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Abstract We prove new Lindstrom theoremsfor the basic modal propositionallan-
guage, and for the guarded fragment of first-otdgic. We find difficulties with such
results for modal languages without a finite-depth propérgh-lighting the difference
between abstract model theory for fragments and for extensions of first-order logic.

1 Whatis modal logic?

| would broadly endorsethe 'minimal designview' in van Benthem 1996, Andréka,

van Benthem& Németi1998, Blackburn,de Rijke & Venema2000, which saysthat
modal languagesare well-balanced fragmentsof classical ones combining good
expressivgpower with reasonablecomputationalcomplexity for model checkingand
satisfiability. Butone canalsotry to understandvhat makesmodallogic tick in other
ways. One obvious alternative formsaitthat of a Lindstromtheorem Indeed,de Rijke

1993 contains one such result — and we sketch its modern proof as our starting point.

2 A first modal Lindstrom theorem

Blackburn, de Rijke & Venema2000 define an 'abstractmodal language'as a
formalism satisfying the usual base constraints from abstradeltheory (Barwise&
Fefermangds.,1985), plus the modal characteristiof bisimulationinvariance for all
formulas. They then high-light the following semanticproperty, saying that modal
formulas only look at models up to some finite depth:

Finite Depth Property
For any formulap, there is a natural numblesuch that, for all models,

M, w) |=¢ iff (M]k, w)|=¢,

whereM|k is the modeM with its domain restricted to just those
points that can be reached frenin k or fewer successive-steps.

Then we have the followingnaximality version'of a modal Lindstrom result, valid for
abstract modal languagesvith a finite vocabulary:

Theorem 1 Any abstract modal language extending the basic modal one
which has the Finite Depth Property is the basic modal language itself.

The proof of this result revolves around the following fact.



Lemma 1l If anL-formula¢ has the Finite Depth Property for distakce
theng is preserved under modal equivalence up to operator klepth

Proof Suppose that two moddld, w), (N, v) agree on moddbrmulasup to depthk,
while (M, w) |= ¢. By a standardtechnique,then, both models have bisimilar tree
unravelingsTreeM, w), TreelN, v). Moreover,sincethesetree modelshavethe same
modal theory up talepthk in their roots, thereexistsan obvious'cut-off' bisimulation
betweenthem up to the first k tree levels. But this cut-off bisimulation is a full
bisimulation between the 'cut-off modélseeM, w)|k and Tree(N, v)|k By the Finite
Depth Property plus invariance for bisimulation, we havegthalds, successively, in

(M, w), Tree, w), (Tree, w)|k, w), (Tredy, v)|k v), and(N, v). )
The proof of Theorem 1 is then is clinched by a further well-known observation:

Lemma 2 If anL-formulagis preserved under modal equivalence up to some
finite operator deptk, it is definable by a modal formula of operator ddpth

Proof Recallthatthis fragmentof the modalbaselanguages logically finite, as the
vocabularyof our abstractlanguagel is finite. Thus, in particular, any classK of
pointedmodelsclosedundermodal k-equivalenceas definedby the disjunction of all
complete modal deptk-theories satisfied iK. And this is a basic modal formula.&

Theorem1, though informative, is not entirely satisfactory.lt does not look like a
standardLindstrom resultin abstractmodel theory, and the Finite Depth Property
seems somewhat ad-hoc, and 'engineered’ to capture thenbdsidanguageln order
to improve on this, let us first consider a more standard model-theoretic proof.

3 The classical Lindstrém theorem for first-order logic

The original Lindstrém Theorem capturedfirst-order logic (FOL) as the strongest
extension oFOL satisfyingthe abstractversionof the Compactnesand Léwenheim-
Skolem properties. Perhaps the most illuminatir@pernversion,however,high-lights
a basicmodel-existenceroperty (Compactness)f FOL with an equally basicone of

semantic invariance (often called the 'Karp Property'):

Theorem 2An abstract logit. extending first-order logic coincides wiEOL iff
(@  all formulas ofL are invariant for potential isomorphism,
(b) L has the Compactness property.

