
CANONICAL MEASURE ASSIGNMENTS

STEVE JACKSON AND BENEDIKT LÖWE

Abstract. We work under the assumption of the Axiom of Determinacy and
associate a measure to each cardinal κ < ℵε0 in a recursive definition of a
canonical measure assignment. We give algorithmic applications of the ex-
istence of such a canonical measure assignment (computation of cofinalities,
computation of the Kleinberg sequences associated to the normal ultrafilters
on all projective ordinals).

1. Introduction

One of the striking features of set theory under the Axiom of Determinacy is the
fact that there is a full analysis of the cardinal structure for a fairly large initial
segment of Θ := sup{α : there is a surjection from R onto α}, something which
we cannot hope to get in the ZFC context. While almost none of the combinatorial
properties of small cardinals (e.g., ℵ2, ℵ3, ℵω2) are fixed in ZFC, ZF + AD gives
us definite combinatorial properties (e.g., measurability, Jónssonness, Rowbottom-
ness) of these cardinals, in particular below ℵε0 , the supremum of the projective
ordinals (defined in §2).

This structure is closely tied to an analysis of measures on the projective ordinals
and the representation of cardinals as ultrapowers via these measures. In [Ja99]

this analysis is given below δ
1
5, and in [Ja88] it is extended to all the δ

1
n. A key

combinatorial ingredient in this analysis is the notion of a description, which give
a precise presentation of the cardinal structure (see also [Ja∞] for an introduction
to this theory). In [JaKh∞] it was shown that a certain fairly simple family of
measures on δ

1
3 could be used to directly describe the cardinal structure below

δ
1
5. This presentation of the cardinal structure avoided the notion of description,

although the description theory was an integral part of the proofs.
Our goal here is to present a simple combinatorial framework which suffices to

describe the cardinal structure below the supremum of the projective ordinals, and
which also avoids the description analysis. We introduce the notion of an ordinal

algebra, and we inductively assign measures to the elements of this algebra through
two lifting operations. This gives us a comparitively simple notational framework
for describing the cardinal structure below the δ

1
n which is of independent interest

and will also allow those not familiar with the description analysis to use many of
the strong consequences of that theory.

We emphasize that we do not prove here the strong partition relation on the
δ

1
2n+1 (although we use it heavily), nor do we prove that the ultrapowers of the
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δ
1
2n+1 by the measures we construct have the correct values. Rather, we abstract

these assumptions into a “canonicity assumption” (defined precisely later) from
which our analysis proceeds. The proof of this assumption below δ

1
5 is given in

[JaKh∞], and for the general case will appear later (although the description anal-
ysis necessary is given in [Ja88]).

In this paper we would like to stress the algorithmic nature of this analysis
of the cardinals below ℵε0 : we describe a general recursive procedure of measure
assignment (§ 5), and develop algorithms for

• computing all regular cardinals below ℵε0 (§ 6.1),
• computing the cofinalities of all cardinals below ℵε0 (§ 6.2), and
• computing the Kleinberg sequences derived from all normal measures on

the projective ordinals (§ 6.3)

under the assumption that the measure assignment is canonical.

2. Mathematical Background.

In this paper, we shall be working in the theory ZF+DC+AD. We shall say that
a cardinal κ has the strong partition property if the partition relation κ → (κ)κ

holds, i.e., if for every partition of [κ]κ into two blocks there is a homogeneous
set of order type κ. We say that it has the weak partition property if for all
α < κ, the partition relation κ → (κ)α holds. Note that the strong and the weak
partition properties cannot hold for any uncountable cardinal if we assume the
Axiom of Choice AC: by a result of Erdős and Rado (cf. [Ka94, Proposition 7.1])
any partition relation with infinite exponents violates AC.

In practice, we actually use an equivalent variation of these definitions, which
the reader can take as our official definition We first recall some terminology.

Let α and κ be ordinals. A function f : α → κ is continuous if and only if for all
limit ordinals γ < α,

f(γ) = sup{f(ξ) ; ξ < γ}.

The function f has uniform cofinality ω if there is a function h : ω × α → κ,
which is increasing in the first argument, such that for γ < α, we have

f(γ) = sup{h(n, γ) : n ∈ ω}.

We say a function f : α → κ is of the correct type if it is increasing, everywhere
discontinuous (i.e., for all γ < α, f(γ) > supβ<γ f(β)), and of uniform cofinality
ω. We say f : α → κ is of continuous type if it is increasing, continuous and has
uniform cofinality ω at all successor ordinals (with obvious meaning).

We can now write κ
club
−→ (κ)λ for the statement “for every partition P of the

functions from λ to κ of the correct type into two sets there is a club set C ⊆ κ
such that all functions f : λ → C of the correct type get the same color by P”.

It is easy to see that if λ = ω · λ, then κ → (κ)λ and κ
club
−→ (κ)λ are equivalent

(cf. [Ja99, p. 5] or [Ja∞, Fact 2.28]) and so we can freely switch between the two
definitions for the weak and strong partition properties.

For λ < κ, λ regular, let us define the λ-cofinal filter Cλ
κ as the filter generated

by the λ-closed unbounded sets in κ, i.e.,

A ∈ Cλ
κ : ⇐⇒ there is a club set C ⊆ κ such that {α ∈ C : cf(α) = λ} ⊆ A.
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Clearly, Cω
ω1

is the ordinary club filter on ω1. As usual, we call σ-complete ultrafilters
on κ measures, we call a measure normal if it is closed under diagonal intersection
and semi-normal if it contains all club subsets of κ. If µ is a measure on % and
α is an ordinal, then (because of DC) the ultrapower α%/µ is wellfounded and thus
isomorphic to an ordinal. We identify it with its Mostowski collapse. We call a
cardinal κ closed under ultrapowers if for all % < κ and all measures µ on %,
we have that %%/µ < κ. If κ is regular, this is equivalent to the statement “for all
% < κ and all measures µ on %, we have that κ%/µ = κ”.

