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Abstract

A fundamental, universal property of human language is that its phonology is combinato-
rial. That is, one can identify a set of basic, distinct units (phonemes, syllables) that can be
productively combined in many different ways. In this paper, we review a number of theories
and models that have been developed to explain the evolutionary transition from holistic
to combinatorial signal systems, but find that in all problematic linguistic assumptions are
made, or crucial components of evolutionary explanations are omitted. We present a novel
model to investigate the hypothesis that combinatorial phonology results from optimising
signal systems for perceptual distinctiveness. Our model differs from previous models in
two important respects. First, signals are modelled as trajectories through acoustic space.
Hence, both holistic and combinatorial signals have a temporal structure. Second, we use
the methodology from evolutionary game theory. Crucially, we show a path of ever in-
creasing fitness from holistic to combinatorial signals, where every innovation represents an
advantage even if no-one else in a population has yet obtained it.

1 Introduction

1.1 Natural language phonology is combinatorial

One of the universal properties of human language is that its phonology is combinatorial. In

all human languages, utterances can be split into units that can be recombined into new valid

utterances. Although there is some controversy about what exactly the units of (productive)

combination are, there is general agreement that in natural languages – including even sign

languages (Deuchar, 1996) – meaningless atomic units (phonemes or syllables) are combined

into larger wholes; these meaningful combinations (words, or morphemes) are then further
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combined into meaningful sentences. These two levels of combination constitute the duality of

patterning (Hockett, 1960).

In the traditional view, the atomic units are phonemes (minimal speech sounds that can

make a distinction in meaning), or the distinctive features of these phonemes (Chomsky and

Halle, 1968). Signal repertoires that are built-up from combinations of phonemes are said to

be “phonemically coded” (Lindblom et al., 1984). For instance, the words “we”, “me”, “why”

and “my”, as pronounced in standard British English, can be analysed as built-up from the

units “w”, “m”, “e” and “y”, which can all be used in many different combinations. One

popular alternative view is that the atoms are syllables, or the possible onsets, codas and nuclei

of syllables (e.g. Levelt and Wheeldon, 1994). A second alternative theory uses exemplars,

which can comprise several syllables or even words, as its basic units (e.g. Pierrehumbert,

2001). In this paper we will avoid the debate about the exact level of combination – and

the conventional term “phonemic coding” – and instead focus on the uncontroversial abstract

property of “combinatorial phonology”1.

Note that, whichever the real level of combination is, there is no logical necessity to assume

that all recurring sound patterns observed in speech, are in fact units of productive combination

in the speaker’s brain. For instance, if one accepts that syllables or exemplars are the units of

combination used by the speaker, phonemes are still a useful level of description to characterise

differences in meaning. We distinguish between:

1. productively combinatorial phonology, where the cognitive mechanisms for producing,

recognising and remembering signals make use of a limited sets of units that are com-

bined in many different combinations. Productive combinatoriality is a property of the

internal representations of language in the speaker (I-language).

2. superficially combinatorial phonology, where parts of signals overlap with parts of other

signals. Superficial combinatoriality is a property of the observable language (E-language).

Importantly, the overlapping parts of different signals need not necessarily also be the units

of combination of the underlying linguistic representations.

This paper is concerned with mathematical and computational theories of the evolution

of combinatoriality of human languages at both these levels. It has often been observed that

natural language phonology is discrete, in that it allows only a small number of basic sounds and

not all feasible sounds in between. In this paper we argue that it is important to distinguish

between discreteness per se, and superficial and productive combinatoriality. In section 2,

we will review existing models of Liljencrants and Lindblom (1972), Lindblom et al. (1984),

1In the animal behaviour literature the term “phonological syntax” (coined by Peter Marler, see Ujhelyi, 1996)
is often used, and Michael Studdert-Kennedy also uses the term “particulate principle” (coined by W. Abler, see
Studdert-Kennedy, 1998). Jackendoff (2002, p.238) uses the term “combinatorial, phonological system” on which
our terminology is based.
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de Boer (2001) and Oudeyer (2001, 2002, 2005), and argue that they are relevant for the

origins of discreteness, but have little to say about the origins of superficial and combinatorial

phonology. Nowak and Krakauer (1999) and Nowak et al. (1999) do address the origins of

productive combinatoriality, but these models have a number of shortcomings that make them

unconvincing as an explanation for its evolution.

In our own model, that we will introduce in section 3, we address the questions of why

natural language phonology is both discrete and superficially combinatorial. We assume, but

do not show in this paper, that superficial combinatoriality is an important intermediate stage

in the evolution of productive combinatoriality.

1.2 The origins of combinatorial phonology

Although discrete, combinatorial phonology has often been described as a uniquely human trait

(e.g. Hockett, 1960; Jackendoff, 2002), it is increasingly realised that many examples of bird and

cetacean songs (e.g. Doupe and Kuhl, 1999; Payne and McVay, 1971) and, importantly, non-

human primate calls are combinatorial as well (Ujhelyi, 1996). For instance, the “long calls”

of tamarin monkeys are built up from many repetitions of the same element (e.g. Masataka,

1987), and those of gibbons (e.g. Mitani and Marler, 1989) and chimpanzees (e.g. Arcadi, 1996)

of elaborate combinations of a repertoire of notes.

Such comparative data should be taken seriously, but it is unwarranted to view combinatorial

long calls in other primates as an immediate precursor of human combinatorial phonology,

because there are some important qualitative differences:

• Although a number of building blocks might be used repeatedly to construct a call, it

does not appear to be the case that rearranging the building blocks results in a call with

a different meaning.

• It is unclear to what extent the building blocks of primate “long calls” are flexible and

whether they are learnt.

• In human language, combinatorial phonology functions as one half of the “duality of pat-

terning”: together with recursive, compositional semantics it yields the unlimited produc-

tivity of natural language, but it is unclear if the single combinatorial system of primates

can be seen as its precursor.

Nevertheless, combinatorial phonology must have evolved from holistic systems by natural

selection. There are at least two views on what the advantages of combinatorial coding over

holistic coding are:

1. It makes it possible to transmit a larger number of messages over a noisy channel (the

“noise robustness argument”, an argument from information theory, e.g. Nowak and
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Krakauer, 1999). Note that this argument requires that the basic elements are distinct

from each other, and that signals are strings of these basic elements. The argument does

not address, however, how signals are stored and created;

2. It makes it possible to create an infinitely extensible set of signals with a limited number

of building blocks. Such productivity provides a solution for memory limitations, because

signals can be encoded more efficiently, and for generalisation, because new signals can

be created by combining existing building blocks (the “productivity argument”, a point

often made in the generative linguistics tradition, e.g. Jackendoff, 2002). Note that this

argument deals purely with the cognitive aspects, and views the acoustic result more as

a side-effect.

These views are a good starting point for investigating the question of why initially holistic

systems (which seem to be the default for smaller repertoires of calls) would evolve toward

combinatorial systems. However, just showing an advantage does not constitute an evolutionary

explanation (Parker and Maynard Smith, 1990). At the very least, evolutionary explanations

of an observed phenotype, involve a characterisation of (i) the set of possible phenotypes, (ii)

the fitness function over those phenotypes, and (iii) a sequence of intermediate steps from an

hypothesised initial state to observed phenotype. For each next step, one needs to establish that

(iv) it has selective advantage over the previous, and thus can invade in a population without

it. In section 2 we will criticise some existing models because they lack some of these required

components.

In language evolution, fitness will not be a function of the focal individual’s traits alone,

but also of those of its conversation partners. That is, the selective advantage of a linguistic

trait will depend on the frequency of that trait and other traits in a population (it is “frequency

dependent”). Therefore, evolutionary game-theory (Maynard Smith, 1982) is the appropriate

framework for formalising evolutionary explanations for language (Nowak and Krakauer, 1999;

Komarova and Nowak, 2003; Smith, 2004; van Rooij, 2004; Jäger, 2005). In this framework,

the crucial concept is that of an evolutionary stable strategy (henceforth, ESS): a strategy that

cannot be invaded by any other strategy (Maynard Smith and Price, 1973). Thus formulated,

the challenge is to show that (i) repertoires of signals with a combinatorial phonology are

ESSs, and that (ii) plausible precursor repertoires, without combinatorial phonology, are not

evolutionarily stable.