Here a 'potentialisomorphism’is a non-emptyfamily of finite partial isomorphisms
closedunderthe usual Back and Forth extensionproperties.Note that the crucial
invariancepropertyis not madepart of the definition of abstractogics: theseare just
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requiredto satisfy invariancefor isomorphism.The version with Compactnessand
Léwenheim-Skolenfollows from isomorphisminvariancefor abstractogics, plus the
fact that potential isomorphisms between countable models are true isomorphisms.

The samestyle of thinking hasprovenits mettlefor extendedabstractogics, suchas
the infinitary language”,, where the Barwise Characterization Theoreasthe Karp
property (a) plus projective undefinability of well-ordering insteaompactnesgb).
This result also leaves something to be desired, but for that, cf. Section 8 below.

4 Problems with lifting standard proofs to first-order fragments

But what about,not extensionsof first-order logic, but modal fragment8 It is well-
known that proofs of standard results may fail wherewtendthe first-orderlanguage

to higher-order versions. But such proofs may alsofaénwe restrict FOL, because
we have lost essential expressive resources. Let us inspect the proof of Theorem 2:

Proof Take any formula ¢ of the abstractlogic L. To seethat ¢ is first-order, it

sufficesto showthat ¢ is preservedy elementaryequivalencaup to some quantifier
depthk in the appropriate finite similarity type. So, suppose it isdee new predicate
lettersA, B (unary) and a countablefamily of 2k+1-ary | to encodepartial isomor-
phisms. Then, for each natural numkewe can find models of the following form:

(a) anA-part wherep holds, (b) 8B-part where its negationgholds, and
(c) a chain of partial isomorphisms up to ddpbetween thé\- andB-parts.

All this canbe describedn first-orderterms,where we use a linear ordering< (one
more new predicate letter) over the distinguished argument bptleelicatedo encode
the existenceof the finite chain. Then, by the existenceof all finite k-situationsas
described, Compactness gives us a model containing 'infinite objettts'ordering<.
Using the latter asindicesgives an infinite descendinghain of partial isomorphisms
betweena model A for ¢ and B for —¢. The union of all stagesin that chainis a
potential isomorphism between tiie andB-models,with unrestrictedBack and Forth
clauses — and this contradicts the given invariance for potential isomorphismsa

Lifting this type of argument to fragmentsF®L runsinto their expressivaveakness
Standardproofs in abstractmodel theory rely throughouton coding up relevant
properties in first-order formulas. This feature is often taken for granted, as itfaorks
the usualricher languageshan FOL. But this ‘facility' may fail for poorerlanguages.
The latter ‘downward'direction has beenstudied much less: Garcia-Matos2005 on
negation-freeabstractmodeltheoryis one noteworthyexceptiorn— andso is ten Cate
2005 on extended modal languages in between the basic modal langue@¢.and



In particular,in the aboveproof, the encodingof potentialisomorphismwould now
haveto refer to bisimulations.And the latter still havea characteristiczigzag property
which is first-order, but typically non-modal. Indeed, it defiaégrid structurerelated
to tiling arguments for undecidability (van Benthem & Blackburn 2005).

5 A true Lindstrom theorem for basic modal logic
Still, there is an easy way aroutids particularproblemfor the basicmodallanguage.
The main point of this note is to give a standard modal Lindstrém theorem after all!

For this purposewe first define an abstractmodallogic L in the obviousway, with
truth referring to pointed modgs1, w). But we add a base condition of

Relativization

For anyL-formula¢ and new unary proposition letigrthere exists ab-
formulaRel@@, p) which is true at a mod@M, w)iff ¢is true atM|p, wy.
the submodel a1 with just the points itM satisfyingp for its domain.

Most usablelogics satisfy Relativization,and indeed,it was presupposeth the above
proof for FOL. Next, we do not build in invariancefor bisimulationfrom the start,
making it an explicit additional requirement instead, as in the ehrfieorderanalysis.
For convenienceywe take a vocabularywith one accessibilityrelation R and countably
many propositionletters;but our argumentalsoworks for larger poly-modal vocabu-
laries. Each.-formula only involves a finite part of the vocabulary, in the usual way.

