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Abstract. Brouwer’s papers after 1945 are characterized by a technique,
known as the method of the creating subject. It has been supposed that
the method was radically new in his work, since Brouwer seems to introduce
an idealized mathematician into his mathematical practice. A newly opened
source, the unpublished text of a lecture of Brouwer from 1934, fully supports
the conclusions of our analysis that:

-There is no idealized mathematician involved in the method.

-The method was not new at all.

-Brouwer uses an incomplete sequence, also known as choice sequence, in
this method, which is special. The method does not take its place in the
standard works on choice sequences.

1 Introduction

After a break of more than fifteen years Brouwer started to publish again
in 1948. In the first paper of this new period, Brouwer 1948, he applied a
technique which would become characteristic for his subsequent papers. In
constructing a counterexample for classical logic he used a sequence of which
the values depend on the activity of a creating subject. It has always been
supposed that this method was for him a radically new approach. See for
instance Heyting’s comment on Kreisel’s formalization of the method:

It is true that Brouwer in his lecture introduced an entirely new
idea for which the subject is of essential importance. As I said, I
feel that it is still questionable whether it is possible and whether
it is good to introduce this idea in mathematics.1

Kreisel’s formalization was elaborated by Troelstra. Brouwer’s basic term
creating subject was changed in creative subject and interpreted as the idealized

1See Lakatos 1967, p. 173. The lecture Heyting refers to is Consciousness, Philos-
ophy and Mathematics, Brouwer 1975, p. 480–495.
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mathematician, all its activity divided into ω discrete stages. The resulting
theory of the creative subject, TCS for short, is strong enough to derive most of
Brouwer’s creating subject arguments and it can be added consistently to the
intuitionistic logic. But the TCS cannot give a satisfactory reconstruction of
Brouwer’s argument, and worse, there are serious conceptual problems. From
seemingly plausible assumptions about an idealized mathematician Troelstra
derived a paradox which could not be resolved in a satisfactory manner. The
theory became the standard theory, and thus we shall refer to it; but the
method remained controversial, see Troelstra’s own words:

It should be stressed at this point that talking about the ‘idealized
mathematician’ in no way commits us to adopt the speculative
features of Brouwer’s theory of the ‘creative subject’ (the idealized
mathematician); that is, first the possibility of explicit reference to
the course of mathematical activity of the idealized mathematician
in constructions by the idealized mathematician, and secondly the
division of all mathematical activity into ω discrete stages.

This quote is from the introduction of his monograph Choice Sequences
(Troelstra 1977), which is the standard text on that subject. Brouwer intro-
duced choice sequences in 1918 to solve his foundational problems. They are
sequences not completely determined by a law; Brouwer called them incom-
plete. The notion of choice sequence is far from completely clarified, as we
shall see in this paper.

No connection has been made between the standard theories of choice
sequences and the TCS; the two theories have been developed completely
separately. In the intuitionistic handbooks a considerable amount of space is
reserved for the theories on choice sequences, while the method of the creating
subject is treated in the last few pages. See for example Dummett 1977 and
van Dalen and Troelstra 1988. In the latter reference the authors remark, after
discussing the paradox and their unsatisfactory solutions of it, that

In this connection the solution proposed by Niekus 1987 deserves
further investigation.

In our Niekus 1987 we discussed the example from Brouwer 1948. We
pointed out that the change from creating subject to creative subject was mis-
leading. According to Brouwer’s view mathematics is a creation of the human
mind and by using the expression creating subject Brouwer only made explicit
his idealistic position; it can be replaced by we or I. Interpreted in this way an
idealized mathematician is not needed at all for the reconstruction, a simple
principle for reasoning about the future is enough. The theory resulting from
our analysis does not suffer the shortcomings of the standard theory. The
criticism quoted above applies to the standard reconstruction, but not to our
way of interpreting Brouwer’s argument.
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At the end of our paper we remarked that Brouwer’s supposedly new
method is nothing but the use of a choice sequence. It is not the introduction
of an idealized mathematician, but the systematic application of individual
choice sequence, that makes the method under discussion special. Individual
choice sequences used by Brouwer have not been studied in the research on
choice sequences, except for one possible example, viz. the sequence Brouwer
uses in his proof of the negative continuity theorem in Brouwer 1927. But
this example is vague and deviates essentially from all his other uses of choice
sequences, see section 5.

As we stated above the method has for many years been supposed to be
a new one for Brouwer, notwithstanding his remark in Brouwer 1948 that he
had used the method in his lectures from 1927 onwards. This remark was a
puzzle; see for example Troelstra 1982 p. 479:

A reconstruction which would be based on the ‘solipsistic explana-
tion’ of the creative subject seems us to be undoubtedly anachro-
nistic; though Brouwer 1948 states he had been using such argu-
ments since 1927, he certainly did not use them in his publications
before 1948, [. . . ].