The weak partition property of κ implies the existence of many concrete measures
on κ, as the following theorem of Kleinberg shows:

Theorem 1. Let κ be a cardinal with the weak partition property and λ < κ a
regular cardinal. Then Cλ

κ is a normal measure. In addition, if κ is not weakly
Mahlo, then these are the only normal ultrafilters on κ.

Proof. [Ka94, Theorem 28.10 & Exercise 28.11]. �

In other words, the weak partition property of κ not only gives the existence
of measures, but in our case (our cardinals will be below ℵε0

and thus not weakly
Mahlo) also a structured pattern of all of the normal measures on κ (indexed by
the regular cardinals below κ).

In addition, the strong partition property also connects to other combinatorial
properties:

Definition 2. Let κ be a strong partition cardinal and µ a normal measure on κ.
We then define a sequence 〈κµ

n : n < ω〉 as follows:

• κµ
0 := κ,

• κµ
n+1 := (κµ

n)
κ
/µ, and

This sequence is called the Kleinberg sequence derived from µ.

Theorem 3. Let κ be a strong partition cardinal and µ be a measure on κ. Then
κκ/µ is a cardinal.

If µ is normal, then κµ
1 = κκ/µ is a measurable cardinal, and all κµ

n are Jónsson
cardinals.

Proof. The first claim is a result of Martin’s proved in [Ja99, Theorem 7.1]. The
second claim is part of Kleinberg’s analysis of strong partition cardinals from [Kl77].

�

The projective ordinals play an important role in the descriptive set theory of
the projective sets (cf. [Mo80, § 7D], [Ka94, § 30], and [Ke78]). Moreover, the fact

that the odd projective ordinals δ
1
2n+1 have the strong partition property is central

to the analysis of cardinals and measures below thier supremum. Recall they are
define by:

δ
1
n := sup{ξ : ξ is the length of a prewellordering of ωω in ∆1

n}.

The Cabal has developed an intricate theory of the combinatorics of the projective
ordinals summarized in the following fact:

Theorem 4. Let n be a natural number. Then:

(1) (Kunen, Martin 1971) δ
1
2n+2 = (δ1

2n+1)
+,
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(2) (Kunen, Martin 1971) all δ
1
n are measurable,

(3) (Kunen, Martin, Solovay 1971) δ
1
2 = ℵ2, δ

1
3 = ℵω+1, and δ

1
4 = ℵω+2,

(4) (Martin 1971) δ
1
1 → (δ1

1)
δ
1
1 ,

(5) (Kechris 1974) for all n, δ
1
2n+1 is a successor of a cardinal of cofinality ω,

(6) (Kunen 1971) the ω-cofinal measure Cω
δ1
2n+1

is a normal measure on δ
1
2n+1

with δ
1
2n+1

δ
1
2n+1/Cω

δ1
2n+1

= δ
1
2n+2 = (δ1

2n+1)
+,

(7) (Jackson, Martin 1980) δ
1
3

δ
1
3/Cω1

δ1
3

= ℵω·2+1 and δ
1
3

δ
1
3/Cω2

δ1
3

= ℵωω+1, and

these two cardinals are measurable.
(8) (Jackson 1985) Let e0 := 0 and en+1 := ω(ωen) (i.e., en is a exponential

ω-tower of height 2n − 1). Then for every n ∈ ω,

δ
1
2n+1 = ℵen+1,

and all odd projective ordinals have the strong partition property and are
closed under ultrapowers.

Proof. A proof of all parts except for the last two can be found in [Ke78]. Item (7)
and the n = 2 case of (8) can be found in [Ja99, Chapter 7]. The general case of
(8) is in [Ja88]. �

3. Ordinal algebras and measure assignments

An ordinal algebra is a free algebra A over a set of generators V = {Vβ}β<α

using the binary operations ⊕, ⊗. We write Aα for the algebra with α generators.
For α < β we naturally have Aα ⊆ Aβ . For any ordinal algebra A we define
a function o from A onto an ordinal ht(A) which we call the height of A. We
will have for α < β that the o function on Aβ extends the o function on Aα. To
begin, we define o(V0) = 0. Suppose we have defined o on Aα. Then set o(Vα) =
ht(Aα) = sup{o(t) + 1: t ∈ Aα}. Then extend o to Aα+1 by o(s ⊕ t) = o(s) + o(t),
o(s ⊗ t) = o(s) · o(t) (ordinal addition and multiplication). By construction, o is
a homomorphism from the free algebra to the ordinals with ordinal addition and
multiplication.

Let us look at the simplest ordinal algebras as an example. For this, we introduce
a notation for finitely iterated sums and products:

V ⊗ n := V⊕ . . .⊕
︸ ︷︷ ︸

n

V, and

V
⊗n := V⊗ . . .⊗

︸ ︷︷ ︸

n

V.

• (α = 1). If V = {V0}, then o(V0) = 0, so o(V0 ⊕ V0) = 0, o(V0 ⊗ V0) = 0,
etc., so ht(A) = 1.

• (α = 2). If V = {V0, V1}, then o(V0) = 0 and o(V1) = 1, so o(V1 ⊗ n) = n,
and thus ht(A) = ω.

• (α = ω). Here we use ω generators V = {V0, V1, V2, . . . }. So, o(V0) = 0,
o(V1) = 1, and o(V2) = ω. Then o(V⊗n

2 ) = ωn, and thus o(V3) = ωω.

Likewise, o(V4) = ωω2

, o(V5) = ωω3

, etc. So, ht(Aω) = ωωω

.
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Figure 1. Adding the trees for x = V3 ⊕ V2 ⊕ V1 and y =
(V4 ⊗ V2) ⊕ V1.

Proposition 5.

o(Vα) = ht(Aα) =







1 α = 1

ωωα−2

1 < α < ω
ωωα

α ≥ ω.