Now we state our first main result;

Theorem 3 An abstract modal logic extending the basic modal language equals
the latter iffL satisfies (a) Invariance for Bisimulation, and (b) Compactness.

Proof The directionfrom left to right is obvious. Next, assumethat L has the stated
properties, and consider afgrmula ¢ in it. As before(Lemma?2), it sufficesto show
thatgis preserved under modal equivalence up to some finite operatokdAptithis
will follow from the Finite Depth Property,aswe haveseenin Lemmal. Now, all we
do is note that Relativization, Compactness, and Bisimulation Invariance do the trick.

Lemma 3 In acompact abstract modal logievhich is invariant for bisimulation,
any formula has the Finite Depth Property.

Proof Let ¢ be any formula il.. Suppose, for the sake of reductioadasurdumthat it
lacksthe Finite Depth Property.Thenfor any naturalnumberk, there existsa model
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(M,, w) and a cut-off versiofM, |k, w) which disagree on the truth valoé ¢. Without
loss of generality, assume that the following happens for arbitrarilykarge

(M,Jk, w) =, while (M, W)= ~¢.

Here we use the fact that abstract modal logicslasedundernegationsNow, takea
new proposition lettgp, and consider the following sEtof L-formulas:

-¢, Rel@, p), {[]"p | all natural numbers}.

Given our assumptionsthis setis clearly finitely satisfiable:we choosek sufficiently
large, and makp true inthe k-reachablepart of one of the abovesequencef models.
But then, by Compactness for our abstract modal logiceremustbe a model (N, V)
for the whole set at once. But this leads to a contradiction:

We focus on the generatedsubmodel(N,, v) consistingof v and all points finitely
reachable from it. Clearly, the identity is a bisimulati@tweenany pointedmodeland
its unique generatedsubmodel.Hence by the assumedinvariancefor bisimulation,
formulas of L have the sametruth value in any pointed model and its generated
submodelNow, giventhe first formulain X, —¢ holdsin (N, v) and hencealsoin
(N,, v) (i). On the otherhand,since(N, v) |= Rel@, p), we have(N|p, v)|= ¢. But by
the truth of the infinitehird setof formulas,p holdsin the whole generatedsubmodel
(N,, V). Therefore, it issasyto seethat the generatedsubmodelof (N|p, v) is alsojust
(N,, v), and so we have thatholds in(N,, v) (ii). This is a contradiction. &

This completes the proof of our new Lindstrom theorem for basic modal logic.

6 A challenge: analyzing the Guarded Fragment

Here isan obvioustestcasefor the generalizabilityof the precedingstyle of analysis.
The Guarded Fragment GF is an expressivegeneralizationof the basic modal
language allowing for arbitrary first-order quantifications of the form

Fy (G, y) & ¢(x,Y)),

wherex, y are tuples of variables,while the 'guard’'G is an atomicpredicatewith its
variablesoccurringin any order and multiplicity. Andréka,van Benthem& Németi
1998 show thaBF is decidable, while it has many 'modakta-propertieshanksto its
invariance for 'guarded bisimulation'. Van Benthem 2005 has further issues and results.

Becauseof its modal character,GF seemsan obvious casefor a Lindstrom-style
analysislike the onewe havegivenfor the basicmodallanguageBut there are some
technical difficulties, to be explained below. Therefore, we focus on one special case.
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In this section,we look only at the specialcaseof a vocabularywith at most binary
predicates. ThBinary Guarded Fragmen{GF,,) has the following syntax rules

atoms R |~ | v | Fy (G(x, y) &¢(x, y))

Here, bold-face indicate finite tuples of variables, a@ds abinary predicateetter. In
writing atoms, wedo not careaboutthe order of the variables.This language extends
basicmodal andtemporallogic in an obvioussenseAlso, GF,,, is easily seento lie
inside thewo-variable fragmenEO2 of first-order logic. We will prove this result:

Theorem 4 An abstract logidt. extending the Binary Guarded Fragment equals
GF,,, iff L has (a) Invariance for Guarded Bisimulation, and (b) Compactness.