Or see van Dalen and Troelstra 1988, p. 842:

The theory of the idealized mathematician or ‘creative subject’
[. . . ]; its origin is to be found in Brouwer 1948 (according to
Brouwer, the idea dates back to 1927).

But in 1991 the text of a Brouwer lecture from 1927 was published. The

editor van Dalen notices a choice sequence in this text, and he connects it,

cautiously, with the method of the creating subject, see Brouwer (1991) p. 13-

14. This conforms completely to our interpretation, since this example is the

same as the one in 1948, except that Brouwer uses we instead of creating

subject. A similar choice sequence occurs already in Brouwer 1930, but this

time Brouwer uses I instead of creating subject, see Niekus 2005 and section
6 of this paper.

More outspoken is van Dalen in van Dalen 1999b (p. 394), were he
writes about the 1927 example

The method was later called the method of the creating subject.

This statement shows that van Dalen has switched from creative sub-
ject to creating subject and that he accepts our interpretation of the term
creating subject, since Brouwer uses we instead of creating subject in this
example. But he does not fully accept the consequences of this inter-
pretation. He remains faithful to the standard theory. For his results
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in van Dalen 1999a he uses Kripke’s Scheme, a principle derived from
the standard theory, but not valid according to our reconstruction, see
section 4 below. Also other authors in recent publications, e.g. Dummett
2000 and van Atten 2004, still adhere to the standard theory and do not
mention the connection with earlier work. And in van Atten 2007, a
philosophical study towards the origin of choice sequences, creating sub-
ject sequences do not occur. The only example in it of a choice sequence
used by Brouwer, is the deviating one in his proof of negative continuity
we mentioned above.

In this somewhat unclear situation a new source became available
which gives in our opinion definite evidence for our position. It is the
text of a lecture Brouwer gave in 1934 (Brouwer 1934). The text seems
very important for understanding choice sequences, for there is no place
in the work of Brouwer where he is so explicit about their nature. It
shows without doubt that Brouwer started to use individual choice se-
quences in the late twenties, and that he elaborated their use in his
papers after 1945. But above all, the text fully supports the concep-
tion of an incomplete object underlying our reconstruction of Brouwer’s
creating subject arguments.

The material of the paper is arranged as follows. We start in section
2 with a description of the standard theory for the reconstruction of the
supposedly new method, the TCS. In section 3 we discuss what we
think are two of its shortcomings. First, the theory does not explain
Brouwer’s argument satisfactorily. Second, the notion of the idealized
mathematician is very problematic, if not paradoxical.

In section 4 we present our reconstruction. We do not use an idealized
mathematician, only a principle of reasoning about the future that we
think is obvious. We end this section by summarizing the conception of
an incomplete sequence that arises from our reconstruction. After the
introduction of incomplete sequences in section 5, and the demonstration
of its first examples in section 6, we shall see in section 7 that this
conception is fully supported by the rich source Brouwer 1934.

2 The theory of the creative subject

In his first paper after 1945 Brouwer defines a real number for which he
proves that it is different from 0, but not apart from 0. This definition,
from Brouwer 1948, runs as follows:

Let α be a mathematical assertion that cannot be tested, i.e.
for which no method is known to prove either its absurdity or
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the absurdity of its absurdity. Then the creating subject can, in
connection with this assertion α, create an infinitely proceeding
sequence a1, a2, a3, . . . according to the following direction: As
long as, in the course of choosing the an, the creating subject has
experienced neither the truth, nor the absurdity of α, an is chosen
equal to 0. However, as soon as between the choice of ar−1 and
ar the creating subject has obtained a proof of the truth of α, ar

as well as ar+v for every natural number v is chosen equal to 2−r.
And as soon as between the choice of as−1 and as the creating
subject has experienced the absurdity of α, as, as well as as+v for
every natural number v is chosen equal to −(2)−s. This infinitely
proceeding sequence a1, a2, a3, . . . is positively convergent, so it
defines a real number ρ (Brouwer 1975, p. 478).

Although Brouwer stated in the introduction of the paper that he
had used this example in his lectures already from 1927 onwards, it was
supposed that this way of defining a sequence was new for him. Brouwer
seemingly used the activity of a subject to define a sequence. In this man-
ner it was interpreted in the reconstruction of Kreisel 1967, which was
further elaborated in Myhill 1968, and in particular in Troelstra 1969.
In the resulting theory the expression creating subject was changed to
creative subject and this creative subject was taken to be an idealized
mathematician, for short IM , all of its mathematical activities suppos-
edly divided into a discrete sequence of ω stages. The key notion in this
theory of the creative subject, for short TCS, is: the creative subject has
evidence for ϕ at stage n, formally expressed by

Inϕ.

Analyzing the properties of an idealized mathematician then leads to
the acceptance of the following axioms (n and m are natural numbers,
ϕ can be any mathematical assertion):

(1) Inϕ ∨ ¬Inϕ,

(2) Inϕ→ In+mϕ,

(3) ϕ→ ∃nInϕ,

(4) ∃nInϕ→ ϕ.