Proof. An easy induction on α. Suppose that ht(Aα) = ωωα

. By definition, o(Vα) =
ωωα

. Also, o(V⊗n
α ) = (ωωα

)n = ωωα
·n. So,

ht(Aα+1) = sup
n

ω(ωα
·n) = ωωα+1

.

�

Let us fix an ordinal algebra A with set of generators V.
In the following, we shall identify terms in an ordinal algebra with finite labelled

ordered trees 〈T, `〉. We assume that there is an implicit order on the set of im-
mediate successors of a node that we read from left to right in the pictures. All
of our trees have a root • and the labelling function ` is a map from T\{•} into
V. When convenient, we may assume without loss of generality that T is a finite
subtree of ω<ω, that is, the nodes of T can be viewed as finite sequences 〈i0, . . . , ik〉
of integers. We recursively associate a tree to each term in A:

(1) We identify the variable v with the tree consisting of a root • and one
immediate successor node v such that `(v) := v.

(2) If x, y ∈ A are represented by 〈Tx, `x〉 and 〈Ty, `y〉, respectively, then we
represent x⊕y by defining a tree T as follows: we juxtapose Tx and Ty with
a common root and take the union of the labelling functions. An example
for x = V3 ⊕ V2 ⊕ V1 and y = (V4 ⊗ V2) ⊕ V1 can be seen in Figure 1.

(3) If x, y ∈ A are represented by 〈Tx, vx〉 and 〈Ty, vy〉, respectively, then we
represent x⊗ y by defining a tree T as follows: we start with Ty and glue a
copy of Tx to each terminal node of Tx. An example for x = V3 ⊕ V2 ⊕ V1

and y = (V4 ⊗ V2) ⊕ V1 can be seen in Figure 2.

This corresponds directly to the representation of ordinal addition and multipli-
cation by finite trees. Note that the order of the successors of a node in the tree is
highly relevant, as ordinal addition and multiplication are not commutative.
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Figure 2. Multiplying the trees for x = V3 ⊕ V2 ⊕ V1 and
y = (V4 ⊗ V2) ⊕ V1.

We can now define the notion of a measure assignment. An order type is a
function ot : T\{•} → Ord where T is a finite tree with root •. A germ is a
function G defined on T\{•} assigning a measure on some ordinal to each non-root
node of the tree T . We say that a germ G lives on an order type ot if for each
non-root node v, G(v) is a measure on ot(v) and on no smaller ordinal. A pair of
functions 〈germ,ot〉 is a measure assignment on A if ot and germ assign order
types and germs to elements of A, respectively, such that for each x ∈ A, germ(x)
lives on ot(x).

Note that for a generator v, the order type ot(v) is essentially one ordinal, and
the germ germ(v) is a measure on this ordinal. In the case of generators, we shall
identify the order type and germ with the ordinal and measure, respectively.

It is clear that it is enough to specify the values of germ(v) and ot(v) for all v ∈ V

in order to fix the entire measure assignment: for an arbitrary term x with labelled
tree 〈Tx, `x〉, each non-root node v will be assigned the ordinal ot(v) := ot(`x(v))
and the measure µ(v) := germ(`x(v)).

As our finite trees correspond to ordinal addition and multiplication, we can
see ot(x) as a single ordinal computed recursively from the values of ot(v) for the
nodes v of Tx. An example can be seen in Figure 3. We can, in fact, identify
ot(x) with this ordinal; to be precise, we shall identify it with the presentation of
the ordinal given by the tree. It is sometimes convenient to identify the domain of
ot(x) with the set of tuples 〈i0, α0, i1, α1, . . . , ik, αk〉 where 〈i1, . . . , ik〉 is a terminal
node of T , and each α` < ot(v) for v = 〈i0, . . . , i`〉. The corresponding ordering is
lexicographic ordering on these tuples. Clearly this ordering has order type ot(x).

We say that the range of a measure assignment is the supremum of the ordinals
ot(x) for all x ∈ A.

In a finite tree Tx, we call the rightmost immediate successor v of the root
the trailing node. If you consider the tree as an ordinal, then the term ot(v)
corresponds to the trailing term in the ordinal presentation of ot(x). It will be
important that cf(ot(x)) = cf(ot(v)) for the trailing node v.
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Figure 3. (a). The tree representation of α0 + (β0 + (γ0 + γ1) ·
β1 + β2) · α1. (b) & (c). The (different) tree representations of
ω + ω2 = ω2.

4. Lifting and Canonicity

It is our goal to analyse cardinals as ultrapowers via our measure assignments.
In order to do this, we need to transform our germs into real measures on (odd)
projective ordinals. We shall do this via lifting. We use two operations, the weak
lift wliftκ and the strong lift sliftκ. The first uses the weak partition relation at κ
and the second the strong partition relation.

If κ is an infinite cardinal and T is a finite tree with a (finite) set X of terminal
nodes, there is a definable bijection p·q : κX → κ. We fix these bijections for the
rest of the paper and use the same notation for all of these functions. As in the
previous section, we fix an ordinal algebra A with set of generator V. We also fix
a measure assignment 〈germ,ot〉 for A.

Fix a term x ∈ A with labelled tree 〈Tx, `x〉. For each terminal node t =
〈i0, . . . , ik〉 of Tx, consider the subset ot(x)t of ot(x) consisting of those tuples
〈j0, α0, . . . , jk, αk〉 with 〈j0, . . . , jk〉 = 〈i0, . . . , ik〉. This set is naturally identified
with ot(vi0) × ot(vi0,i1) × · · · × ot(vi0,...,ik

), where vi0,...,i`
= `x(i0, . . . , i`). We

also have the product measure µ∗(t) := µ(i0) × µ(i0, i1) × · · · × µ(i0, . . . , ik) on
ott(x), where µ(i0, . . . , i`) is the measure assigned to the variable vi0,...,i`

. Every
function f : ot(x) → Ord induces by restriction, for each terminal node t, a function
f t : ot(x)t → Ord. f is, in a natural sense, the union of these subfunctions.