Before proving this, we start with some modal features that hot@Ran general.

First, thereis a naturalsyntacticnotion of formula depth— whoseinductive definition
counts the above polyadic quantifiers as single steps:

depth(R) = 0, depth (%) = depth@), depthévy) = maximum
(depth ¢), depth §)), depth@y(G(x,y) & ¢(x, y))) = depth¢)+1

Next, we definalistancefor points in modelgM, s), wheres s a tuple of worlds:

dist(s, s, O)for all 5 € s, dist(s, t, n+1)if there is au with dist(s, u, n)
andG(t, u,v) holds for some atomic predicaeand tuple of objecta

We write Cut((M, s), n) for the submodelt € (M, s) | dist(s, t, n)} consistingof all
pointst in M lying at distanceat mostn from s. The following resultshowsthat GF,
like the basic modal language, satisfi¢ésrate Depth Property- suitably defined:

Distance-Depth Lemmalet ¢ be any guarded formula of depthand let
(N, s) be any submodel @M, s) containing all ofCut((M, s), n).
Then(M, s) |= ¢ iff (N, s) |= ¢.

Next comesa generalizatiorof modalbisimulation.A guardedbisimulationis a non-
emptysetF of finite partial isomorphismsetweenwo modelsM and N which has
the following back-and-forthconditions.Call a set of objects'guardedif sometuple
with these objects stands in some atomic relation. Now, given any fuhitielY in F,

() for any guardedZcM, there is ggeF with domainZ
such thag andf agree on the intersectiofZ,

(i) for any guardedV—N, there is ayeF with rangew
such that the inversgs! andf-1 agree oY \W.



Also, 'rooted' guarded bisimulatioRsrun between mode(#/, s) and(N, t) with given
initial objects,where one requiresthat some match betweens, t is already a patrtial
isomorphism in the sét. By a simple inductive argument,

GF-formulasg are invariant for rooted guarded bisimulations.

Andréka,van Benthem& Németi1998 show that GF consists,up to logical equiva-
lence, of just those first-order formulas which are invariant for guarded bisimulations.

Another'modal'useof guardedbisimulationin the samepaperis model unraveling.
This is like standard modal unraveling, but the construction is a bit more delicate:

Definition  Thetree unravelingUnr(M) of M hasfor its objectsall pairs(z, d) —

where the 'patht is a finite sequence of guarded setslirand theM—objectd is 'new'
in . i.e., it occurs in the final set afbut not in the one beforethat. The interpretation
of predicatesymbolsQ on theseobjects(x, d) is as follows. I(Q) holds for a finite

sequence of objecty 7, d)> 1<k iff QM<d;> 1<k and thereis somemaximalpath
7 among those listed of which all othwgrare initial segmentsn sucha way that their
new objectsd; remain present ieachsetuntil the endof z*. For a model (M, ) this

generalizes as followsInr(M, s) has pathg all starting from thenitial sets, but then
continuing with guarded sets only. The objéatsd) are defined as before.

The point here is that the $ebf all restrictions of the finite maps sendiag d) to di
for all guardedfinite domainsin Unr(M, s) is a rootedguardedbisimulationbetween
(M, s) and(Unr(M), s). Checking the zigzag conditions for thisimulationwill reveal
the reason for the above technical definition of the predicate interpretéfpns

Now we have thgeneralitiean placefor our Lindstrom Theorem — but it remainsto

make some adjustments. First, all these gel@&Ffahotionsand observationspecialize
to GF,;, in an obvious way, whickve do not botherto spell out. Lessgenerally,in the

definition of tree unravelings, we make one simple change for the binary case:

The finite paths of guarded sets always introduce one new object at each stage.
At each continuation, one chooses a new object related to that new object, etc.