We will not discuss these axioms, but we shall look at their conse-
quences. We just mention the following. They can be added consistently
to the intuitionistic logic, as is evident from the construction of a model
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by van Dalen (van Dalen 1978). Furthermore, the theory has become
the standard in intuitionistic research; it has recently been applied by
authors on the subject, e.g. Dummett (Dummett 2000) and van Atten
(van Atten 2004), for the reconstruction of Brouwer’s supposedly new
method.

With the TCS Brouwer’s result can be obtained as follows. Let A
be an undecided proposition, i.e. neither A nor ¬A is known. We define
an infinite sequence a1, a2, a3 . . ., by

an = 0 ↔ (¬InA ∧ ¬In¬A),
an = 2−m ↔ (m < n ∧ ¬ImA ∧ Im+1A),
an = −2−m ↔ (m < n ∧ ¬Im¬A ∧ Im+1¬A).

The sequence a1, a2, a3, . . . defines a real number, say ρ. If for this real
number ρ > 0 were to hold, than A would hold as well because of

ρ > 0→ ∃nInA, by the definition of ρ, and
∃nInA→ A, by (4).

Since A is undecided, A does not hold, so neither does ρ > 0. Analo-
gously, ρ < 0 does not hold, because then ¬A would follow. So ρ is not
apart from 0. But since

ρ = 0→ ¬ρ > 0
¬ρ > 0→ ¬∃nInA, by the definition of ρ, and
¬∃nInA→ ¬A, by the contraposition of (3)

ρ = 0 → ¬A holds. Analogously we have ρ = 0 → ¬¬A, and con-
sequently ρ = 0 → (¬A ∧ ¬¬A). So ρ 6= 0 does hold; apartness and
equality are not equivalent, concluding the derivation of Brouwer’s re-
sult.

For any mathematical assertion A we can define in a way similar
similar to the above (a(n) = 0 ↔ ¬InA) and (a(n) = 1 ↔ InA). This
results in the axiom scheme which is known as Kripke’s Scheme:

KS ∃a(∀n(a(n) = 0 ∨ a(n) = 1) ∧ ∃n(a(n) 6= 0↔ A)).
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KS is often accepted as a reasonable principle. It is strong enough
to derive most of Brouwer’s counterexamples and for that reason it is
sometimes added to the intuitionistic logic instead of the axioms of the
TCS. Its advantage is that it does not explicitly refer to an idealized
mathematician.

As stated in the introduction, we do not accept the standard re-
construction embodied in the TCS, and neither do we see any basis in
Brouwer’s work for accepting the principle KS. We will explain this in
the next section.

3 The theory of the creative subject-II

A striking feature of the reconstruction of section 2 is that the untest-
edness in Brouwer’s definition of ρ is not used and not needed; undecid-
ability seems to be sufficient. Inspecting Brouwer’s original proof shows
that his argument for ρ 6= 0 is the same as in the reconstruction, but
that his argument for ρ > 0 does not hold is different. It runs as follows:

If for this real number ρ the relation ρ > 0 were to hold, then
ρ < 0 would be impossible, so it would be certain α could never
be proved to be absurd, so the absurdity of the absurdity of α
would be known, so α would be tested, which it is not. Thus the
relation ρ > 0 does not hold (Brouwer 1975, p. 478–479).

This reasoning to conclude testedness from ρ > 0 can be expressed in
language of the TCS by

ρ > 0→ ¬ρ < 0,
¬ρ < 0→ ¬∃nIn¬A, by the definition of ρ, and
¬∃nIn¬A→ ¬¬A, by the contraposition of (3).

As we may observe, Brouwer’s reasoning is more complicated than the
reconstruction of the TCS in section 2. The reason is that Brouwer does
not use (4) here. Neither does he do so in his proof for ρ < 0, which is
analogous, nor in his proof for ρ 6= 0, which is the same as in the TCS,
see section 2. The use of (4) would simplify his argument, and he would
not need to resort to an untested proposition, but could have used an
undecided one. It seems to us that he does not want to use (4).

But the reason that the TCS is widely considered to be controversial
is another one. To demonstrate the difficulties involved we exhibit a
paradox discovered by Troelstra (Troelstra 1969, pp. 105–107).
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Suppose that the CS proves his results one by one. By sufficiently
narrowing the stages this amounts to one new result by the CS at each
stage. Let A0, A1, A2, . . . be the list of new results. We now define a
predicate L(α) such that L(α) holds if and only if α is a lawlike se-
quence. We define a sequence β such that

β(n) = α(n) + 1 ↔ An = L(α) for some α
β(n) = 0 otherwise.

Now Troelstra argues that intuitively β is lawlike, since it is determined
by some fixed recipe, so L(β) holds. Because of (4) we have ∃nInL(β),
so for some n0, In0L(β) holds. But then β(n0) = β(n0) + 1, which is a
contradiction.