Notice that for each terminal node t that is a successor of the trailing node of
Tx, we have that sup(f t) = sup(f).

The term x ∈ A, along with our measure assignment, defines a germ G =
germ(x). To every germ G and cardinal κ having the weak partition relation we
now associate a measure wliftκ(G) as follows (we assume in the following definition
that ot(x) < κ).

Definition 6.

wliftκ(G) := {A ⊆ κ : there is a club set C ⊆ κ such that for all f : ot(G) → C

of continuous type we have p{[f t]µ∗(t) : t ∈ X}q ∈ A },

where X is the set of terminal nodes of T .
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When the measure assignment is understood, we will simply write wliftκ(x) for
this measure.

The weak partition relation on κ gives the following.

Theorem 7 (Weak Lifting Theorem). Let κ be a weak partition cardinal closed
under ultrapowers. Let G be a germ living on an order type ot(G) < κ. Then
wliftκ(G) is a measure on κ.

Proof. Exercise. A full proof of the case of germs on trees of depth 1 can be found
in [BoLö∞, Theorem 10]. �

To see a few examples, we ask the reader to check that the lift of a principal
ultrafilter on a singleton to any weak partition cardinal κ is equal to Cω

κ . Similarly,
the lift of Cω

λ to κ is Cλ
κ .

The strong partition relation on κ allows us to lift measures on κ to measures
on the ultrapower, according to the following definition.

Definition 8. Let κ be a strong partition cardinal, µ a measure on κ, and λ :=
κκ/µ. We define a measure on λ by

sliftκ(µ) := {A ⊆ λ : there is a club set C ⊆ κ such that for all f : κ → C

of the correct type we have [f ]µ ∈ A}.

We note that the measure µ determines κ, so we frequently just write slift(µ).
The strong partition relation at κ gives immeduately the following.

Theorem 9 (Strong Lifting Theorem). Let κ be a strong partition cardinal and µ
be a measure on κ. Then slift(µ) is a measure on κκ/µ.

For notational convenience, we can combine the operations wlift and slift to a
new operation that we call the high lift of G (here the germ G lives on % < κ and
κ is a strong partition cardinal closed under ultrapowers):

highliftκ(G) := slift(wliftκ(G)).

An important hypothesis for this paper is embodied in the following definition.

Definition 10. A measure assignment is called canonical for the strong partition
cardinal κ = ℵξ+1 if for all x ∈ A with ot(x) < κ we have

κκ/wliftκ(x) = ℵξ+o(x)+1.

Note that canonicity implies a lot of non-obvious claims about the behaviour
of sums and products of measures: while o(V1 ⊕ V2) = ω = o(V2), there is no
a priori reason that the measures associated to these two terms should be sim-
ilar. Canonicity of the measure assignment ensures that they are, in the sense
that they give the same ultrapowers. Note that also implicit in canonicity is
the claim that the bijection between κX and κ used in defining wliftκ(x) does
not effect the value of κκ/wliftκ(x). To illustrate this last point let W3

1 be the
three-fold product of the normal measure on ω1 (in the canonical measure as-
signment of the next section this will be wliftω1(V1 ⊕ V1 ⊕ V1)). Let µ1 be the
measure on ω1 obtained from W3

1 by identifying (ω1)
3 with ω1 using the ordering

〈α1, α2, α3〉 <1 〈β1, β2, β3〉 iff 〈α3, α1, α2〉 <lex 〈β3, β1, β2〉, where <lex denotes lexi-
cographic ordering. Let µ2 be defined similarly but using 〈α1, α2, α3〉 <2 〈β1, β2, β3〉
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iff 〈α3, α2, α1〉 <lex 〈β3, β2, β1〉. Let ν1 = slift(µ1) and ν2 = slift(µ2). Then ν1,
ν2 are both measures on ω4, but are quite different and definitely non-equivalent

measures. Nevertheless, δ
1
3

δ
1
3/ν1 = δ

1
3

δ
1
3/ν2. In fact, the description analysis read-

ily shows that both ultrapowers are equal to ℵ
ωω3+1, which will also follow from

our canonicity assumption (the measure assignment of the next section will assign
to V5 the measure highliftω1

(V1 ⊕ V1 ⊕ V1), which is ν1 or ν2 depending on the

bijection used, and o(V5) = ωω3

).

5. A recursive definition of a measure assignment

In this section, we shall define a measure assignment for the algebra Aε0 . Recall
that e0 := 0 and en+1 := ω(ωen); with this notation, we have that Aε0 =

⋃

n∈ω Aen
.

The assignment will be defined recursively along this union of algebras.1 The basic
idea is that the variables at a given level correspond to the high lifts of the terms
(not just the variables) at the previous levels.

A standing assumption for the rest of this paper is that all the odd projective
ordinals δ

1
2n+1 have the strong partition property and are closed under ultrapowers.

The reader may, if desired, add this to our canonicity assumption.
We start with A2 generated by V0 and V1. We have to deal with an anomaly at

the beginning: we want to set ot(V0) := 0, but of course there is no measure on the
empty set. For the purpose of this definition, we declare ∅ to be a measure on 0,
and we define wliftκ(∅) to be any principal ultrafilter on κ = ℵξ+1. Clearly, this
fits well, as o(V0) = 0 and thus

κκ/wliftκ(V0) = ℵξ+o(V0)+1 = ℵξ+1 = κ.

We continue our definition by setting ot(V1) := 1 and germ(V1) to be the

principal ultrafilter on 1. Lifting germ(V1) to δ
1
1 = ℵ1, we get that wliftδ1

1
(V1) is

the club filter on ω1. Again, this conforms with the canonicity requirement, as

ℵ2 = ℵℵ1
1 /Cω1 = ℵℵ1

1 /wliftδ1
1
(V1) = ℵ0+o(V1)+1.

We shall now lift the measure assignment from A2 to Aω, or more generally, from
A2+en

to Aht(A2+en ) = Aen+1 .