This allows pathsstartingwith objecta andthencontinuingwith Rab, Qcb, ..., while

ruling out pathslike Rab,Qac. But the final atomis not omitted from the unraveled
model, since one can have pathsstartingwith a and then placing Qac immediately.
Thus, even witltheserestrictedpaths,we still havea guardedisimulation betweentree
unravelings and their original models. The real point of this adjustment is the following.
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The abovedefinition of atomicformulasfor path objectsnow makesbinary relations
hold only between objectéry, d1), (72, do) whererny is a one-stepcontinuationof the
pathzy, or vice versa. But then, counting distance as we did before,

The new object at the end of a path of lerkgth
lies at distanck from the initial object of the path.

Putin morevivid terms,'treedistanceis true distancein the original model. This is a
non-obvious fact. E.g., witternary guardsRayz objects at thend of a path may keep
links to the initial object which might recur in the guarded sets building the path.

Proofof Theorem4 As before,it sufficesto showthatan arbitraryformula¢in L is
invariant for models that are equivalent for@H,; -formulas up to some finite depth

First, largely as in the earlier modal proof of Section 5, we firsthes€ompactnessf
L, togetherwith its Relativizationclosure,to show that ¢ must have a Finite Distance
Propertyat somelevel n. Before, universalprefix formulas([] “p (for all finite k) made
sure thap holds in the generated submodel at the current world.tifesone usesall
nestedsequencesf universalguardedquantifiersup to depthk, requiring that some
new predicat® holds for all objects reachedthat end. The n thusfound for the local
depth of the formula is the sam@ as needed for the following semantic invariance:

Next, given the above unraveling construction Brvdriancefor GuardedBisimulation

for L, we may assume, without loss of generality, that we have the following situation:

(@  (Unr(M),s) |= &,
(b)  (Unr(M), s) is GF,;-n-equivalent tqunr(N), t)

Our aim is to show thgtnr(N), t) |= ¢.

Now, we cut the tree modelsto tree depthn, aswe did beforein our modalargument,
obtainingCut((Unr(M), s), n), Cut((Unr{N), t), n). Sincetree depthis true depth,this
does not change truth valuesgofn either model.

Next, we haveas usualthatthereis an n-tower of partial isomorphismsPI,, ..., P,

starting from the linls, t, which satisfies the guarded baahd forth properties Stagej

contains tuples (in fact, guarded pairs) of objects satisfying theGEgpdormulasup
to syntactic depth-j. The backandforth propertiesare provedby using,at stagej+1,

guardedexistentialquantifiersdescribingthe next object to be linked up to syntactic
level j. In particular, working in our tree models, we can make sure that
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(#) The finite partial isomorphisms at le\®j of the tower jkn) are
between guarded sets of two objects lying at distamées—k-1
from the root objects, which satisfy the same formulaSFf -k.

Now our crucial claim, as in the basic modal case, is that
The union of all setBl; is aGF,, -bisimulation.

The only thing to be checkedhere is thatthe partialisomoprhismsn P, still satisfy
the guarded bacindforth propertiesin the purely modal case this was becausesnd
points of thecut-off tree haveno successorsand hencethereis nothingto be proved.
In the presentcase points at distancen may have more significant relationshipswith

objects in the cut-off tree, but given our definitioratdmic predicatedor pathobjects,
these can only be of special forms. If the objacisin the guardedpair lie at distance
<n from a root object, we are done by (#). And if, saljgs at distanca from the root,

the only significant binary relationship ¢anhavein our cut-off tree modelis with its

companion object — which was unique, by our path constructiBat then,the current
partial isomorphisnitself proveides the required back-and-forth match.

Finally, by invarianceunderguardedbisimulations the truth of the given L-sentencep
is transferred fronCut((Unr(M), s), n)to Cut((Unr(N), t), n), and hence t(N, t).

This completes the proof of a Lindstrém Theorem for the Binary Guarded Fragiment.