Troelstra discusses two ways out. The first is to drop the condition
of one new result at each stage; the second is to bring onto the stages
a type structure of levels of selfreflection. He judges neither of them
satisfactory, and he concludes that ‘the attempts to formalize the theory
of the IM as envisaged by Brouwer cannot be said to be satisfactory
examples of ”informal” rigour’ (van Dalen and Troelstra 1988, p. 846).

An argument for taking β to be lawlike may be that in the TCS the
stages seem to have a definite description, expressed by (1). But in the
intuitionistic interpretation, for a disjunction to hold we need a proof of
one of the disjunctive parts. In the case of β this seems not evident to
us.

Let us return to Brouwer’s original use of creating subject, let us
interpret it as ourselves and let the stages cover our future. We can define
β as above. Then its values depend on our future results. We have no
way to determine these values, other than going in time to these stages,
which are not specified at all. We think decidability is questionable, and
we do not want to call this sequence lawlike. In section 6 and 7 below
we shall show that Brouwer uses creating subject sequences as examples
of sequences not completely determined by a law.

Our conclusion of this section is that (1) and (4) are problematic.
In the next section we shall look for principles for the reconstruction of
Brouwer’s argument, in our interpretation as indicated above. We shall
see that our analogues of these two principles turn out to be not valid.
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4 A new reconstruction

If we interpret the expression creating subject as ourselves, the sequence
a1, a2, a3, . . . from the definition in section 2 is a sequence that we may
construct. We then start by choosing a1 = 0 and we let an = an+1 with
one exception. If we find a proof of A between the choice of ar−1 and
ar we choose ar+v = 2−r for every v; and if we find a proof of not − A
between the choice of ar−1 and ar we choose ar+v = −2−r for every v.

The values of the sequence now depend on our future mathematical
results. We want intuitionistically valid principles to reason about them.
For our basic term we shall use G instead of I, to stress the point that
our interpretation is radically different. The G is used in temporal logic
to express “it is going to be the case that”, and we shall use it similarly.

We imagine our future to be covered by a discrete sequence of ω
stages, starting with the present stage as stage 0, and we define for a
mathematical assertion ϕ

Gnϕ

as: at the n-th stage from now we shall have a proof of ϕ. The intro-
duction of this term enables us to refine the notion of proof.

In intuitionism stating ϕ means stating the possession of a proof of
ϕ. We now demand of such a proof that it can be carried out here and
now, i.e. all information for the proof is available at the present stage. If
future information is involved we use Gnϕ. A proof of Gnϕ may depend
on information coming free before stage n. Of course Gnϕ may also hold
because we have a proof for ϕ already now; we suppose a proof to remain
valid. So we have (for any ϕ, n and m):

(5) ϕ→ ∃nGnϕ.

Of course we also have for all n and m

(6) Gnϕ→ Gn+mϕ.

But we can not accept the analogues of (1) and (4). That

(7) ∃nGnϕ→ ϕ

is not valid can we see as follows. Let B be an undecided proposition.
We define a sequence b1, b2, b3 . . . as follows. We choose bn = 0 until we
have found a proof for B ∨ ¬B, after which we keep bn = 1.
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Take ϕ to be (bn0 = 0∨ bn0 = 1). We do not have (bn0 = 0∨ bn0 = 1)
for any n0, because this would mean that we would have one of the
disjuncts, and so we would already know now, whether we shall have a
proof of B ∨¬B at the time of the choice of bn0 . On the other hand, we
do have Gn0+1(bn0 = 0 ∨ bn0 = 1), i.e. we do have Gn0+1ϕ, so (7) does
not hold. In a similar way it follows that

(8) Gnϕ ∨ ¬Gnϕ

is not valid. Let the sequence b1, b2, b3 . . . be defined as above and take ϕ
to be bn0 = 1. If (8) were to hold, we would know already now whether
we shall have a proof of B ∨ ¬B at the time of the choice of bn0 , which
is of course not generally true: (8) does not hold either.

So, as extra principles above intuitionistic logic, we only have (5)
and (6). But this is enough, because an inspection of Brouwer’s proof,
see above, shows that we only need the contraposition of (5). Thus, the
untestedness of α becomes crucial.2

Since we do not have (7), we cannot deriveKS, which is in accordance
with Brouwer’s practice. Although there are one or more instances of
KS for specific cases in the work of Brouwer, he always carefully avoided
its use as a general principle for an unspecified formula, see e.g. section
3. 3 We found support for our reconstruction in the following quote. It
is the translation by Heyting of a handwritten note in Dutch found with
his 1949 proof of a strong counterexample; see Brouwer 1975, p. 603–604:

Further distinctions in connection with the excluded middle.

a will mean: a is non-contradictory.

a will mean: a is contradictory

b implies a will mean: from now on I have an algorithm which
enables me to derive a from b.

The principle of testability can assert:

either: from now on either a or a holds, notation: |a.

or: from a certain moment in future on either a or a will hold,
notation a| .