Suppose that we have a measure assignment for A2+en
with range < δ

1
2n+1. For

ξ < 2 + en, we leave ot(Vξ) and germ(Vξ) unchanged. If ξ = 2 + en + η, where
η < en+1, then there is some term y ∈ A2+en

such that η = o(y). We use the
Cantor normal form of η to get a canonical representative y. We now define

ot(Vξ) := δ
1
2n+1

δ
1
2n+1/wliftδ1

2n+1
(y), and

germ(Vξ) := highliftδ1
2n+1

(germ(y)).

Note that in order to define germ(Vξ) for en ≤ ξ < en+1 we need to know that

wliftδ1
2n+1

(y) is a measure on δ
1
2n+1, which follows from the closure of δ

1
2n+1 under

ultrapowers. From the closure of δ
1
2n+3 under ultrapowers it then follows that

ot(Vξ) < δ
1
2n+3.

This finishes the definition of a measure assignment for Aε0 . Again, we invite
the reader to compare the recursive definition with the table in Figure 5: the first

1It may be convenient for the reader to accompany the reading of the recursive definition with
the table in Figure 5 which gives all of the relevant values for terms in A

ωωω .
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system of the table gives the values in A2 (before the vertical line) and Aω (after
the vertical line) and the second system gives the values in Ae2 with the columns
in the second system corresponding to the columns in the first system via the high
lift.

To get acquainted with this definition, let us compute the values of germ(Vn)
for n < ω.

• We have V2 = V2+e0+0, so the canonical representative y of η = 0 will be
just V0. Then wliftδ1

1
(V0) is just the principal ultrafilter by convention.

Thus, germ(V2) is the strong lift of the principal ultrafilter which is the
normal measure W1

1 on ω1.
• Now, we have V3 = V2+e0+1, so η = 1 and thus our canonical y is V1.

Lifting the principal filter on 1 to ω1 yields the normal measure W1
1 on

ω1 as W1
1 = wliftδ1

1
(V1). As we know, ℵ1

ℵ1/W1
1 = ℵ2, so ot(V3) = ω2.

So, germ(V2) = slift(W1
1) = the ω-club filter on ω2 (this is denoted S1

1 in
[Ja99, Definition 1.3]).

• For n ≥ 3, Vn = V2+e0+(n−2), so η = n−2, and our term is y = V1⊗(n−2).

Also, wliftδ1
1
(y) = Wn−2

1 , the (n − 2)-fold product of the normal measure

on ω1. If we identify (ω1)
n−2 with ω1 via the ordering (α1, . . . , αn−2) <

(β1, . . . , βn−2) iff (αn−2, α1, . . . , αn−3) <lex (βn−2, β1, . . . , βn−3), then the
resulting measure on ωn−1 is denoted Sn−2

1 in [Ja99, Definition 1.3]. So,
using this bijection, germ(Vn) = Sn−2

1 .

Computing the ultrapowers of δ
1
3 with the measures associated to V2 and V3

gives exactly the right answers:

δ
1
3
δ
1
3/wliftδ1

3
(V2) = δ

1
3
δ
1
3/Cω1

δ1
3

= ℵω·2+1 = ℵω+o(V2)+1, and

δ
1
3
δ
1
3/wliftδ1

3
(V3) = δ

1
3
δ
1
3/Cω2

δ1
3

= ℵωω+1 = ℵω+o(V3)+1.

Rephrased in the language of measure assignments, we can interpret Kleinberg’s
Theorem 3 and the results from [JaKh∞] as follows:

Theorem 11 (Kleinberg). The given measure assignment on A2 is canonical for

δ
1
1.

Theorem 12 (Jackson-Khafizov). The given measure assignment on Aω = Ae1 is
canonical for δ

1
3 = δ

1
2·1+1.

The upper and lower bound computations underlying [Ja88, Ja99, JaKh∞] indi-
cate strongly that canonicity will hold everywhere. We call the assumption that the
measure assignment defined above on Aen

is canonical for δ
1
2n+1 the canonicity

assumption.

6. Applications of the Canonicity Assumption

In this section we shall work under the canonicity assumption. Based on that
assumption, we shall be able to give algorithms to compute the cofinalities of all
cardinals below ℵε0 and the Kleinberg sequences derived from the normal ultrafilters
on the odd projective ordinals.
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6.1. Computation of regular cardinals. As a first step in the computation of
the regular cardinals, we shall give an algorithm that identifies special variables in
the set V of generators. We call these variables normal, as they will be the ones
that are assigned normal measures by our recursive assignment.

We say that V0 and V1 are normal. In each of the iteration steps from A2+en

to Aen+1 , we identify the folowing new variables as normal: for ξ = 2 + en + η for
some η < en+1, the variable Vξ is normal if and only if η = o(v) for some normal
v ∈ A2+en

.

By Proposition 5, for infinite ordinals ξ, the function o is just ξ 7→ ωωξ

, therefore,
we can easily compute the indices of the normal variables by the following algorithm:
write down the 2n+1 normal variables for Aen

, write down the values of o for these
variables underneath the variables, then compute the indices of the 2n+1 new normal
variables as en+1 + o(v) for the values of o in your list. You can see the first three
steps of the algorithm in the following table:

A2 0 1
o 0 1

Aω 2 = 2 + 0 3 = 2 + 1
o ω ωω

Ae2 ω = ω + 0 ω + 1 ω · 2 = ω + ω ωω = ω + ωω

o e2 = ωωω

ωωω+1

ωωω·2

ωωωω

We shall prove inductively in a series of lemmas that the normal variables give
rise to normal measures, first lifting a normal measure on % < κ to C%

κ by the
operation wlift (Lemma 13) and then lifting the (semi-)normal measure on κ to a
normal measure by the operation slift (Lemma 15):

Lemma 13. Let κ be a strong partition cardinal closed under ultrapowers. If µ is
a normal measure on % < κ, then wliftκ(µ) is a normal measure.