There are also theories of the origins of combinatorial phonology that do not assume a role

for natural selection. For instance, Lindblom et al. (1984), de Boer (2001) and Oudeyer (2001,

2002) see “self-organisation” as the mechanism responsible for the emergence of combinatorial

phonology. These authors use the term self-organisation in a very broad sense, where it can

refer to almost any process of pattern formation other than classical, Darwinian evolution.
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Liljencrants and Lindblom (1972) use an optimisation heuristic, but do not make explicit which

process underlies the optimisation. In the next section we will argue that self-organisation and

natural selection need not be put in opposition, but can be seen as detailing proximate and

ultimate causes respectively (Tinbergen, 1963; Hauser, 1996), where natural selection modifies

the parameters of a self-organising process (Waddington, 1939; Boerlijst and Hogeweg, 1991).

2 Existing Approaches

2.1 Maximising discriminability

Liljencrants and Lindblom (1972) argued that one can understand the structure of the sound

systems in natural language as determined by physical factors, such as perceptual discriminabil-

ity and articulatory ease, and not as the result of arbitrary settings of abstract parameters (as in

the theories from the generative phonology tradition, e.g. Chomsky and Halle, 1968). In their

paper they focused on the discriminability of vowel repertoires, and proposed the following

metric to measure their quality:

E =
1

2

∑

i,j 6=i∈R

1

d2
ij

=

|R|
∑

i=2

i−1
∑

j=1

1

d2
ij

(1)

where R is a repertoire with |R| distinct sounds, and dij is the perceptual distance between

sound i and sound j. The perceptual distance between vowels is determined by the position

of peaks (resonances) in the vowel’s frequency spectrum. The frequency of the first and the

second peak can be used as coordinates in a two-dimensional space. The weighted Euclidean

distance between two such points turns out to be a good measure of perceptual distance between

vowels. E is a measure for the quality of the system, where lower values correspond to a better

distinguishable repertoire. The E stands for “energy”, in analogy with the potential energy

that is minimised in various models in physics.

Lindblom & Liljencrants performed computer simulations using a simple hill-climbing heuris-

tic, where at each step a random change to the repertoire is considered, and adopted only if it

has a lower energy than the current state. Their results compared favourably to observed data

on vowel system distributions. These results were important because they showed that sound

systems in natural languages are not arbitrary. Rather, they can be understood as the result

of more fundamental principles. However, a number of questions remain. First of all, what in

the real world exactly is the optimisation criterion meant to be modelling? It is important to

realise that the optimisation criterion in equation (1) is neither maximising the distances be-

tween vowels nor minimising the probability of confusion. Minimising E = 1
2

∑

i,j 6=i∈R 1/d2
ij by

changing the configuration of a set of vowels in a restricted acoustic space, is not necessarily the

same a maximising the average distance d = 1
N

∑

i,j 6=i∈R dij (or squared distance), nor is it the

same as minimising the average confusion probability C = 1
N

∑N
i,j 6=i∈R P (j perceived |i uttered ).
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At intermediate distances, these three criteria behave very similarly. The crucial difference is

at distance 0, where Lindblom & Liljencrants’s E goes to infinity, and at large distances, when

both the E and C measure, but not d, approach 0. In section 3.2 we will argue that Liljen-

crants and Lindblom’s E behaves unrealistically, and that minimising the average confusion

probability (or equivalently, maximising the distinctiveness D = 1 − C) is a better criterion.

Second, we should ask which mechanism in the real world is responsible for the optimisation.

Lindblom himself has referred to both natural selection and self-organisation. The frequency

dependence of language evolution makes that natural selection at the level of the individual

cannot be equated with optimisation at the level of the population (see Zuidema and de Boer,

2003). Before we can invoke natural selection, we need to do at least a game-theoretic analysis

to show that every new configuration of signals in the acoustic space can invade in a population

where it is extremely rare. We call this the “invasibility constraint”. Models of this type will be

discussed in the next section. For self-organisation, the mechanism for optimisation has been

worked out more precisely. De Boer (2000; 2001) has studied a simulation model of a population

of individuals that each strive to imitate the vowels of others, and be imitated successfully by

others. He showed that in a process of self-organisation, similar configurations of vowels emerge

as in the Lindblom & Liljencrants model, and as found empirically in the languages of the world.

Finally, the important question remains of how to extend these models to more complex

signals. The models of Lindblom, Liljencrants and de Boer only deal with vowels and, hence,

only with the discrete aspect of human phonology. They have little to say about the evolution

of superficial and productive combination. Lindblom et al. (1984), and similarly de Boer (1999,

chapter 7), have studied models where signals are trajectories, going from a point in a consonant

space, to a point in a vowel space. But in these models the issue is still really the emergence

of categories, because the sequencing of sounds is taken as given. In this paper, in contrast, we

will focus on the emergence of superficial combination.

2.2 Natural selection for combinatorial phonology

Nowak and Krakauer (1999) apply notions from information theory and evolutionary game

theory to the evolution of language. They derive an expression for the “fitness of a language”.

Imagine a population of individuals, a set of possible signals and a set of possible meanings

to communicate about. Speakers choose a meaning to express (the intention), and choose a

signal for it with a certain probability. Hearers receive the signal, possibly distorted due to a

certain degree of noise. Hearers subsequently decode the (distorted) signal and arrive at an

interpretation.

Nowak & Krakauer observe that when communication is noisy and when a unique signal

is used for every meaning, the fitness is limited by an “error limit”: only a limited number of

sounds can be used — and thus a limited number of meanings be expressed — because by using
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more sounds the successful recognition of the current signals would be impeded. They further

show that in such noisy conditions, fitness is higher when (meaningless) sounds are combined

into longer words. These results are essentially instantiations of Shannon’s more general results

on “noisy coding” (Shannon, 1948), as is explored in a later paper by the same group (Plotkin

and Nowak, 2000).

More interesting is the question how natural selection could favour a linguistic innovation

in a population where that innovation is still very rare. Nowak and Krakauer (1999) do not

address that specific problem mathematically. They do, however, perform a mathematical,

game-theoretic analysis of the evolution of “compositionality”, and point out that this analysis

can be adapted easily to the case of combinatorial phonology, as is worked out in Zuidema (2005).

In such an analysis, all mixed strategies are considered where both holistic and combinatorial

signals are used.

Nowak & Krakauer assume that the confusion between holistic signals is larger than the

confusion between combinatorial signals, and that there is no confusion between the two types

of strategies. From these assumptions it follows that a more combinatorial language can always

invade a population with a less combinatorial language. This is the case, because for languages

L and L′ (with proportions of combinatorial signals x and x′, respectively) it turns out that:

F (L′, L′) > F (L,L′) > F (L,L) if x′ > x. (2)

where F (a, b) is the expected communicative success (fitness) of users of language a communi-

cating with users of language b.

If L′ is very infrequent, then all speakers of language L (the “residents”) will have a fitness of

approximately F (L,L) and the rare speakers of language L′ (the “mutants”) will have fitness of

approximately F (L,L′), because for both residents and mutants the vast majority of interactions

will be with speakers of language L. Once the frequency of mutants starts to rise, the residents

will gain in fitness, that is, move toward a fitness F (L,L′). However, the mutants will gain even

more by interacting more and more with other mutants, that is, move toward F (L ′, L′). Hence,

these calculations show that strategies that use more combinatoriality can invade strategies

that use less. This means that the evolutionary dynamics of languages under natural selection

should lead to compositionality and combinatorial phonology.

Although this model is a useful formalisation of the problem and gives some important

insights, as an explanation for the evolution of combinatorial phonology (and compositionality)

it is unconvincing. The problem is that the model only considers the advantages of combinatorial

strategies, and ignores two obvious disadvantages: (1) by having a “mixed strategy” individuals

have essentially two languages in parallel, which one should expect to be costly because of

memory and learning demands and additional confusion. Nowak & Krakauer simply assume

that the second system is in place, and that the hearer interprets all signals correctly, even
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if x is close to 0, and the number of learning experiences is therefore extremely small; (2)

combinatorial signals that consist of two or more sounds take longer to utter and are thus more

costly2. A fairer comparison would be between holistic signals of a certain duration (where

continuation of the same sound decreases the effect of noise) and combinatorial signals of the

same duration (where the digital coding decreases the effect of noise). This is the approach

we take in the model of this paper, but like Nowak & Krakauer, we will look at invasibility in

addition to optimisation.