Therearealso othergeneralization®f this tree unravelingand finite-depth argument.
E.g., let the 'rightward GuardedFragmentGF~ haveatomswith argumentsn left-to-
right order, while quantification does not let initial worlds return in the matrix formula:

Y (Gx, y & ¢(y)).

This language is close to so-called ‘polyadic modal languagessenanticnotions of
guarded bisimulation and tree unraveling specialiZ&Rd in an obvious manner.

Theorem 5 An abstract logit. extending the rightward Guarded Fragment equals
GF~ iff L has (a) Invariance for Guarded Bisimulation, and (b) Compactness.

Proof (sketch)One showsthat an arbitraryformula ¢ in L is invariant acrossmodels
which are equivalentfor all GF”-formulasup to somefinite depthn (*).To find this
numbern, onefirst usesthe Compactnessf L andits closureunderRelativizationto
show thatp has a Finite Distance Propertysatimelevel n. (Insteadof modalformulas
[ %p for all finite k, one now usesestedsequencesf universalguardedquantifiersup
to lengthk, requiring that some nepredicateP holdsfor all objectsthusreached.)lo
prove the semantic fact (*), we use invariance for rightvgarardedbisimulationfor L,
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and the matching tree unraveling. We start from{W{ay(M), s) |= ¢, (b) (Unr(M), s)
is GF~-n-equivalentto (unr(N), t), andshowthat (Unr(N), t) |= ¢ by essentiallythe
‘cut-off bisimulation' construction at levelused in the basic modal case. )

Lifting this style of argumentto the full GF raisescomplications.In patrticular, for
arbitrary guarded formulas, the above finite distance property does not coincideewith
natural'treedistancein models (Unr(M), s) measuredrom the root s — something
which would be needed to make our base argument go through. The rahageven

at greater'tree distance'in unraveled models, objects may still enter into atomic
relationshipswith the root s, and hencestay at distanceO from s accordingto our
definition. This fact becomegelevantas soon as we allow generalguardedquantifi-
cations?y (G(X, y) & ¢(x, y)) where the initiak can occur in the matrix formula.

Martin Otto (p.c.) has high-lighted this difficulty with a formula which has finite
distancel from the root s, and which is also invariant for guardedbisimulations,
without being definable iGF. Otto's formula says that

there exists a finite sequence of womds., y, such thaPy,, Qy, andRxyy,,,
for alli, 1<i<k. Clearly, this is not itGF, by a simple compactness argument.

We have somefurther ideashow to overcomethis, but nothing conclusiveas yet.
Indeed, could it be that the failure of Craig Interpolation for GF, discoveredby
Hoogland, Marx and Otto is relevant here, with a more sinister interpretation?

7 Connections with the modal invariance theorem
The modal Lindstrém theorem of Section 5 (let us cMILT for short) looks ait like
the much earlier modéhvariance TheoreniMIT) which says that,

Up to logical equivalence, the basic modal formulas are precisely
those first-order formulas which are invariant for bisimulation.

Indeed, one implication between the two results can be proved in general terms:
Theorem 6 MLT impliesMIT.

Proof Let ¢¢x) be any bisimulation-invariantfirst-order formula ¢ = ¢(x). Define an
abstract logid. by addingg to the basic modal language, and then closiiighe result
(in somesuitablesyntax)under(a) Booleanoperations(b) existentialmodalities<>,
and (c) an operationof relativizationin the inductive format Rel@, ) where, S are
alreadyformulas of the language.The semanticinterpretationof this languageon
models(M, s)is obvious. This language contains the basic miagigluageand also, it
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can be translated into a fragmeftfirst-logic. The latter featureimplies Compactness.
Next, we prove the following observation by inductiorLeiormulas:

Claim All L-formulas are invariant for bisimulation.

Proof The inductive cases except that for relativizationadngous, following the usual
proof of bisimulationinvariancefor modal formulas, plus the given invariancefor ¢.
Next consider a formulRel(, ), where we already assume invariancedpl. Let E
now be a bisimulation between two mod@ls s)and(N, t), while (M, s) |=Rel(, p).
By definition, we have tha(M|e, s) |=5. We observe that

The relatiorE|a consisting of all pairs i& which connecta-worlds inM
to a-worlds inN is itself a bisimulatiobetwee(M |, s) and(N|e«, t).