Proof. Recall that wliftκ(µ) is the measure on κ defined by: A has measure one if
and only if there is a club set C ⊆ κ such that for all f : % → C of continuous type,
we have that [f ]µ ∈ A.

For any f of this type, if sup(f) is closed under ultrapowers then [f ]µ = sup(f)
by normality of µ. Also, for any club set C ⊆ κ and any limit point α of C of
cofinality %, there is an f : % → C of this type with sup(f) = α.

Thus, A has measure one if and only if there is a club set C ⊆ κ such that all
α ∈ C of cofinality % are in A. It is well-known that the weak partition relation on
κ implies that this describes a normal measure, that is, wliftκ(µ) is the %-cofinal
normal measure on κ. �

Lemma 14. Let ν be any semi-normal measure on the strong partition cardinal κ
(i.e., one that contains all club subsets of κ). If f , g : κ → κ are of the correct type
with [f ]ν < [g]ν , then there are f ′, g′ of the correct type with [f ′]ν = [f ]ν , [g′]ν =
[g]ν , and f ′(α) < g′(α) < f ′(α + 1) for all α < κ. Furthermore, ran(f ′) ⊆ ran(f)
and ran(g′) ⊆ ran(g).

Proof. Define f ′, g′ recursively by letting f ′(α) be the least element in the range of
f greater than supβ<α g′(β). Let g′(α) be the least element in the range of g which
is greater than f ′(α). Clearly there is a club set C ⊆ κ (the points closed under
g′) on which f ′ = f . Since ν is semi-normal, [f ′]ν = [f ]ν . If A is the ν measure



12 STEVE JACKSON AND BENEDIKT LÖWE

one set on which g(α) > f(α), then for α ∈ C ∩ A we have g′(α) = g(α). Thus,
[g]ν = [g′]ν by semi-normality. �

Lemma 15. Let ν be any semi-normal measure on the strong partition cardinal
κ. Then µ := slift(ν) is a normal measure.

Proof. Let ϑ = κκ/ν, so µ is a measure on ϑ. Fix F : ϑ → ϑ which is pressing
down.

Consider first the partition P1 where we partition pairs of functions 〈f, g〉 where
f, g : κ → κ are of the correct type and f(α) < g(α) < f(α + 1) for all α < κ
according to whether [f ]ν > F ([g]ν). We claim that on the homogeneous side thew
stated property holds. Towards a contradiction, suppose C is club and homogeneous
for the contrary side.

Fix g : κ → C ′ of the correct type, where C ′ is the set of closure points of C
(i.e., the α ∈ C such that α is the αth element of C). Since F ([g]ν) < [g]ν , we
may get f : κ → C with F ([g]ν) < [f ]ν < [g]ν . Let f ′, g′ be obtained from Lemma
14. Then f ′, g′ are of the correct type, ordered as in P1, and have range in C, but
[f ′]ν = [f ]ν > F ([g]ν) = F ([g′]ν), a contradiction to the definition of C. Let now
C1 be club and homogeneous for the stated side of the partition. Fix f : κ → C1 of
the correct type and let δ = [f ]ν .

Then for any g : κ → C1 of the correct type with [g]ν > δ we have F ([g]ν) < δ.
This follows from the definition of C1 and Lemma 14. This shows µ is weakly
normal, that is, any pressing down function is bounded on a measure one set.

Consider next the partition P2 where we partition pairs 〈f, g〉 of the same type
as in P1 but now partitioned according to whether F ([f ]ν) ≤ F ([g]ν). We claim
that on the homogeneous side the stated property holds. Suppose not and let C be
homogeneous for the contrary side.

We can easily construct functions fi : κ → C of the correct type such that
fi(α) < fi+1(α) and fi(α) < f0(α + 1) for all i ∈ ω and α < κ. But then
F ([f0]ν) > F ([f1]ν) > . . . , a contradiction. Fix a club set C2 ⊆ κ homogeneous for
the stated side of P2.

Consider a third partition P3 where we partition pairs 〈f, g〉 of the same type
again according to whether F ([f ]ν) = F ([g]ν). If there is a club set C ⊆ κ homo-
geneous for the stated side of P3, then we are done since Lemma 14 implies that
for any f, g : κ → C of the correct type we have F ([f ]ν) = F ([g]ν).

Suppose C3 is homogeneous for the contrary side of P3. Let C = C1∩C2∩C3. Fix
f : κ → κ with [f ]ν > δ. Let h : {(α, β) : α < f(β)} → C be of uniform cofinality ω,
discontinuous, and order-preserving with respect to reverse lexicographic ordering.
Define a map π : [f ]ν → δ as follows. Let γ = [g]ν < [f ]ν . Let π(γ) = [g′]ν , where
g′(β) = h(g(β), β) if g(β) < f(β), and = h(0, β) otherwise. It is now easy to check
that π is a well-defined, order-preserving map from [f ]ν into δ, a contradiction since
[f ]ν > δ. �

Theorem 16. The measure assignment from § 5 assigns normal measures to all

normal variables. Consequently, δ
1
2n+1

δ
1
2n+1/wliftδ1

2n+1
(v) is a regular cardinals for

all normal variables v.

Proof. The first part of the claim follows immediately by induction from Lemmas 13
and 15. The second part follows from the fact that if there is a normal measure on
λ, then λ must be regular. �
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ℵ0 δ
1
1 = ℵ1 δ

1
2 = ℵ2 δ

1
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δ
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Figure 4. The first 32 regular cardinals.

Assuming that the measure assignment is canonical, we can now compute these
regular cardinals easily from the table given above by looking at the row containing
the o-values.

In the table in Figure 4, we list the first 32 of such cardinals (up to δ
1
9). Note

that at the point we have not yet proved that these are all the regular cardinals.
This will follow from the next algorithm.