2.3 Crystallisation in the perception–imitation cycle

A completely different approach to combinatorial phonology is based on “categorical percep-

tion”. Categorical perception (Harnad, 1987) is the phenomenon that categorisation influences

the perception of stimuli in such a way that differences between categories are perceived as

larger and differences within categories as smaller than they really are (according to an “ob-

jective”, cross-linguistic similarity metric). For instance, infants of six months old are already

unable to perceive distinctions between sounds that are not phonemes in their native language,

something they were able to do at birth (Kuhl et al., 1992). Hence, when presented syllables as

stimuli ranging from /ba/ to /pa/ in fixed increments, British subjects will hear the first stimuli

as ba’s, and the last as pa’s, without perceiving an intermediate signal (Cooper et al., 1952).

Apparently, the frequency and position of acoustic stimuli gives rise to particular phoneme

prototypes, and the prototypes in turn “warp” the perception.

Oudeyer (2001, 2002) observes that signals survive from generation to generation because

they are perceived and imitated. Because of categorical perception, the imitation will not always

be exactly the same as the perceived signal. However, the signals that are produced shape the

categories of the next generation. Thus there is feedback between emitted signals, formation

of categories and perception. This shapes the repertoire of signals in a cycle from articulation

to perception to articulation (the perception–imitation cycle; see also Westermann, 2001 and

Westermann and Miranda, 2004, for models of sensory-motor integration and their relevance

for imitation and categorical perception).

Oudeyer (2001) presents a model to study this phenomenon. In this model, signals are

modelled as points in an acoustic space. The model consists of two coupled neural maps, one

for perception and one for articulation. The perceptual map is of a type known to be able

to model categorical perception: its categorisation behaviour changes in response to the input

data. In addition, the associations between perceptual stimuli and articulatory commands are

learnt. Through this coupling between perceptual and articulatory maps, a positive feedback

2It is, of course, slightly awkward to criticise a model that Nowak and Krakauer (1999) never actually worked
out. The point here is that if one takes all the assumptions that they do spell out in the paper, and work out the
model as they suggest, the result is unsatisfactory. A better model of the evolution of combinatorial phonology
must start with different assumptions.
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loop emerges where slight non-uniformities in the input data lead to clusters in the perceptual

map, as well as weak clusters in the articulatory map, and hence to slightly stronger non-

uniformities in the distribution of acoustic signals. Oudeyer calls the collapse of signals into a

small number of clusters “crystallisation”.

Oudeyer (2002) generalises these results to a model with (quasi-) continuous trajectories,

where a production module triggers a sequence of targets in the articulatory map, which yield

a continuous trajectory. Also in this version of the model, well-defined clusters form in the

perceptual and articulatory maps. The signals can thus be analysed as consisting of sequences

of phonemes.

Oudeyer’s model is fascinating, because it gives a completely non-adaptive mechanism for the

emergence of combinatorial phonology. However, the question whether recombination increases

the functionality of the language, and thus the fitness of the individual that uses it, remains

unanswered. If it is not functional, one would expect selection to work against it. In particular,

in Oudeyer’s first model (2001), where signals are instantaneous, a large repertoire of signals

collapses into a small number of clusters. A functional pressure to maintain the number of

distinct signals would thus have to either reverse the crystallisation, or combine signals from

different clusters.

In his second model (Oudeyer, 2002), signals are continuous trajectories and potentially a

much larger distinct repertoire can emerge. However, the functionality of the repertoire is not

monitored, and plays no role in the dynamics. It might or might not be sufficient. The number

of “phonemes” (the discrete aspect) that forms is a consequence of the parameters and initial

configuration, and in a sense accidental. The reuse (the superficial combination aspect) in the

model is built-in in the production-procedure. The assumption that signals already consist of

sequences of articulatory targets is justified with considerations from articulatory phonetics:

constraints from articulatory motor control, it is argued, impose combinatorial structure on

any large repertoire of distinct sounds. Even if one fully accepts this argument, the need for

a large and distinctive repertoire is a functional pressure. In Oudeyer’s model, however, there

is no interaction between the number of phonemes that is created, and the degree of reuse

(the number of phonemes per signal) that emerges. This issue, which seems the core issue

in understanding the origins of combinatorial phonology, is not modelled by Oudeyer. In our

model, in contrast, we ensure that the functionality increases rather than decreases.

2.4 Other models and linguistic theories

All other computational models of the evolution of combinatorial phonology that we are aware

of, also assume the sequencing of phonetic atoms into longer strings as given. They concentrate

rather on the structure of the emerged systems (Lindblom et al., 1984; de Boer, 2001; Redford

et al., 2001; Ke et al., 2003) or on how conventions on specific combinatorial signal systems can
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become established in a population through cultural transmission (Steels and Oudeyer, 2000).

Theories on the evolution of speech developed by linguists and biologists focus on possible pre-

adaptations for speech. MacNeilage and Davis (2000) propose oscillatory movements of the

jaw such as used in breathing and chewing as precursors for syllable structure. Fitch (2000)

sees sexual selection as a mechanism to explain the shape of the human vocal tract. Studdert-

Kennedy (2002) explains the origin of recombination and duality of patterning as the result of

vocal imitation.

These models are interesting, and, importantly, bridge the gap with empirical evidence on

how combinatorial phonology is implemented in the languages of the world. However, they are

of less relevance here, because they do not address the origins of the fundamental, qualitative

properties of discrete and combinatorial coding. That is, they leave open the question as to

under what circumstances a system of holistically coded signals with finite duration would

change into a combinatorial system of signals.

3 Model Design

We will now present the design of a new model that shares features with all existing approaches.

Like the Liljencrants and Lindblom (1972) model, it makes use of the concept of “acoustic

space”, a measure for perceptual distinctiveness and a hill-climbing heuristic. Like the Nowak

and Krakauer (1999) model, the measure for distinctiveness is based on confusion probabilities,

and our study includes a game-theoretic invasibility analysis. Finally, like Oudeyer (2002), we

model signals not just as points, but as trajectories through acoustic space.

In the model, we do not assume combinatorial structure, but rather study the gradual

emergence of superficially combinatorial phonology from initially holistic signals. We do take

into account the temporal structure of both holistic and phonemically coded signals. We view

signals as continuous movements (“gestures”, “trajectories”) through an abstract acoustic space.

We assume that signals can be confused, and that the probability of confusion is higher if signals

are more similar, i.e. closer to each other in the acoustic space according to some distance metric.

We further assume a functional pressure that maximises distinctiveness.

3.1 The acoustic space

The model of this paper will deal with repertoires of signals, their configuration and the simi-

larities between signals. This requires conceptualising signals as points or movements through

a space. An appropriate definition of acoustic space will, as much as possible, reflect the artic-

ulatory constraints as well as perceptual similarities, such that signals that cannot be produced

fall outside the space, and that points in the space that are close sound similar and are more

easily confused.
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For human perception of vowels, a simple but very useful acoustic space can be constructed

by looking at the peaks in the frequency spectrum. These peaks, called formants, correspond to

the resonance frequencies in the oral cavity, and are also perceptually very salient. Artificially

produced vowels with the correct peaks but otherwise quite different frequency spectra, are

recognisable by humans. From experiments where subjects are asked to approximate vowels

sounds by manipulating just two formants frequencies, it appeared that a good representation

of vowels can be given in just two dimensions, with the first formant as the first dimension,

and the effective second formant as the second dimension (Carlson et al., 1970). A related

approach for defining an acoustic space works with cepstral coefficients (Bogert et al., 1963).

These define a sequence of features of the signal of decreasing importance. Speech signals can

be characterised by a relatively low number of cepstral coefficients (10–15).

Although formants work well for humans, it appears that pitch is a more salient variable

in articulations of non-human primates (although they are able to perceive formants as well).

Of course, it is difficult to tell what the appropriate acoustic space is for modelling articulation

and perception of early hominids that feature in scenarios of the evolution of language (e.g

Lieberman, 1984; Jackendoff, 2002). However, the considerations that will be presented below

remain the same, independent of the exact nature of the underlying perceptual dimensions.