To check the zigzag clause here, supposéNhat) |= « andu E v, with (N, v) |= «.
Let Ruu'in M with (M, u’) |= &. SinceE is abisimulation,thereexistsa world v' in N
with Rvw'andu’Ev' But by the inductive hypothesithen, (N, v') |= «.. Thus,we have
shown the required zigzag property for the relaifm. We may thenconclude,again
by the inductive hypothesis, thélil|, t) |= f — and hence théN, t) |= Rel(x, p).

Thus,L satisfiesall conditionsof Theorem3, and hence,in particular,the L-formula
¢ must be equivalent to a modal formula. &

Incidentally, this also seems to be a new proof oMHE

It is unclear, however, MILT is implied by MIT. To getthis conversepne would first
have to show that any formujein the abstract logit is first-order,and thenapply the
MIT. But, eventhough bisimulation invarianceimplies invariancefor potential iso-
morphism first-ordernesgor ¢ doesnot follow obviously from the earlier Lindstréom
theorem folFOL. The difficulty is, againthat one cannotusethe full coding power of
first-order logic, as we only know thiatcontains the basic modal language.

Remark Evenso, the key propertyin the usualproofs of MIT looks 'Lindstrom-like'.
It saysthat any two models(M, s) and (N, t) which are modally equivalenthave
elementary equivalent modd€M™, s)and(N", t) with somebisimulationbetweenthem
connectingthe distinguishedworld s to t. Replacing elementaryextensionby L-
equivalence would do the trick here. We leave this line for further investigation.

8 Connections with interpolation
Our modal Lindstrém theoremis in the spirit of Barwise'swork on abstractmodel
theory of infinitary languages, in thétreplaceghe Léwenheim-Skolenpropertyused
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in the originalresultby a semantianvariancecondition. This reformulationalsohasa
disadvantage. The original Lindstrom conditions yieléthégrpolation theorem

Any abstract logit. containingFOL which has Compactness and Lowen-
heim-Skolem also satisfies 'first-order separation of projective classes'
if K, K" are two disjoinPC classes fok, then there exists a first-order
formulag with K < MOD(g) andK' - MOD(p) = &,

As it happensye canprovea similar resultin our modal setting:this time, relying on
the Finite Depth Property.We consideronly one of the possibleversionsof modal
interpolation hereyiz. with respecto sharedpropositionletters The standardversion
of modal interpolation in this setting reads as follows:

If ¢(p, ) [= yA(q, r), then there exists a formutgq) with ¢ |= axandeo |=

But the basic modal language has an even stronger version of this pfopértydoes
not hold, e.g., for first-order logic), calletiform interpolation

The modal interpolant(q) depends only on the antecedent
formulag(p, ) and the specified sublanguage

Theorem 7 Any abstract modal logic with Relativization which extends
the basic modal language, while also satisfying Compactness and
Bisimulation Invariance, satisfies Uniform Interpolation.

Proof Considerany L-formula ¢(p, ) with similarity type p, g. By the proof of
Theorem 3¢ is invariant forsomefinite successodepthk. Now, define Consg, g, k)
asthe disjunction of all completemodal theoriesin the languagewith g only up to
depthk of all modelsfor ¢(p, g). This canbe donewith onefinite formula, given the
logical finiteness of the basimodallanguageThis is the requireduniform interpolant
for the vocabularyg. To seethis, let ¢(p, q) |= y(q, r) — meaningthat this implication
holds in models whose interpreted proposition letters include those mentioned.

Claim Consg, g, k) |[= ¥Aq, r).