2Our basic term Gnϕ has a very natural interpretation in a certain kind of Kripke
model, see Niekus 1987. For these models (5) and (6) are valid formulas for every ϕ.
But (8) is not valid, and (7) is only valid for negative formulas.

3There is an instance of KS in Brouwer’s work, from the last year in which he
published, see Brouwer 1975, p. 525, eleventh line from below. Whether there are
arguments for this specific instance of KS remains an interesting question.
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Then a| is non-contradictory, but |a need not to be non-contradictory.
For instance, let p be a point of the continuum in course of de-
velopment, whose continuation is free at this moment, but may
be restricted at any moment in the future; then (p is rational)|
is non-contradictory, but |(p is rational) is contradictory, for the
complete freedom which exists at this moment makes it impossi-
ble to be sure that the rationality of p is contradictory, but also
to be sure that it is contradictory that the rationality of p is con-
tradictory.

In struggling with his new notion of tensed objects he comes up with
an explicit distinction, which is the same as we make. For his a| and |a
are the same as our ¬¬a ∨ ¬a and Gn(¬¬a ∨ ¬a). At the end of this
note Brouwer expresses doubts about introducing |a as a mathematical
notion, without further argument. But we focus here on the logical
distinction. That Brouwer, given the distinction, would accept (7) is of
course out of question: stating that ¬¬a ∨ ¬a is contradictory and that
Gn(¬¬a∨¬a) is not, refutes (7) in a very strong way. We conclude there
is no base for KS in Brouwer’s creating subject arguments.

We interpreted the expression creating subject as we, and anybody
else can interpret it as himself. Brouwer’s definition is a description of a
construction, as any intuitionistic definition. But the construction is not
completely determined. The values of the sequence under consideration
depend on the mathematical experience of the maker of the sequence,
the creating subject. But the activity of the creating subject is not
used in the proof. The reasoning is done on the basis of the incomplete
description only, before the construction has started.

In 1918 Brouwer introduced incomplete sequences, also known as
choice sequences, to solve his foundational problems i.e. to attain the
power of the continuum from the discrete. We claim that Brouwer is
using an incomplete sequence in the example discussed above. It is not
the introduction of an idealized mathematician that makes the creating
subject arguments special, but the application of individual incomplete
objects. In the next sections we will seek in the work of Brouwer support
for our position.

5 The definition of a spread

In intuitionism mathematics is a creation of the human individual. It
consists of mental constructions by the individual only. Prime material
for these constructions is the sequence of the natural numbers N , which
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has its origin in ”our perception of a move of time” (Brouwer 1981, p. 4).
From the natural numbers the integers Z and rational numbers Q can be
constructed. Brouwer was this far already in his thesis in 1907 (Brouwer
(1975), p. 11–98). But at that time N and Q were actual infinite sets
in Brouwer’s conception, and he did not have a satisfactory method to
introduce the real numbers. By 1918 he had solved his foundational
problems and he had drawn the full consequences of his constructivist
point of view. The sequence of natural numbers was given by its first
element and a law to construct every next one. So N , and thereby Q
and Z, were potentially infinite sets. And the real numbers were also
introduced by a method to construct them: the notion of a spread. It is
this notion that made the intuitionistic reconstruction of mathematics
possible. We give here a slightly modified version.

The definition of a spread is founded on a countable sequence A of
mathematical objects already constructed. A may for example consist
of natural numbers, rational numbers or intervals of rational numbers.
A spread is a law that regulates the construction of infinitely proceeding
sequences, their terms chosen more or less freely from A. The law says,
in constructing a sequence, whether a choice from A is admissible as first
element, and whether it is admissible as next in an already constructed
initial segment. After each admitted choice there is at least one admissi-
ble successor. A sequence constructed according to a spread law is called
an element of the spread. Such an element is generally not completely
representable.

In his originally German text Brouwer used for spread the word
Menge, which is German for set. This may be misleading, because a
spread is not defined by its elements, but provides a way to construct
them. So, quantifying over elements of a spread is quantifying over se-
quences one can construct. This construction does not have to be fixed
beforehand completely. The terms of an element are chosen one by one,
and within the limitations of the spread law, these choices are free. But
at any moment of the construction this freedom can be limited further.

If a sequence is completely determined from the first term onward, we
call the sequence lawlike. Brouwer names them sharp, or fertig, which
is German for completed. If a sequence is not completely determined
we call it, following Brouwer, incomplete. In previous papers (Niekus
1987 and Niekus 2005) we used for incomplete sequences the term choice
sequences, in the tradition of Heyting and Troelstra. In this meaning it
is also used below. But in the literature choice sequence sometimes is
used for an arbitrary element of a spread, lawlike or not.

The fact that an arbitrary element of a spread is constructed term
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by term, with no other restriction than the spread law, leads to the
continuity principle: if a property holds for an arbitrary element of a
spread, this must be evident on the basis of a finite initial segment,
and then it holds as a matter of fact for every element with the same
initial segment. Brouwer applies this principle to prove the existence of
uncountable powers as follows (Brouwer 1975, p. 160).

