all strategies o, for player I, ~(A)=0.

For X € {R,w;,WUR w; UR w1“}, we call a set A C X* Blackwell
determined if either player I or player II has an optimal strategy. Now we
can define BI-ADx to mean “Every A C X* is Blackwell determined”.

3. FINITE BLACKWELL GAMES

If A Cw¥, ois a pure strategy for player I and 7 a winning strategy for
player II in the game on w*\ A, then there is a definable function

T:0— 0*%T

such that ran(7) C A. It is discussed in [Loco] that the lack of a result like
this is the difference between AD and BI-FAD, and the non-existence of such
a definable function is the main obstacle in proving Martin’s conjecture.

Now, matters change if we are looking at Blackwell games with a finite
length: By the von Neumann Minimazx Theorem, finite Blackwell games can
be solved by backwards induction like perfect information games and give
rise to a definable function. We exploit this idea in the following:
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Lemma 3. If i is a probability measure on X with countable support then
there is a unique m, > 0 such that

{z; p({z}) = m,} is nonempty and finite, and

{z; p({z}) > m,} = 2.

Proof. For € > 0, let X, := {z; u({z}) > ¢}. By o-additivity, it is impossi-
ble that any set X is infinite. Now pick z € supp(u) and let € := u({z}),
so that X. is finite and nonempty. Define

m,, := max{u({z}); v € X. }.
O

Theorem 4. Let X be linearly ordered by <, n € N, A C X" and 7 be
a optimal strategy for player IT in the game on X™\A. Then there is a
definable function 7 defined on the mixed strategies such that ran(7) C A.

Proof. Given a mixed strategy o, we define recursively

@9 = min{z; o((zo, .-+ 22-1))({#}) = Mo((ao,..a5_1)) }> a0

o1 = mindz; T((o, -5 220)) ({2}) = Mr((ag,.. 00}

By Lemma 3, the minimum is taken over a nonempty finite linearly or-
dered set, so this sequence is definable in ZF. We let 7(o) be the sequence
(xg,--.,2p—1) and claim that for all o, 7(0) € A:

Clearly, m := pq - ({(z0,...,2n—1)}) is the finite product of the positive
numbers My, . zp:_1)) 30d My 2,0y, and therefore strictly positive.
If (zg,...,2p—1) ¢ A, then uy,(X"\A) > m, contradicting the optimality
of 7. O

For sets Y and Z, we define the class of Y-Z-choice games CGy,z(A) as
follows: If A : Y — p(Z) is a family of nonempty subsets of Z indexed
by elements of Y, then the game CGy, z(A) is the two-round game in which
player I plays an element y € Y, player II follows up with playing an element
z € Z, and player II wins if z € A(y).

Theorem 5. If X := Y UZ is linearly ordered and BI-ADx (is defined and)
holds, then ACy (Z) holds.*

Proof. Let A :' Y — ©p(Z) be a family of nonempty sets. Because the sets
are nonempty, player I cannot have an optimal strategy in GCy,z(A). Let 7
be an optimal strategy for player II. Let o, be defined by o,(@)({y}) := 1.
Then
frym— 7(oy)
is a definable choice function by Theorem 4. a
4The requirement that BI-ADx be defined is just a reminder that the definition of

BI-ADx needs a fragment of the axiom of choice, as we want to extend ps,- to the Borel
o-algebra on X“. This will become relevant in the discussion before Corollary 11.
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4. THE AXIOM OF REAL BLACKWELL DETERMINACY

In the perfect information context, the most famous extension of AD is
the Axiom of Real Determinacy ADr. The metatheoretical investigation of
ADg was commenced in the short but seminal [So78] where Solovay proved
(among many other things) that ADg has strictly higher consistency strength
than AD [So78, Theorem 5.10, 1.].

In this section, we shall be proving the analogues of the most basic results
from Solovay’s paper for BI-ADp:

Theorem 6. BI-ADgr proves ACg(R).
Proof. In Theorem 5, let Y :=Z :=R. O

Now this can be used to show that BI-ADp is strictly stronger than BI-AD
(if they are consistent):

Corollary 7. If BI-AD is consistent, then BI-AD I/ BI-ADg.

Proof. This proof follows closely Solovay’s proof of the analogous theorem
for perfect information determinacy:

By an easy diagonalization argument, we see that the family U : R —
p(R) defined by U(z) := {y; y is not ordinal definable from x} cannot have
choice function which is ordinal definable from a real. If any of the sets in
the family U is empty, then all of the reals are ordinal definable from some
real, and hence the reals would be wellorderable. Therefore, under BI-AD, U
is a family of nonempty sets. But by the above, L(R) cannot have a choice
function for U, so L(R) = BI-AD + -ACgr(R). Consequently, by Theorem 6,
L(R) = BI-AD + —BI-ADg. O

Corollary 7 establishes that BI-ADg is not a consequence of BI-AD, but
doesn’t say anything about their consistency strengths. The most promising
route to prove that the consistency strength of BI-ADg is higher than that
of BI-AD is to follow Solovay’s footsteps. There are partial results along
this line: Blackwell determinacy yields Solovay objects (i.e., ultrafilters on
Pw, (R); [dKKiL6co]) that then witness that Ry is k-strongly compact (under
BI-AD) or k-supercompact (under BI-ADg) for all K < ©. These can then
be used to complete the analogues of Solovay’s arguments from [So78].