6.2. Computation of the Cofinalities. In § 6.1, we singled out special variables
in our algebra and proved in Theorem 16 that each of these gives rise to a regular
ultrapower. In this section, we shall now reduce the computation of all cofinalities
to the cofinalities associated to the normal variables. This argument will be done
inductively based on the following elementary yet powerful result:

Lemma 17. Let µ be a measure on % with cf(%) = δ. Let κ be a weak parti-
tion cardinal closed under ultrapowers such that % < κ. Then there is a cofinal
embedding from κκ/Cδ

κ into κκ/wliftκ(µ).

Proof. For F : κ → κ, let π(F ) = G be defined as follows: for α < κ represented by
g : % → κ of continuous type, let G([g]µ) = F (sup(g)). This is well-defined since if
[g1]µ = [g2]µ and g1, g2 are both increasing, then sup(g1) = sup(g2) (since any µ
measure one set is cofinal in %).

Suppose [F1]Cδ
κ

= [F2]Cδ
κ
. Let C ⊆ κ be a club set such that for all α ∈ C of

cofinality δ we have F1(α) = F2(α). Then for any β < κ represented by a g : % → C
of continuous type we have G1(β) = F1(sup(g)) = F2(sup(g)) = G2(β) whence
[G1]wliftκ(µ) = [G2]wliftκ(µ). Thus, π gives a well-defined map from κκ/Cδ

κ into
κκ/wliftκ(µ).

To see this is cofinal, let G : κ → κ. For α < κ of cofinality δ, define F (α) =
sup{G([g]µ) ; sup(g) = α}, where the supremum ranges over g of continuous type.
This is well-defined as κ is regular and closed under ultrapowers.

Then π([F ]Cδ
κ
) > [G]wliftκ(µ) since for all g : % → κ of continuous type we have

π(F )([g]µ) = F (sup(g)) = sup{G([g′]µ) : sup(g′) = sup(g)} ≥ G([g]µ). �

As an immediate consequence, we can reduce the computation of the cofinality of
κκ/wliftκ(x) for an arbitrary term x ∈ Aε0 to the cofinalities of the basic variables:

Corollary 18. Let x ∈ Aε0 be a term with trailing node v such that `x(v) = v. If

o(x) < en+1, write κ := δ
1
2n+1 and λ := κκ/wliftκ(v). Then

cf(κκ/wliftδ1
2n+1

(x)) = cf(λ).
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Proof. This is immediate from Lemma 17 keeping in mind that cf(ot(x)) = cf(ot(v)).
�

We shall now recursively define a function nor: V → V assigning normal vari-
ables to arbitrary generators in the algebra. Our recursion will go along the tower
of algebras A2+en

as the definition of the measure assignment in § 5.
In A2, all basic variables are normal, so the function nor can just be the identity.

Suppose that we have defined the function nor on A2+en
and want to extend it to

Aen+1 . Each of the generators Vα of Aen+1 was either already in A2+en
or is of the

form V2+en+ξ for some ξ < ht(A2+en
). By the recursive measure assignment from

§ 5, this variable Vα = V2+en+ξ is linked to terms x ∈ A2+en
such that o(x) = ξ.

Let x be such a term with representing tree 〈Tx, `x〉 and trailing node v ∈ Tx. Then
`x(v) is a generator of A2+en

.
We can now define

nor(Vα) := V2+en+o(nor(`x(v))).

Theorem 19. For each generator v of Aε0 and every odd projective ordinal κ =

δ
1
2n+1 such that ot(v) < κ, we have that

cf(κκ/wliftκ(v)) = cf(κκ/wliftκ(nor(v))).

Proof. The claim is proved by induction on n. Recall that the generators v with
ot(v) < δ

1
2n+1 are precisely those in A2+en

. The case n = 0 is trivial as nor is the
identity on the generators in A2 (i.e., V0, V1). Assume the theorem holds for n,

that is for δ
1
2n+1 and A2+en

, and we show it holds for n + 1, that is, for δ
1
2n+3 and

Aen+1 .
Let v be a generator in Aen+1 , so v = V2+en+ξ for some ξ < en+1 = ht(A2+en

).
Fix x ∈ A2+en

such that o(x) = ξ, let v be the trailing term of 〈Tx, `x〉, and
v∗ := `x(v). By definition of nor, we have nor(v) = V2+en+o(nor(v∗)). Let λ := δ

1
2n+1.

By Corollary 18 and the induction hypothesis, we have that

cf(λλ/wliftλ(x)) = cf(λλ/wliftλ(v∗)).

But λλ/wliftλ(x) = ot(v) and λλ/wliftλ(v∗) = ot(nor(v)). Now we can apply

Lemma 17 (with the κ there being δ
1
2n+3) to finish the claim. �

Using Corollary 18 and Theorem 19, we can now describe the algorithm to
compute the value of cofκ(x) := cf(κκ/wliftκ(x)) recursively for arbitrary x. Sup-
pose that we have already computed cofκ�A2+en

for all odd projective ordinals

κ ≥ δ
1
2n+1. We shall give an algorithm to compute cofκ�Aen+1 for all κ ≥ δ

1
2n+3.

Algorithm.

Given a term x ∈ Aen+1 , ask whether x ∈ A2+en
or not.

Case 1. x ∈ A2+en
.

Then cofκ(x) has already been determined.

Case 2. x /∈ A2+en
.

Find the trailing term v of 〈Tx, `x〉.
Set v := `x(v).
Compute nor(v).
Then cofκ(x) = κκ/nor(v).
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Corollary 20. The algorithm described above correctly computes the cofinality of
κκ/wliftκ(x).

Proof. Obvious from Corollary 18 and Theorem 19. �

Let us apply the algorithm to the examples of non-normal variables given in
Figure 5: V4, Vω+2, Vω2 and V

ωω2 .

• The variable V4 = V2+2 is highlifted from V1 ⊕ V1 (using δ
1
1). Obviously,

V1 is the trailing term of V1 ⊕ V1, and hence, nor(V4) := V2+o(V1) = V3.
Therefore,

cofκ(V4) := κκ/wliftκ(V3).