Let C be the spread with as founding sequence the natural numbers
N , and each choice admissible. Its elements are sequences of natural
numbers. If to each element of this spread a natural number is assigned
by a function f , the assignment must be done on the basis of an initial
segment of each element, and any element of C sharing the same initial
segment, will be assigned the same number. So f cannot be 1-1. Con-
versely, a 1-1 function from N to C is easily indicated. Conclusion: C
has a larger power than N .

The continuity principle is not valid classically: the function f as-
signing a 0 to sequences of natural numbers with all the terms even, and
1 otherwise, is classically a perfect definition. In Intuitionism it is not.

These general principles of a continuum with choice sequences were
the main interest in the research on choice sequences. The standard
text on the subject is the monograph Troelstra 1977. It contains a
huge number of technical results on formal systems of certain classes
of choice sequences. For these formal systems Troelstra proves elimina-
tion theorems: a sentence with quantification over choice sequences can
be translated into an equivalent sentence without parameters for choice
sequences. From these technical results he draws the conclusion that all
choice sequences are eliminable. ‘They have no mathematical relevance’,
he states in his recent lectures, ‘their interest is philosophical’ (Troelstra
2001, p. 227).

There are no instances of individual choice sequences in Troelstra
1977. But there is one in Troelstra 1982, a study on the origin and de-
velopment of choice sequences in the work of Brouwer. It is a sequence
Brouwer used in his proof of the negative continuity theorem, preceding
his famous and stronger continuity theorem (Brouwer 1927). This proof
of the negative continuity theorem is so vague that it allows many recon-
structions. Troelstra discusses three possible ones, and there are others,
see e.g. Posy 1976 and Martino 1985, all different. It is also the only
Brouwerian choice sequence discussed in van Atten 2007 (p. 108–109), a
recent study on the phenomenology of choice sequences. But in no way
this sequence can be called characteristic for Brouwer’s use of individual
choice sequences, for the following reason.
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When he proved the theorem again, along the same lines but this
time more explicit, he clearly uses a lawlike sequence, see Brouwer 1981,
p. 81. At that moment Brouwer was fully exploiting individual choice
sequences in the method of the creating subject, a use he started in
1927. We shall show that in the next two sections, after the necessary
definitions.

6 Incomplete objects

The real numbers can be introduced by a spread, with as founding se-
quence an enumeration of the rational numbers. Any rational number q
is admissible as first choice. A rational number q is admissible as next in
an admitted initial segment q1, q2, . . . , qn if | q − qn |< 2−n. So, the ele-
ments of this spread are convergent sequences of rational numbers. Two
elements (an) and (bn) are coincident if their termwise difference con-
verges to 0, i.e. if ∀k∃n∀m > n(| am+n − bn+m |< 2−k). Real numbers
are introduced as equivalence classes of this relation.

All handling of real numbers is done via their generating sequences.
For example, for the real numbers a and b, generated by (an) and (bn),
a < b holds if ∃n∃k∀m((bn+m − an+m) > 2−k) holds.

This is by no means the only way. Brouwer had a preference to
introduce the real numbers by a spread with as founding sequence an
enumeration of the λ(n)-intervals; a λ(n)-interval is an interval of rational
numbers of the form [a ·2−n, (a+2) ·2−n], with a an integer. An element
of this spread is a sequence with as n-th term a λ(n)- interval which is
contained in its predecessor. Two sequences of λ(n)-intervals, Brouwer
calls them points, are now coincident, when each interval of one of the
sequences, has an interval in common with every interval of the other
sequence. Real numbers, point cores, are again the equivalence classes of
the coincidence relation. For real numbers a and b we now define a < b
if an interval of the generating sequence of a is lying to the left of an
interval of the generating sequence of b.

There is no essential difference between these methods of introducing
real numbers. They result in the same continuum.

For real numbers Brouwer made the following distinction. The real
numbers generated by lawlike sequences form the reduced continuum;
all real numbers together, generated by lawlike or incomplete elements,
form the (full) continuum. He mentions this distinction already in 1919
(Brouwer 1975, p. 235) but he started to work with it from 1927 onwards.
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In that year Brouwer gave lectures in Berlin; the text of these lectures
is in Brouwer 1991.

Relevant for our purpose in this text is Brouwer’s study of the notion
of order. He shows that < is not a complete order on the reduced contin-
uum, i.e. he shows that a = 0∨a < 0∨a > 0 does not hold generally for
the real numbers generated by lawlike sequences. In doing this he uses
a technique already applied by him in 1908 (Brouwer 1975, p. 108).4

Further, we denote with K1 the smallest natural number n with
the property that the n-th up to the (n+9)-th digit in the decimal
expansion of π form the sequence 0123456789, and we define as
follows a point r of the reduced continuum: the n-th λ-interval λn

is a λ(n−1)-interval centered around 0, as long as n < K1; however,
for n ≥ K1 λn is a λ(n−1)-interval centered around (−2)−K1 . The
point core of the reduced continuum generated by r is neither
=0, nor < 0 nor > 0, as long as the existence of K1 neither has
been proved nor has been proved to be absurd. So until one of
these discoveries has taken place the reduced continuum is not
completely ordered (Brouwer 1991, p. 31–32).