3.2 Confusion probabilities

Once we have constructed an acoustic space that captures the notion of perceptual similarity,

we can ask how the distance in that space relates to the probability of confusion. Answering

that question requires us to make assumptions on the causes of confusion and the nature of

categorisation. We can get a general idea, by first looking at the simple example of a 1-

dimensional acoustic space with just 2 prototype signals A and B (modelled as points in that

space), and a distance d between them:
x

A

x

Bd� -

Now assume that a received signal X, lying somewhere on the continuum, will be perceived

as A or B depending on which is closest (nearest neighbour classification). Finally, assume a

degree of noise on the emitted signals, such that when a signal, say A, is uttered, the received

signal X is any signal drawn from a Gaussian distribution around A:

x

A

x

B
1
2d
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Now we can calculate the probability that an emitted signal A is perceived as B:

P (B perceived|A uttered) =

∫ ∞

x= 1

2
d
N (µ = 0, σ = δ) dx

=

∫ ∞

x= 1

2
d

1√
2πδ

e
−x

2

2δ2 dx, (3)

where δ is the standard deviation of the Gaussian3. This integral, which describes the surface

under the Gaussian curve right of the point 1
2d, has a number of important features, as illustrated

with the solid curves in figure 1.
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Figure 1: The probability of confusion as a function of distance for several values of δ. The curves give the
theoretical prediction based on the calculations in section 3.2; the points are data from a computational simulation
of the confusion probabilities between two trajectories in a 2d acoustic space (discussed in section 3.4).

First of all, at d = 0, the confusion probability is not 100%, as the naive first intuition might

be, but 50%. That is, even if two signals are identical, the hearer still has 50% chance of decoding

it correctly. Second, with increasing d, the confusion probability first rapidly decreases and then

slowly approaches 0. These are crucial properties: even though the confusion probability as a

function of distance can have many different shapes depending on the exact type of noise and

the exact type of categorisation, the function will always have these general characteristics at

d = 0 and in the limit of d → ∞. In contrast, the previously discussed E measure, and summed

distance measure, do not have both these properties. For the purposes of this paper, they are

therefore not appropriate criteria for optimisation.

If the acoustic space has more than 1 dimension, and if there are more than 2 signals,

calculations like in equation (3), quickly get extremely complex, and confusion probabilities

are no longer uniquely dependent on distance. We can, however, assume that the confusion

probabilities are generally proportional to a function of distance with a shape as in figure 1.

3Equation (3) is the error function erf(x) (modulo a correction factor, see equation 4), and of course the same
equation as used for calculating the p value in standard statistical tests.
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Hence, let f(d) be a function of distance d of that shape, parameterised by the noise level δ :

f(d) =

∫ ∞

x= 1

2
d

1√
2πδ

e
−x

2

2δ2 dx,

=
1

2
− 1

2
erf

(

d

2δ
√

2

)

. (4)

We assume that confusion probabilities are proportional to their “f-score”: P (B perceived|A uttered) ∝
f(d(A,B)). But we also know that the probabilities of confusing a signal with any of the other

signals in a repertoire (including the signal itself) must add up to 1:
∑

X∈R P (X perceived|A uttered) =

1. Hence, we can estimate the probability of confusing signal A with signal B as:

P (B perceived|A uttered) =
f(d(A,B))

∑

X∈R f(d(A,X))
. (5)

From this, it is now straightforward to define a measure for the distinctiveness D of a repertoire.

Let D be the estimated probability that a random signal t from R is correctly identified:

D(R) =
1

T

T
∑

t=1

f(d(Rt, Rt))
∑T

t′=1 f(d(Rt, Rt′))
. (6)

3.3 Trajectory representation

We have a qualitative understanding of how to define the acoustic space with points representing

signals, and of how to estimate the confusion probabilities and distinctiveness as functions of

the distances between those points. We can now try to extend the model to deal with signals

that have a temporal dimension. It would be desirable if the same apparatus can still be used.

We therefore define temporal signals as trajectories: movements through the acoustic space. In

our approach, a trajectory is a connected sequence of points (each of which corresponds to the

frequency spectrum of a small interval in the waveform).

To illustrate the feasibility of deriving trajectory representations from acoustic data, we

show in figure 2(a) a number of trajectories through vowel space that are based on actual

recordings. The graph shows the trajectories from a number of recorded vowels, which corre-

spond to more-or-less stationary trajectories in the space, and from recordings of a number of

diphthongs, which correspond to movements from one vowel’s region to another. Figure 2(b)

and (c) show trajectories through the space defined by cepstral coefficients 1, 3 and 5. In this

space we can, to a certain extent, represent consonants as well. Overlaid in both graphs are the

resulting trajectories of two recordings, illustrating that the construction is repeatable, albeit

with considerable variation.

In the model of this paper we will not worry about the problems of constructing acoustic

spaces and drawing trajectories through them. Instead, we will take as our starting point a

set of trajectories through an abstract acoustic space. The model is based on piece-wise linear

trajectories in bounded 2-D or 3-D continuous spaces of size 1 × 1 or 1 × 1 × 1. Trajectories

13



(a) 3 vowels and 3 diphthongs (b) two recordings of
“een”

(c) two recordings of “ne-
gen”

Figure 2: Trajectory representations derived from recorded acoustic data from Dutch native speakers. Each point
on a trajectory is given by the cepstral coefficients of the frequency spectrum of a short time interval of the signal.
In (a) the first two coefficients are used; in (b) and (c) coefficients 1, 3 and 5 are used.

are sequences of a fixed number of points (parameter P ). Each point has a maximum distance

(parameter S) to the immediately preceding and following points in the sequence. The following

and preceding points to a point can lay anywhere within a circle of radius S with that point at

the centre. Trajectories always stay within the bounds of the defined acoustic space.

Signals in the real world are continuous trajectories, but in the model we need to discretize

the trajectories. To ensure that we do not impose the combinatorial structure we are interested

in, we discretize at a much finer scale than the combinatorial patterns that will emerge. Hence,

the points on a trajectory are not meant to model atomic units in a complex utterance. They

implement a discretisation of a continuous trajectory that can represent both a holistic or

combinatorial signal.

3.4 Measuring distances and optimising distinctiveness between trajectories

How do we extend the distance and distinctiveness measures for points to trajectories? Perhaps

the simplest strategy would be to look at a repertoire of trajectories one time-slice at a time,

and simply optimise –as before– the distinctiveness between the points (Lindblom et al., 1984).

With such an approach, however, the temporal dimension could just as well have been left out,

and the approach has little to say about the emergence of superficial combination. Combina-

torial phonology emerges –if at all– as a trivial consequence of (i) the formation of categories

(phonemes), and (ii) sequencing imposed by the trajectory representation.

Much more interesting is when we measure the distance between complete trajectories and

optimise their distinctiveness. In such an approach, there is a role for combinatorial phonology:

the confusion probability between two largely overlapping trajectories might be very low, as

14



long as they are sufficiently distinct along one stretch of their length. We define the distance

between two trajectories ti and tj, as the average distance between the corresponding points on

the trajectories:

d(ti, tj) =
1

P

P
∑

p=1

d(tpi , t
p
j ), (7)

where tpi is the p-th point on the i-th trajectory in a repertoire, and d(a, b) gives the distance

between two points a and b.

This distance measure then provides the input to the same type of distance-to-confusion

function that we derived for points (equation 6). For trajectories, it is far from trivial to derive

the exact shape of that function analytically, even if the noise and categorisation mechanisms

were completely known. However, we have performed computational experiments that demon-

strate that our approximation is very accurate. In these simulations, noise was simulated using

the disturbance function as will be defined in section 3.5, and nearest neighbour classification.

The dots in figure 1 show results relating distance between two trajectories with the probability

that they are confused. The results give an excellent fit with the approximation of equation (6),

and thus indicate that the distance-to-confusion function for points is also applicable to trajec-

tories.

One may argue that the distance metric in equation (7) is too simplistic, and does not do

justice to the fact that slight differences in timing of two signals will not affect their perceptual

similarity much. A possibility for a more realistic measure of distance, that does take into

account such timing effects, is “dynamic time warping” which has been used with reasonable

success in computer speech recognition (e.g. Sakoe and Chiba, 1978). We have run simulations

with this technique, but did not find qualitative differences with the simpler distance measure.