5. INCONSISTENT EXTENSIONS

As mentioned, the most well-known demarcations for the theory of perfect
information determinacy are the inconsistency results for AD,, and AD )
[My63].

We shall now use the techniques of § 3 to give similar demarcation lines for
axioms of Blackwell determinacy. Note that the standard arguments for the
inconsistency of AD,,, and AD, ) go through the perfect set property of all
sets of reals which in turn implies that there are no uncountable wellordered
subsets of the reals. Since it is still unknown whether BI-AD (or any of its
extensions) proves that all sets of reals have the perfect set property, we
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have to use a different argument to make sure that there are no uncountable
wellordered sets of reals:

Lemma 8. BI-AD implies that there is no injection from w; into the reals.

Proof. Under the assumption of BI-AD, the cardinal w; has the strong parti-
tion property [L604, Theorem 4.15], i.e., every colouring of [w1]“* with two
colours has a homogenous subset.

Suppose for a contradiction that X C R has cardinality wj, in particular,
let m: X — wy be a bijection. We shall define a colouring of [X]“! that has
no homogeneous subset which finishes the proof. For A C X, let w,(A) be
the ath element of A in the order induced by 7 and the natural order on w.

We define

X(A) =0 <<= m(A) <mi(A)
X(A)=1 < m(A4)>m(4)

where < is the ordinary ordering on the reals. Now we claim that x cannot
have an uncountable homogeneous set. Suppose that H C X is uncountable
(hence of cardinality wy ), and without loss of generality assume that mo(H) <
m1(H), so x(H) = 0. Since w; cannot be order-preservingly embedded
into the reals (and hence not into H), there must be h,h* € H such that
w(h) < w(h*) but h > h*. Let H* := {h} U{x € H; n(z) > n(h*)}. Then
H* € [H]“", but x(H*) =1, so H was not homogeneous for x. O

We can now exploit Theorem 4 to get inconsistency results:
Theorem 9. BI-AD,,, r and BI-ADw_r are inconsistent.

Proof. Since w1 UR and WUR are in bijection, the two theories are obviously
equivalent. Note that w; UR can be linearly ordered in ZF, so that we can
apply Theorem 4.

Now, by Theorem 5, we get AC,, (R), and have a choice function for the
set W which is an injection from w; into the reals, contradicting Lemma
8. O

Corollary 10. BI-AD,,« is inconsistent.

Proof. As wi; UR canonically embeds into wi“ as a subset, this follows im-
mediately from Theorem 9. O

We would like to go on and apply the reasoning of the proof of Corollary
10 to the axiom BI-AD ), but we have to be cautious here. Notice that we
didn’t define BI-AD ) in § 2: in order to show that the definition of p, -
extends to the Borel g-algebra on X%, we needed the appropriate amount
of choice which we got from a surjection from R onto R x X“ (Proposition
2). Clearly, if X = p(R), such a surjection doesn’t exist.

There are two ways to remedy this problem, both of them axiomatic:

1. Since we are only interested in one particular finite game that will
yield the contradiction (player I will be playing elements of W and player 11
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will be playing sets {z} for z € R), we could just be more careful with our
definitions of what we mean by “optimal” and replace the role of the Borel
o-algebra by the set BC(X?¥) of decoded Borel codes. This is not necessarily
a o-algebra, and therefore y, , might not extend to a measure, but rather to
a premeasure on the ring BC. Then we would define optimality of a strategy
with respect to BC instead of the Borel g-algebra. For the game that we
shall use to derive the contradiction, this difference is irrelevant.

2. We can just assume that AC,(p(R)) is part of the definition of
BI-AD, (k). This way, we ensure that BC and the Borel g-algebra on (p(R))“
coincide, and that p, , extends to a measure.

In the following, the reader can choose whether he or she wants to read
BI-AD,(r) according to 1. or 2.:

Corollary 11. BI-AD,g) is inconsistent.

Proof. Asin the proof of Corollary 10, we just observe that WUR canonically
embeds into p(R) as a subset (identifying R as the subset of the singletons
on p(R)), and then apply Theorem 9. O

Our methods do not allow to prove the inconsistency of BI-AD,,, as the
game that would give a set of reals of cardinality w; (and thus yield the
contradiction) is an infinite Blackwell game, and thus Theorem 4 is not
applicable. We close with the following open problem and conjecture:

Conjecture 12. BI-AD,, is inconsistent.
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