Note the role of time in this argument. Neither r < 0 nor r > 0 did
hold for Brouwer then and there, because he could not give a specific
natural number n0 such that K1 = n0. Recently it has been discovered
that K1 exists and that it is even, so r > 0 holds now (Borwein 1998).
For the full continuum he proves that the relation < is not an order at
all, i.e. a 6= 0→ (a > 0∨ a < 0) does not hold for every a. This proof is
new:

Therefore we consider a mathematical entity or species S, a prop-
erty E, and we define as follows the point s of the continuum: the
n-th λ-interval λn is a λ(n−1)-interval centered around 0, as long
as neither the validity nor the absurdity of E for S is known, but
it is a λ(n)-interval centered around 2−m (−2−m), if n ≥ m and
between the choice of the (m−1)-th and the m-th interval a proof
of the validity (absurdity) of E for S has been found. The point
core belonging to s is 6= 0, but as long as neither the absurdity,
nor the absurdity of the absurdity of E for S is known, neither
> 0 nor < 0. Until one of these discoveries has taken place, the
continuum cannot be ordered (Brouwer 1991, p. 31–32).

Brouwer proves here a stronger statement for the full continuum than
he does for the reduced continuum: if a relation on a space is not an

4The citations in this section are translations by the author from the German
original.
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order, it cannot be a complete order. Therefore, the sequence generating
s in the citation above must be an incomplete sequence.

As we remarked in section 2, Brouwer mentioned in the introduction
of his 1948 example that he had used it in his lectures from 1927 onwards.
We think it cannot be otherwise than that he referred to the example
above; there is no other candidate in Brouwer 1991, nor is there in the
other texts of lectures we shall discuss below. Note that Brouwer uses
we in his definition, in conformity with our interpretation of the creating
subject.

This example has not played a role in the discussion about the cre-
ating subject arguments: it was not published until 1991. But a year
after Berlin Brouwer gave similar examples in a lecture in Vienna, and
this text was published in 1930, see Brouwer 1930.

He had generalized the technique based on the expansion of π as used
in the first Berlin example, by introducing the notion of a fleeing property
for natural numbers. It satisfies the following conditions: for each natural
number it is decidable whether it possesses f or not, no natural number
possessing f is known, and the assumption of the existence of a number
possessing f is not known to be contradictory. The critical number λf

of a fleeing property f is the smallest natural number possessing f .
Brouwer’s standard example of a fleeing property is being the smallest

k, the k-th up to the k + 9-th digit in π’s expansion of which form the
sequence 0, 1, 2, . . . , 9, used in the first cited Berlin example above. The
real number defined over there is an example of a dual pendular number
(our translation of the German duale Pendelzahl). As we mentioned in
the previous section, for Brouwer’s standard example the critical number
has become known, so for us this property is not fleeing anymore.

In Brouwer 1930 Brouwer examines the continuum on seven proper-
ties, all valid classically, but not intuitionistically. Whenever it is pos-
sible, he uses a lawlike sequence, as in the following example. With 0
instead of 1/2 it is the same as our first cited Berlin example.

That the continuum (and also the reduced continuum) is not dis-
crete follows from e.g. the fact that the number 1/2+pf , where pf

is the dual pendular number of the fleeing property f , is neither
equal to 1/2, nor apart from 1/2. (Brouwer 1975, p. 435).

But if necessary he uses an incomplete sequence

That < is not an order on the continuum is demonstrated by the
real number p, generated by the sequence (cn), its terms chosen
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such that c1 = 0 and cv = cv+1 with only the following exception.
Whenever I find the critical number of some particular fleeing
property f , I choose the next cv equal to −2−v, and when I find
a proof this critical number does not exist, I choose cv equal to
2−v. This number p is unequal to 0, but nevertheless it is not
apart from zero (Brouwer 1975, p. 435-436).

Notwithstanding the superficial similarity, this sequence (cn) is com-
pletely different from the sequence (bn) used in the Berlin example to
show that the reduced continuum was not completely ordered. There is
no 1-1 connection between the values of (cn) and the digits of the ex-
pansion of π as in the case of (bn); (cn) is used for a property of the full
continuum, so it is an incomplete sequence. In the next section we shall
cite Brouwer about the difference between the two kinds of sequences.