• The variable Vω+2 is highlifted from V1⊕V1 (to δ
1
3). By the same argument,

nor(Vω+2) = Vω+1. Thus,

cofκ(Vω+2) := κκ/wliftκ(Vω+1).

• The variable Vω2 is highlifted from V2 ⊗ V2 (to δ
1
3) whose trailing term is

V2. Therefore, nor(Vω2 ) is the high lift of V2 which is Vω·2. Thus,

cofκ(Vω2) := κκ/wliftκ(Vω·2).

• Finally, the variable V
ωω2 is highlifted from V4. We already computed

nor(V4) earlier to be V3, so nor(V
ωω2 ) is the high lift of V3 which is Vωω ,

and hence
cofκ(V

ωω2 ) := κκ/wliftκ(Vωω ).

Corollary 20 and the canonicity assumption give an algorithm for computing the
cofinality of any successor cardinal ℵα+1 for α < ε0. Namely, first find the n such
that en ≤ α < en+1. Let α′ be such that α = en + α′. Let x ∈ Aen

be a term

with o(x) = α′. Let v = nor(x). Then cf(ℵα+1) = (δ1
2n−1)

δ
1
2n−1/wliftδ1

2n−1
(v) =

ℵen+o(v)+1.
To illustrate the algorithm, let us compute the cofinality of κ = ℵα+1 where

α = ωω(ωω2
+ωω·2+3)

(so δ
1
5 < κ < δ

1
7). Clearly, e2 < α < e3, and α′ = α in

the notation of the previous paragraph. The term x ∈ Ae2 with o(x) = α′ is the

generator Vβ , with β = ωω2

+ ωω·2+3. We next compute nor(Vβ). The variable Vβ

corresponds to the high lift of the term y = V4 ⊕ (V3 ⊗ V3 ⊗ V2 ⊗ V2 ⊗ V2) ∈ Ae1 .
The trailing variable is V2, which is normal. Thus, nor(Vβ) = highlift(V2) = Vω·2.

So, cf(κ) = δ
1
5

δ
1
5/wliftδ1

5
(Vω·2) = ℵωωω +o(Vω·2)+1, whence

cf
(

ℵ
ωω(ωω2

+ωω·2+3)
+1

)

= ℵ
ωωω·2+1.

6.3. Computation of the Kleinberg sequences. Under the canonicity assump-
tion, the Kleinberg sequences can now be easily read off.

Lemma 21. If wliftκ(v) = Cλ
κ is a normal ultrafilter on κ := δ

1
2n+1, then the

Kleinberg sequence on κ derived from Cλ
κ is given by

κ
C

λ
κ

n := κκ/wliftκ(v ⊗ n).

Proof. Taking iterated ultrapowers as in the definition of the Kleinberg sequence
corresponds to taking iterated sums: it is true in general that the n-fold sum
ultrapower embeds into the n-fold iterated ultrapower (a proof can be found as
[BoLö∞, Proposition 13]). The upper bound for the iterated ultrapower comes from
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the Ultrapower Shifting Lemma [Lö02, Lemma 2.7] and the canonicity conjecture.
�

By Corollary 20, we know that the normal measures are all generated by normal
variables, and by § 6.1, we have a simple algorithm to compute the o-values of the
normal variables. Therefore, we can read off the values of the Kleinberg sequences
as o(v) · n for a normal variable v. As an example, we can read off the Kleinberg

sequences on δ
1
5 as follows (for n ≥ 1): ℵωωω+n+1, ℵωωω+ω·n+1, ℵωωω+ωω·n+1,

ℵωωω
·n+1, ℵωωω+1

·n+1, ℵωωω·2
·n+1, and ℵ

ωωωω
·n+1

.

7. Appendix

In this appendix, we give a table (Figure 5) of all of the relevant values for
our measure assignment described in § 5. In this table, we give the terms and
their values of o, ot and germ. In the next row, we list the value of wliftκ(x)
for some κ = δ

1
2n+1 where o(x) < en+1 (inductively, the order types of terms x

with o(x) < en+1 will be < δ
1
2n+1, so we can lift their germs to that cardinal).

These first four rows of values can be computed independently of the canonicity
conjecture. The following row gives the value of κκ/wliftκ(x) for κ = δ

1
2n+1 where

o(x) < en+1 under the assumption of the canonicity conjecture. The last row lists
whether the term is a normal variable or not. For the non-normal measures, we
use the S-notation for the families of measures introduced in [Ja88, p. 119] (the

S̃`,m
n measure are defined as the S`,m

n measures of [Ja88] except we use function of
continuous type instead of correct type).

The table comes in two systems: the first system lists terms from Aω, the second
system lists terms from Ae2 . The two systems are linked by the operation of high
lift: the columns in the second system correspond to those variables whose values
for germ and ot are the high lifts of the terms in Aω in the same column of the
first system.

It is clear from the construction that all terms come with information about
their stage of construction. In addition, there is some descriptive set theoretic
information hidden in the recursive construction that we would like to point the
reader’s attention to. In constructing the measure assignment of § 5, we assign the
germs to the new variables in Aen+1 based on the measures on terms in A2+en

.
One of these is slightly special: the germ assigned to V2+en

itself comes from the
special variable V0 and thus is not really high lifted, but rather lifted only once.
We shall say that this variable is of level 2n + 1. All of the other newly created
variables are of level 2n + 2. This defines a notion of level for all generators of Aε0

except for V0 and V1. For example V2 is of level 1, Vα, 2 < α < ω are of level 2,
Vω is of level 3, Vα, ω = e1 < α < e2 = ωωω

are of level 4, Vωωω is of level 5, etc.

This notion of level is connected to descriptive set theory in the following sense:
the germs associated to variables of level n are typical measures occurring in the
homogeneous tree construction for the complete Π1

n set.
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