3.5 The hill-climbing heuristic

Now that we have defined a distance metric, it is straightforward to use a hill-climbing heuristic

such as Liljencrants and Lindblom (1972) and apply it to much more complex signals. Hill-

climbing is an iterative procedure, where at each step a random change to the repertoire is

considered, and if it improves the distinctiveness it is applied. Then another random change is

considered and the same procedure applies over and over again. In pseudo-code, the procedure

looks as follows:

% R is a repertoire of signals

% S is the segment length parameter

% ρ is the hill-climbing rate parameter

% δ is the acoustic noise parameter

for i = 1 to I

R′ = constrain(R+disturbance(ρ),S);
if hillclimbing-criterion(R,R′, δ) then R = R′;

end for
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Here, disturbance applies random noise (from a Gaussian with µ = 0 and σ = ρ), to

all of the coordinates of a (uniformly) random point on a random trajectory. constrain is

a function that enforces that all points on the trajectories fall within the boundaries of the

acoustic space, and that all segments have maximum length S. Hence, after a random point tx

is moved to a new random position, the constrain function first moves it back, if necessary,

within the boundaries of the acoustic space; it then moves the two points on both sides of the

moved point, tx+1 and tx−1, closer, if necessary, such that the distance to tx is no more than

S. The direction from tx to tx+1 or tx−1 remains the same. The same procedure is applied

iteratively to the neighbours of tx+1 and tx−1 until the ends of the trajectory are reached.

The hillclimbing-criterion(R,R′, δ) in the basic model, which we call the “optimisation

condition” (OP), is defined as follows:

OP: Dδ(R
′) > Dδ(R), (8)

where D is the distinctiveness function given in equation (6). Note that this criterion is

frequency-independent; in section 4.5 we will consider frequency-dependent criteria.

Hill-climbing is just an optimisation heuristic; there is no guarantee that it will find the

optimal configuration for the given criterion. Especially when the repertoire considered is

relatively complex, the system is likely to move toward a local optimum. Although better

optimisation heuristics exist, this problem is in general unavoidable for systems with so many

variables. Hence, also in Nature, the optimisation of sound systems has not escaped the problem

of local optima; the real optimum is therefore not necessarily interesting for describing the

patterns in human speech. Instead, we will concentrate on general properties of the local

optima we find, and on the gradual route towards them.

4 Results

We have implemented versions of the basic model as outlined above in C++ and MatLab. We

have ran many simulations with a large number of parameter combinations and a number of

variations of the basic model. In the following we will first briefly give an overview of the general

behaviour of the model in these simulations by means of a representative example, and then

give a detailed analysis of why we observe the kind of results that we do. In section 4.5 and 4.7

we will study extensions of the basic model where we test whether innovations can invade in

populations where they are rare, and where we evaluate some of the other simplifications made

in the basic model.

4.1 An overview of the results

We will describe the behaviour of the model under many different parameter settings by using

the representative example depicted in figure 3. Figure 3(a) shows an the equilibrium configu-
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(a) 9 instantaneous signals optimised for
distinctiveness. D=0.97 (δ = 0.1, ρ =
0.1, I = 1000).
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(b) 9 trajectories at same locations as the
signals in (a) with small perturbations.
D=0.94 (δ = 0.1, S = 0.1).
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(c) 9 trajectories optimised for distinc-
tiveness. D=0.98 (δ = 0.1, ρ = 0.1, S =
0.1, I = 6000).
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(d) 9 instantaneous sounds at same loca-
tion as endpoints in (c). D=0.72 (δ =
0.1).

Figure 3: In a combinatorial phonology, distinctiveness of signals at each particular time-slice is sacrificed for
better distinctiveness of the whole trajectory. Instantaneous signal (or equivalently, stationary trajectories)
will be organised in patterns like (a) and not like (d) when optimised for distinctiveness. For non-stationary
trajectories, the same pattern, as in (b), is not stable, but will –after optimisation– in stead be organised like
(c). Each individual time-slice, as illustrated with the end-points in (d) is suboptimal, but the whole temporal
repertoire is at a local optimum.
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ration of 9 point-like signals in an abstract acoustic space, optimised for distinctiveness at an

intermediate noise-level (δ = 0.1). This particular configuration is stable: no further improve-

ments of the distinctiveness of the repertoire can be obtained by making small changes to the

location of any of the signals. The distinctiveness is D = 0.97; that is, with the given noise

level, our estimate of the probability of successful recognition of a signal is 97%.

Figure 3(b) shows 9 trajectories, consisting of 10 points and hence 9 segments each. Each

of these trajectories was created by taking 10 copies of one of the points in figure (a) and

connecting them. A small amount of noise was added to each point, and the constrain

function, as described above, was applied to each trajectory, enforcing a maximum distance

(S = 0.1) between all neighbouring points on the same trajectory. Due to this perturbation,

the distinctiveness of this repertoire of trajectories is somewhat lower, D = 0.94, than of the

repertoire in (a). (The definitions of distance and distinctiveness are such that a repertoire of

stationary trajectories has the same D as a repertoire of points at the same locations; hence,

points and stationary trajectories, if all the same length, are equivalent in the basic model).

What will happen if we now optimise, through hill-climbing, the repertoire of trajectories

for distinctiveness? One possibility is that the applied perturbations are nullified, such that the

system moves back to the configuration of (a). That is not what happens, however. Rather,

the system moves to a configuration as in figure 3(c). This graph shows a number of important

features. First, all trajectories start and end near to where other trajectories start and end. The

repertoire therefore can be said to exhibit a superficially combinatorial phonology : if we label the

corners A,B,C and D, we can describe the repertoire as: {A,AB,B,CA,BC,C,CD,DB,D}.
That is, we need only 4 category labels (phonemes) to describe a repertoire of 9 signals. In

contrast, the repertoire in (b) is most easily described by postulating 9 categories, one for each

trajectory4.

Second, some trajectories are bunched up in as small a region as possible, but other trajecto-

ries are stretched out over the full length of the space. Third, the configuration of the repertoire

appears somewhat idiosyncratic and is in a local optimum5. Fourth, at each time-slice the

configuration of the corresponding points is in fact suboptimal. For instance, in figure 3(d) just

the endpoints of the trajectories in (c) are shown. 8 out of 9 of these points are closer to their

nearest neighbour than any of the points in (a). Before we extend these results to simulations

with many more trajectories of various lengths, and to acoustic spaces with more dimensions,

we will first look at a number of simple cases that explain why the optimised repertoires have

these features.

4We implicitly assume a model of categorisation here that favours robust and coherent categories.
5The stability of this configuration has not been rigorously established, but no qualitative changes have been

observed in many thousands of additional iterations of the hill-climbing algorithm.
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4.2 The optimal configuration depends on the noise level

To evaluate the role of the noise parameter δ, it is instructive to first look at a simple, 1-

dimensional example with signals as points. Consider a situation with 3 signals, 2 of which are

fixed at the edges of a 1-dimensional acoustic space. The third signal is at distance x from the

leftmost signal, and at distance 1 − x from the rightmost signal:

x xx

x� -

Now what is the optimal distance x for maximising the distinctiveness? As it turns out, the

optimal x depends on the noise level δ. Recall that distinctiveness D is defined as the average

probability of correct recognition (equation 6). In this case, we have three terms describing the

recognition probabilities of each of the three signals. These are:

P (t1 perceived | t1 uttered) =
f(0)

f(0) + f(x) + f(1)
(9)

P (t2 perceived | t2 uttered) =
f(0)

f(x) + f(0) + f(1 − x)
(10)

P (t3 perceived | t3 uttered) =
f(0)

f(1) + f(1 − x) + f(0)
(11)

The values of these three functions, for two different choices of the parameter δ are plotted

in figure 4(a) and (b). If we add up these three curves, we find, for different values of δ, the

curves in figure 4(c). Clearly, for low levels of noise the optimal value of x is x = 0.5. For

higher noise levels, however, this optimum disappears, and the optimal configuration has x = 0

or x = 1. That is, if there is too much noise, it is better to have several signals overlap.
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(b) δ = 2

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

position of t
2

to
ta

l s
uc

ce
ss

 fo
r δ

 =
 0

.2

0 0.2 0.4 0.6 0.8 1
0.403

0.4035

0.404

to
ta

l s
uc

ce
ss

 fo
r δ

 =
 2

δ = 0.2

δ = 2

(c) δ = 0.2, 2.0

Figure 4: Distinctiveness as dependent on distance and noise, 1d example. Panel a) shows confusion probabilities
in a low-noise environment, panel b) shows them in a high-noise environment. Panel c) compares the probabilities
of correct recognition for the low-noise and the high noise conditions. Note that the high-noise condition has a
minimum at maximal distance, whereas the low-noise condition has a maximum.