The resemblance with the 1948 example is less than in the case of
the Berlin example, because Brouwer does not mention untestedness
here. Whether it is the same depends on the question whether a fleeing
property can be tested or not, which is not obvious from the definition
Brouwer gives here. We think that clearly Brouwer had the intention to
give the same example, and that he supposes untestedness, for the fol-
lowing reason. If the non-existence of a number possessing f is known to
be contradictory, one of the possibilities in the definition above would be
excluded beforehand. Furthermore, Brouwer gives in Brouwer 1948 his
standard example of a fleeing property also as an example of an untested
proposition.

Let us return to the starting point of our historical review, which
was finding evidence for our reconstruction of the 1948 creating subject
argument. As we have seen in this section, the method of the CS was not
new for Brouwer in 1948. We have also concluded that Brouwer applies
in this method incomplete elements of a spread.

The citations in the next section, which are from our richest source,
confirm these conclusions. But above all, these citations support our
conception of an incomplete sequence.

7 The Geneva Lectures

Brouwer stopped publishing after 1930 but he did not stop lecturing.
Brouwer 1934 is the text of his Geneva lectures of 1934. In no way this
manuscript was made fit for publication. It is full of crossing outs and
improvements. But there is no other place in the work of Brouwer where
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he spends so many words on the special character of incomplete objects.
Furthermore, this text is the link between Brouwer’s creating subject
arguments after 1948 and the first choice sequences of the late twenties
we discussed above.

The text contains no new results. After the introduction of the real
numbers with λ-intervals and the definition of order, he wants to show
that the natural < is not an order on the continuum. Therefore he
defines a real number by giving a description of a construction:5

The n-th interval λ(n−1) is of length 2/(n−1) and centered around
0. This is how one starts. But at the same time one works on a
difficult problem, to know whether the property E for a species
S is true, for example Fermat’s problem. If for that problem a
solution has been found between the (n−1)-th and the n-th choice,
the choice of the intervals will be different.

As we pointed out in the example of Brouwer (1930), if E could be
tested, one of the possibilities in the definition would be excluded. We
remark that Brouwer gives in Brouwer (1948) also Fermat’s problem as
an example of a proposition that cannot be tested.

If the property is true for the species S, then the v-th interval
will be for v ≥ n the interval λ(v) centered around 2−n. The next
interval will be placed according to this law, within its predecessor
with the same center. If, on the other side, one finds that the
property E is absurd for the species S, than the intervals will be
centered around −2−n.

Brouwer proves, just as he will do again in 1948, that the defined number
cannot be equal to 0:

This point s is defined completely correctly. The point is different
from 0, because if it was equal to 0, then the possibility to continue
the sequence around 2−n would be excluded. So the supposition
that one day a proof of E for S would be found, would be absurd
and the supposition that one day one finds a proof of the absurdity
for S would be absurd too. The truth and the absurdity of that
property would both be absurd and that is impossible.

Next he argues that the point cannot have a positive distance from 0:
5Brouwer 1934 consists of six parts, probably corresponding to six lectures. All

quotatios of this section are from the second part, pp. 22-26, translated by the author
from the French original.
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We have a point which is different from 0, but it is neither positive
nor negative, because if it was the one or the other, the problem
in question would be solved.

But the following text has been struck out:

We have a point that is different from 0, but at the same time
[. . . ] (if we define that point by s), neither the relation s < 0, nor
the relation > than 0 holds, because, if the relation s < 0 would
hold, one would have to exclude the first variant, that is, one
would have solved the problem positively, which is not the case,
and if the other relation would hold, one should have to exclude
the second variant, that is to say that one would have solved the
problem negatively.

We do not know the reason why he scrapped the proof. But that
he did not trust the proof seems unthinkable, because he used the same
proof later, in 1948. Further, there can be no misunderstanding about
the fact that he is using an incomplete sequence here:

We show the same for the reduced continuum. The point above
is not a sharp point, because the construction is not completely
determined, but depends on the intelligence of the constructor
relative to the posed problem.

Constructor is our translation of the French constructeur. As it
seems, Brouwer would opt later for creating subject. That > is not an
order on the reduced continuum (actually Brouwer only shows that it
not a complete order) is proved in the familiar way. Let K1 be defined
as in the Berlin example. One starts with choosing as λn a λ(n)-interval
centered around 0 for n < K1, and continues by choosing a λ(n)-interval
centered around (−2)−K1 for n ≥ K1. About the difference between this
point r and s, the incomplete sequence above, Brouwer remarks:

When one hundred different persons are constructing the number
r, one is always certain that any interval chosen by one of these
persons is always covered, at least partly, by every interval chosen
by one of the others. That is different for s. If I would give the
definition of s to one hundred different persons, who are all going
to work in a different room, it is possible that one of these one
hundred persons at one time will choose an interval not covered
by an interval chosen by one of the others.

As we observe here, there is no idealized mathematician involved in these
incomplete sequences. They are given by a description of a construction,

19



their terms are made to depend on the future mathematical experience of
the one who constructs them, which can be anyone. The future activity
of this subject does not play a role, the reasoning about an incomplete
sequence is done before the construction has started, on the basis of the
incomplete description only.
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