Figure 5(a) shows a 2-dimensional system of 9 points optimised for distinctiveness with a
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high noise level (δ = 1). The optimal configuration under these conditions is to have each signal

in one of the four corners: 3 corners with 2 signals, and one corner with 3 signals. With this

configuration, the distance between the two or three signals that share a corner is d = 0, and

their mutual confusability is high. But at least the distance to the other signals is high (d = 1,

or d =
√

2).
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(a) 9 points, high noise
level (δ = 1.0)
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(b) 9 points, low noise
level (δ = 0.1)

Figure 5: The noise level determines how many signals can be kept distinct

Maximising distinctiveness is, because of the high noise level, equivalent to maximising

summed distance. Consider one of the signals in the top-right corner, and consider moving it to

the left, that is, away from the two signals already in that corner. The gain in distance from the

top-right corner (∆dtr), will be exactly cancelled out by the loss in distance from the top-left

corner (∆dtl). The gain in distance from the bottom-right corner (∆dbr), however, will not

compensate for the loss in distance from the bottom-left corner (∆dbl). To see why, consider

moving the signal a distance ε to the left. The (squared) gain in distance to the top-right is

given by:

∆dbr2 = [ε2 + 1] − [1] = ε2, (12)

The (squared) loss in the distance to the top-left by:

∆dbl2 = [1 + 1] − [(1 − ε)2 + 1] = [1 + 1] − [1 − 2ε + ε2 + 1] = 2ε − ε2, (13)

Of course, the summed distance will increase only if (12) is larger than (13), which is never the

case if 0 ≤ ε ≤ 1.

In contrast, in figure 5(b) a system of 9 points is shown that has been optimised for dis-

tinctiveness at a relatively low noise level (δ = 0.1). Here maximising distinctiveness is not

equivalent to maximising summed distance, because of the relatively low noise level. To see

why the noise level determines whether it is equivalent, consider a small change to the config-

uration, for instance moving the central point a bit to the left. Such a change will decrease

the distance to some points, and increase the distance to some other points. Now, note that
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the distance-to-confusion function is approximately linear for relatively small distances (see fig-

ure 1). Therefore, maximising distinctiveness corresponds approximately to maximising average

distances only if distances are small relative to the noise level, or equivalently, if the noise-level

is high relative to the distances.

4.3 Distinctiveness is a non-linear function of distances

Figure 6 shows another 2-dimensional, 9 signal system. It has, after running the hill-climbing

algorithm, converged to a local optimum (a). Why is this configuration stable? Consider moving

the signal α at the left-most end of the interval, along that same interval. For each alternative

x-coordinate of that signal, we can calculate the estimated probability of confusion with other

signals. The f -values for all the other signals are plotted in figure (b). For instance, the f -value

of the central-right signal (its contribution to the confusion about α) goes from very low if α is

at the left-most end of the interval to very high (0.3) if α is at the right-most end of the interval.
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Figure 6: Figure (a) shows a local optimum of a 9-signal repertoire optimised for distinctiveness. What would
happen if we move the signal at the right end of the interval in (a) horizontally to left? The probability of
correct recognition of that signal, α, is inversely proportional to the sum of the f-scores of all other signals (see
equation 5). Figures (b) and (c) show why this probability is in a local optimum with α at its current location.
Parameters: δ = 0.3.

The probability of correct recognition of α, and hence its contribution to the total distinc-

tiveness, is inversely proportional to the sum of all f -values. In figure 6(c) we therefore give a

plot of the sum of all these values (with the contribution of each signal indicated in different

colours). That sum is in a local minimum at the actual location of α, which suggests that –at

least initially– distinctiveness will not improve by shifting α to the left. The plot does not tell

the whole story, though, because the probability of correct recognition of the other signals will

also change due to the new position of α. Nevertheless, it does illustrate that the distinctiveness
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of a repertoire is a non-linear combination of the distances between the signals. Due to this

non-linearity, the resulting stable configurations are sometimes counter-intuitive.

4.4 Why trajectories stretch out

Finally, in figure 7 we explore the question of why many trajectories in our simulations stretch

out. In figure (a) we show 5 signals (in the bottom-left corner there are 2 signals on top of each

other). The signals are points in the acoustic space, which we will here interpret as stationary

trajectories of some arbitrary length. The graph shows the configuration that maximises the

summed distance between the signals. The figure also gives the distance matrix, that gives for

every pair of signals the distance between them. Naturally, the values are
√

2 ≈ 1.4 (across

the diagonals), 1 (horizontally or vertically) and 0 (for the pair in the bottom-left corner). The

average distance is d = 10.2/10 = 1.02.

Figure 7(b) shows an alternative configuration, with the fifth signal in the centre. The

distance matrix shows that the distance of the fifth signal to the bottom-left corner has increased,

but at the expense of the distances to the three other corners. As a result, the average distance

has actually gone down to d = 0.96. The reason is that this configuration doesn’t make optimal

use of the longest available distances over the diagonal. Importantly, however, at low noise-

levels, the distinctiveness of this configuration is in fact higher than of the configuration in (a).

The reason is that with relatively little noise and long distances, the distinctiveness–distance

function flattens out. Hence, there is more to be gained from avoiding confusion between the

fifth and the bottom-left signal, then there is from maintaining the excessive “safety margin”

with the other signals. In other words, the configuration in (b) sacrifices some average distance,

to gain a more even distribution of distances and, hence, a lower average confusion probability.

In a restricted space, increasing the distance with one sound, will usually decrease the

distance with another sound. That is, there is a crucial trade-off between maximising one

distance at the expense of another. Although maximising distinctiveness D will generally lead

to larger distances d, due to the non-linear dependence of D on d, that trade-off can work out

differently when maximising D than when maximising d.

Figure 7(c) shows yet another configuration, now with the fifth trajectory stretched out

over the whole diagonal. As is clear from the given distance matrix, this configuration yields

larger distances than in (b). To go from (b) to (c) there is no trade-off. The distances from the

central, fifth signal to the top-left and bottom-left corners can be increased without decreasing

the distances to the other two signals. The reason is that the distance between a stationary

trajectory t and a stretched out trajectory t′ is equal to the distance between t and the centroid

of t′ when t (like the top-right and bottom-left signals) is on a line through all the points of t ′,

but larger when it’s not (like the top-left and bottom-right signals). The distinctiveness in (c)

is always larger than in (b).
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In figure 8 and 9 we show results from running the basic model under various parameter

settings, including with repertoires with many trajectories and with 3-dimensional acoustic

spaces. These results show that the observations made in the simple systems above, generalise

to a wide range of conditions.

4.5 Locally optimal repertoires are evolutionary stable strategies

So-far, we have seen that repertoires of signals with a temporal structure will, when optimised

for distinctiveness, not be organised in as many little clumps as needed, but instead stretch out.

Rather than staying away as far as possible from other trajectories along its whole length, each

trajectory will be close to some trajectories for some of its length, and close to other trajecto-

ries elsewhere. In qualitative terms, these systems show superficially combinatorial phonology.

The model represents progress from existing work, because it deals with the categorical and

combinatorial aspects as well as with the trade-off between them. It shows a possible sequence

of fit intermediates, and, hence, a route up-hill on the fitness landscape.

We have not, however, dealt with the invasibility constraint from section 2.1. Will an in-

novation be able to invade and become established in a population where it is very infrequent?

In other words: are systems that show combinatorial phonology evolutionary stable? To in-

vestigate these questions, we adapt the definition of distinctiveness to tell us something about

pairs of languages. This way we can ask the question: how well will a repertoire R ′ do when

communicating with a repertoire R? Pairwise distinctiveness D is defined as follows:

D(R,R′) =
T

∑

t=1

f(d(Rt, R
′
t))

∑T
t′=1 f(d(Rt, R′

t′))
. (14)

The quantity D(R,R′) can be interpreted as the estimated probability of a signal uttered by a

speaker with repertoire R, to be correctly interpreted by a hearer with repertoire R ′.

When we now consider the invasion of a mutant repertoire R′ into a population with resident

repertoire R, four measures are of interest: D(R,R), D(R,R′), D(R′, R) and D(R′, R′). That

is, how well does each of the repertoires fare when communicating with itself or with the

other repertoire, in the role of speaker or of hearer? Specifically, for the invasion of R ′, it is

necessary that D(R′, R) > D(R,R) or D(R,R′) > D(R,R), or some weighted combination of

these requirements (depending on the relative importance of speaking and hearing). That is,

a successful mutant must do better against the resident language, than the resident language

does against itself. Can such situations arise?

Interestingly, this situation turns out to be very common. Consider the following 1d example:

x xx
x� -

repertoire A

x xx

repertoire B

The configuration on the right (B) is better on all accounts. Obviously, there will be less
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(a) d = 1.02, Dδ=0.1 =
0.80, Dδ=0.5 = 0.44
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(b) d = 0.96, Dδ=0.1 =
0.9993, Dδ=0.5 = 0.42
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(c) d = 0.99, Dδ=0.1 =
0.9996, Dδ=0.5 = 0.43

Figure 7: Why do trajectories stretch out? Three configurations and their distance matrices. Abbreviations: bl:
bottom-left, tr: top-right, tl: top-left, br: bottom-right, c centre.
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(a) I = 100, D = 0.25
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(b) I = 1000, D =
0.48
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(c) I = 2000, D =
0.54
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(d) I = 4000, D =
0.58

(e) (f) (g) (h) (i) (j) (k) (l) (m)

Figure 8: A repertoire in a 2d acoustic space optimised for distinctiveness. Common parameters: T = 9, P =
20, 2d, S = 0.2, ρ = 0.2, δ = 0.25. Figures (a-d) show the configurations at various stages of the hillclimbing
process. Figures (e-m) show each of the individual trajectories in figure (d).
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(a) 2d example with many tra-
jectories optimised for distinc-
tiveness. T = 50, P = 10, ρ =
0.2, S = 0.1, δ = 0.1, I = 5000.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

(b) 3d example. T = 16, P =
15, ρ = 0.2, S = 0.1, δ = 0.2, I =
2500, D = 0.71.

Figure 9: Repertoire in a 2d and 3d acoustic space optimised for distinctiveness.

confusion between its signals because they are further apart (when x = 0.1 and δ = 0.1,

D(A) = D(A,A) = 0.70 vs. D(B,B) = 0.84). But configuration B will even do better when

communicating with A, both as a hearer (D(A,B) = 0.78) and as a speaker (D(B,A) = 0.76).

The hillclimbing-criterion(R,R′) is redefined as follows in each of the conditions “hearer

benefits” (HB), “speaker benefits” (SB) or “equal benefits” (EB):

HB: D(R,R′) ≥ D(R,R) (15)

SB: D(R′, R) ≥ D(R,R) (16)

EB:
1

2

(D (

R′, R
)

+ D (

R,R′)) ≥ D(R,R) (17)

It turns out that all the stable configurations we found in simulations with the optimisation

criterion (OP, eq. 8), are also stable under criteria HB, SB and EB. Thus, locally optimal

repertoires are evolutionary stable strategies.

4.6 Not all ESSs are locally optimal

ESSs are strategies that cannot be invaded by any other strategy. In evolutionary game theory,

ESSs are therefore considered likely outcomes of an evolutionary process. However, if there

are many ESSs in a given system, the initial conditions will determine which ESS will emerge

(“equilibrium selection”). In our simulations with the HB, SB and EB conditions, we also

observe ESSs that do not correspond to the locally optimal configurations that we found with

the OP condition.

Figures 10(a-d) show the configuration of the repertoire at different numbers of iterations of

the hill-climbing algorithm under the HB condition. Figure 10(i) gives the pairwise distinctive-
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ness measures for each combination of these 4 configurations. At the diagonal of this matrix are

the distinctiveness scores of each configuration. As is clear from this matrix, each next config-

uration can invade a population with previous repertoire. In bold-face we see the approximate

evolutionary trajectory (the actual steps in the simulation are much smaller). Figure (d) is an

ESS. However, figures (e-f) show that this configuration is not stable when the OP criterion is

used. Figure 10(j) gives the pairwise distinctiveness measures for each combination of these 5

configurations. The diagonal elements in this matrix are the highest values in their row and

column, which shows that none of these configurations could have invaded a population using

(d) under the HB (or SB, or EB) condition. Nevertheless, once adopted, communication is more

successful with every next configuration (as the diagonal elements show). The locally optimal

configuration in (f), however, is an ESS under all four conditions.

We find suboptimal ESSs in simulations with the SB and EB conditions as well. Figure 11

shows stable configurations that emerge each of the four conditions. Interestingly, these subop-

timal ESSs disappear when a different distance-to-confusion function is used. In figure 12 we

used:

f(d) =
1

1 + e( 1

δ
d2)

, (18)

instead of equation (4). In this, and other simulations (2d and 3d) with that same function, all

ESSs observed show the same type of superficially combinatorial phonology that we found in

the OP condition.

It is difficult to evaluate the relevance of suboptimal ESSs. It appears that their existence

depends on the details of the distance-to-confusion function. Moreover, their stability depends

on the assumption of deterministic evolutionary dynamics implicit in equations (15-17). Finally,

whether or not they will emerge in evolution depends on the initial configuration.

4.7 Individual-based model

As a final test of the appropriateness of the basic model, we studied an individual-based sim-

ulation of a population of agents that each try to imitate each other in noisy conditions. This

simulation is similar to the model described above, but now each agent in the population has

its own repertoire, and it tries to optimise its own success in imitating and being imitated by

other agents of the population. Hence, a random change, as before, is applied to a random

trajectory of a random agent in the population. If this change improves the imitation success

in interaction with a number of randomly chosen other individuals in the population, it is kept.

Otherwise, it is discarded.

This version of the model is similar to the imitation games of de Boer (2000). That paper

only modelled point-like signals (vowels) and did not investigate combinatorial phonology. The

game implemented here is a slight simplification of the original imitation game. First, all agents

in the population are initialised with a random set of a fixed number of trajectories. Then
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(a) t=0
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(b) t=500
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(c) t=1000
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(d) t=7000
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(e) t=10
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(f) t=510
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(g) t=1510
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(h) t=6510

D∗ =















a b c d

a 0.250 0.255 0.256 0.257
b 0.257 0.411 0.412 0.414
c 0.260 0.412 0.443 0.445
d 0.262 0.415 0.449 0.458















(i) The pairwise distinctiveness matrix

D∗ =



















d e f g h

d 0.458 0.445 0.374 0.353 0.354
e 0.445 0.465 0.391 0.368 0.370
f 0.403 0.417 0.599 0.563 0.569
g 0.387 0.400 0.564 0.629 0.614
h 0.389 0.402 0.570 0.615 0.634



















(j) The pairwise distinctiveness matrix

Figure 10: Locally optimal repertoires are ESSs, but not all ESSs are locally optimal. (a-d) show configurations
in an evolutionary simulation with the hearer benefit condition (HB, D(R, R′) > D(R, R)) at various time
steps; (d) is an ESS in the HB condition; (e-h) show results from a simulation in the optimisation condition
(OP, D(R′, R′) > D(R, R)) that used (d) as its initial condition. (h) is an ESS in all conditions (OP, HB,
SB, EB) considered. (i) shows a matrix that gives the pairwise distinctiveness scores for every combination of
configurations in (a-d); (j) the matrix that gives the pairwise distinctiveness scores for every combination of
configurations in (d-h). The approximate evolutionary trajectory is indicated with bold-face in these matrices.
Parameters are: T=9, P=10, D=2, N=0.05, S=0.1.
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(a) t=5000, OP
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(b) t=5000, HB
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(c) t=5000, SB
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(d) t=5000, EB

Figure 11: Not all ESSs are locally optimal. Results from 4 simulations, each with the initial condition as in
figure 10a. Different payoff functions lead to different ESSs, although for all payoff functions considered, locally
optimal configurations as in (a) are stable. Parameters are: T = 9, P = 10, D = 2, ρ = 0.2, δ = 0.2, S = 0.1.
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(a) t=1000
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(b) t=11000

Figure 12: A 16 trajectories signal system in a 3d acoustic space, after 1000 and 11000 iterations. At each time
step, a small random change is considered, and only adopted if it represents an improvement according to the
pairwise distinctiveness criterion (equation 14). Here, the confusion-probabilities are proportional to 1

1+e
( 1

δ
d2)

,

where δ = 0.1 and d is the average segment-by-segment Euclidean distance. Parameters are: P = 15, S = 0.1, ρ =
0.05, δ = 0.1. The final distinctiveness is D(R) = D(R, R) = 0.94.
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for each game, a speaker is randomly selected from the population. This speaker selects a

trajectory, and makes a random modification to it. Then it plays a number of imitation games

(50 in all simulations reported here) with all other agents in the population. In these games,

the initiator utters the modified trajectory with additional noise. The imitator finds the closest

trajectory in its repertoire and utters it with noise. Games are successful if the imitator’s signal

is closest to the modified trajectory in the initiator’s repertoire. If it turns out that the modified

trajectory has better imitation success than the original trajectory, the modified trajectory is

kept, otherwise the original one is restored.

For vowel systems, it has been shown that optimising a single repertoire leads to similar

systems as a population-optimisation system (compare de Boer, 2000; Liljencrants and Lind-

blom, 1972). It can be shown that for trajectories the same is true, under the condition that

noisy distortions of trajectories do not distort the shape of these trajectories too much. This is

illustrated in figure 13.
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(c)

Figure 13: Comparison of population-based models with the optimisation model. Frame (a) shows the (five)
trajectories of four agents (from a population of ten), when noise preserves the shape of trajectories. Notice
the similarities with the optimised trajectories in frame (c). If noise does not preserve shape of trajectories, the
trajectories tend not to stretch out, as shown in the frame (b). Although it is rather hard to see, there are four
clusters in the corners, and one in the middle.

In this figure the left frame shows the system of five trajectories that resulted from playing

imitation games in a population, using shape-preserving noise. Frame (c), for reference, shows

a system of five trajectories that resulted from optimising distinctiveness as in the basic model.

It can be observed that in both cases, the corners are populated by four trajectories, which are

bunched up. The fifth trajectory, in contrast, follows the diagonal. As before, an analysis in

terms of phonemes suggests itself: the four corners are basic phonemes, while the fifth trajectory

uses one as the corners as a starting phoneme and the opposite corner as the ending phoneme.

Both models result in similar systems of trajectories.

The middle frame, on the other hand, shows that when noise does not preserve shape of
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trajectories, a system results in which all trajectories are bunched up and an analysis in terms of

phonemes is therefore not possible. As noise in real signals is band limited, it follows that shape

will always be preserved to some extent. For computational reasons, we have not performed

simulations in the population condition with more than 5 trajectories. However, although less

clean and not fully conclusive, the results from the individual-based model seem to be consistent

with the observations with the basic model.

4.8 Measuring combinatorial phonology

So far, we have relied on an intuitive notion of what it means for a repertoire of trajectories

to show combinatorial phonology. As the paper investigates the emergence of categorical and

combinatorial coding on a qualitative level, this has not been an obstacle. However, for a more

quantitative understanding of the emergence of combinatorial phonology, a numerical measure

of the degree of recombination would be useful. When the basic building blocks of the repertoire

are known, it is straightforward to give a measure of the degree of combination. An example

would be the number of times a given building block is being reused: ϕ = N
k

, where ϕ is the

measure of recombination (phonemicity), N is the number of words in the repertoire and k the

number of building blocks.

A difficult problem, however, is finding the basic building blocks, given a repertoire of signals.

The traditional linguistic procedure for indentifying phonemes in an unknown language, relies

on the notion of “minimal pair”: a pair of words that have different meanings and differ only

in one sound. An example would be the English pair “keel” and “cool”. Hence, an hypothesis

on a candidate phoneme can be validated by providing a minimal pair that differs only in that

phoneme.

This analysis might seem straightforward, but when put to use in an automatic phoneme

discovery procedure, a number of pitfalls emerge. First of all, it already makes use of an existing

set of basic building blocks (usually the phonetic categories as defined by the International

Phonetic Association). Secondly, it needs to decide what is meaningful variation and what is

variation caused by automatic influence from neighbouring sounds. In the example, the k-like

sounds at the beginning of the words are different, too, but it is generally accepted that this is

due to the influence of the vowels that follow. They are said to be allophones. However, this

can only be deduced from the physics of articulation, not from the signals themselves.

A final problem in the analysis is how to decide that two building blocks are equal. In the

case of the two different k-sounds, it can be argued that they are instances of the same building

block, because there are no minimal pairs and their articulation is very similar. However, the

case is not so clear-cut for other examples. A well-known example is the case of English “h”

and “ng”. The former occurs only at the beginning of syllables, and the latter occurs only at

the end. There are therefore no minimal pairs, and they could be considered allophones, but
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because of their articulatory differences, this is never done. There are cases in other languages

that are even more problematic, and it is not uncommon to find disagreement amongst linguists

about the exact set of building blocks that are used in a language.

In the case of artificially generated sets of trajectories, these problems are even more ap-

parent. One needs to make assumptions about what kind of building blocks are possible, what

constitutes natural behaviour for a trajectory between building blocks, and how to define sim-

ilarity between building blocks. In the analyses that we have presented, we have implicitly

assumed that building blocks are points, that trajectories tend to follow straight lines from

point to point and that points that are close together are the same building block. We do

not yet know how to automate the process of extracting building blocks and therefore cannot

calculate the phonemicity of a repertoire automatically.

5 Discussion and Conclusion

We have shown that optimising trajectories for acoustic distinctiveness results in superficial

combinatorial phonology. When optimising a repertoire of temporally extended trajectories in

an abstract acoustic space, the trajectories tend either to occupy the corners of the available

space or to stretch out from corner to corner. It appears as if trajectories become far apart where

possible and close together where necessary. A repertoire with this structure can be analysed

as reusing certain points as building blocks of its trajectories and thus to have combinatorial

structure. As there is nothing in the trajectory that explicitly codes this structure and as

agents that would use these repertoires of trajectories need not be aware of their structure,

their combinatorial nature is purely superficial.

Most of the results presented here were obtained through direct optimisation of repertoires

of trajectories. However, we have also shown that superficially combinatorial repertoires of

trajectories can emerge in a population of agents that try to imitate each other as well as

possible. Apparently agents that strive for maximum success in imitation in noisy conditions,

using information from simple interactions (imitation games) alone, converge towards repertoires

that are similar to repertoires that are optimised directly.

Finally, we have shown that repertoires of trajectories that are optimised for acoustic dis-

tinctiveness (and thus combinatorial) are evolutionary stable. Agents that have a repertoire of

trajectories that is more optimised for acoustic distinctiveness can invade a population of agents

that have less optimal (but otherwise similar) repertoires, at least if the only fitness criterion

is the robustness to acoustic noise of their repertoires. Conversely, a population of agents with

an optimal repertoire cannot be invaded by agents with less optimal repertoires. We have also

shown that there is a path of ever increasing fitness towards the optimal (and combinatorial)

repertoire.

Our model differs from other attempts to explain combinatorial speech in several ways.
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First of all, both holistic and (superficially) combinatorial signals have temporal structure. All

signals in the model are of the same duration. Secondly, our model does not use articulatory

targets. The resulting structure is purely emergent and therefore called “superficial”. In fact,

no distinction is made between holistic and combinatorial signals in the model; the difference

only becomes apparent when analysing the structure of the repertoires.

We argue that agents can make use of this structure to evolve towards productive use of

recombination. When the structure becomes available in the population, it becomes advanta-

geous for agents to make use of it. They can use it to store the repertoire of trajectories more

compactly, to perceive and produce trajectories in a more robust way and eventually to more

easily create new trajectories. In this way, agents that use combinatorial structure productively

can invade a population of agents that do not. This is only possible when there already exists

a repertoire that is superficially combinatorial. Only then is there a path of continuously in-

creasing fitness towards productive combinatorial coding, and eventually, to phonemic speech.

We have shown that optimisation for acoustic distinctiveness can result in such a repertoire.

Natural language phonology is categorical and combinatorial. What we have shown in this

paper is that these properties have functional significance: they aid the reliable recognition of

signals by the hearer. We have also shown that there is a path that leads from a signal system

without these properties, to one with those properties. Crucially, we have shown that each step

on this path represents an improvement, both when it first appears in a population and when

it is already common.

It turns out that a categorical and combinatorial system of speech sounds is advantageous

even for a population of speakers and listeners that is not aware of this structure. Thus com-

binatorial structure can emerge in a culturally transmitted system of calls before there are

cognitive (genetic) adaptations for using this structure. This makes it unnecessary for combi-

natorial phonology to have emerged through purely genetic evolution. Rather, natural selection

shapes the parameters of the self-organising process and cultural self-organisation determines

what genetic adaptations will be beneficial. Hence, self-organisation is the substrate of evolution

(Waddington, 1939; Boerlijst and Hogeweg, 1991; Kirby and Hurford, 1997; Smith, 2004).
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