Let (M, s) |=Consg, p, k) whereM interpretsy, r. By the definition of Consg, p, k),
there is somenodel (N, t) |= ¢ interpretingp, g, whosemodaltheoryfor p-formulas
up to depthk equalsthat of (M, s). Now we unravelboth modelsto bisimilar trees
TreeM, s)andTree (N, t), wherethe bisimulationsrefer to the appropriatesimilarity
types, withg, r andp, g, respectively. These trees still have saenemodal g-theory up
to depthk in their roots, and hence there is an obvieatep descendingisimulationE
(w.r.t. the modalanguageof g) betweentheir rootss andt. Now cut off both treesat
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depthk: the resultis a genuinebisimulationE betweenthe cut-off trees,while ¢ still
holds in(Cut(Treel, t)), k), t)by the finite depth property &ffor the formulap:

M, s g, k-equivalent N, t|=¢
bisimulationg, r bisimulationp, q
Tree M, s), s g, k-equivalent Tree (N, t), t|=¢

Cut(Tree M, s), k), s g-bisimulationE Cut(Tree N, t), k), t|=¢

The essential proof step is as follows. GHasimulationE betweerthe cut-off treesis
not by itself a p, g-bisimulation,sinceit only respectpropositionlettersin g. E.g., on
the left handside, theremay be onetree successoat a node,while the matchingnode
underE on theright hastwo successorsone with p and one with —p. But, we can
improveE to a bisimulation for the whole language wgilg betweenexpandednodels
by a familiar modal techniqueof expandingmodelsto bisimilar ones by copying
successor nodes (there are various technical ways of doing this):

We multiply nodes irCut(Tree M, s), k)until each node has enough
successors to copy tpepropositions from nodes @ut(Tree YN, t), k).

In doing so, we adapt the bisimulatiéim the obvious way, while also
keeping track of the copy relation on the left. In this way, we get a tree
model(K, s)which is (a)p, g—bisimilar toCut(Tree N, t), k), t,and

also (b)q, r-bisimilar toCut(Tree M, s), k), s.

Here we can assume that the {{i€es) has branch depth atostk. Next. we canmake
this treefully g, r-bisimilar to TreeM, s) by suitably extendingit at levels beyondk.
In particular,at eachendnodex of (K, s), correspondingo somenodey at level k in
TreeM, s) by the bisimulationof clause(b) above,placea copy of the subtreeof
TreeM, 9 starting ay. Call this extended tree mod&!’, s).

Now we analyze transfer dfformulas in this setting. First, sin€aut(Tree(N, t), k), t
|= ¢, we alsohave(K, s) |= ¢, by theinvarianceof all L-formulasfor bisimulationin
their similarity type. Moreover,by the k-depthpropertyof ¢, we still havethat (K", s)
|= ¢. Next, by the original assumption thigp, q) |= ¥Aq, r), we have thafK*, s) |= v
Then,composingthe g, r-bisimulationbetween(K*, s) andthe model Tree (M, s), s,
and the further unraveling, r-bisimulationfrom thatto the original model (M, s), we
have tha{M, s) |= w— again by the invariance bfformulas under bisimulation. &

MLT obviously follows from this for languages which are closed under negations.
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The aboveproof really distinguishedbetweendifferent vocabularytypesfor formulas,
and demandgheir invarianceonly for bisimulationswith respectto that vocabulary.
It should be obvious how the preceding text can be sharpened up along those lines.

Thereis moreto interpolationin a modal setting. Ten Cate's2005 dissertationshows
that even standardCraig Interpolationis scarceamong(hybrid) fragmentsof FOL.

This suggests that we may be fishing weay small pond here.Also, our analysishas
not addressedhe strongerform of modalinterpolationin the caseof sharedrelations
for indexed modalities<a>, <b>, ... We leave this as an open question here.

Interpolation is often considered a softoptimal designfeaturefor logical languages.
Languageswithout it somehowhave not reachedexpressivematurity yet, and may
thereforeneedto be extended.Likewise, our Lindstrom theoremstatesa property
expressing sort of generaldesignadequacyfor any modal-like first-orderlanguage.
The formalismhasto be the strongestone within the first-order area(this is where
Compactness puts us) satisfying invariance for the chosen notion of bisimulation.

9 Discussion: extensions and challenges
Our results still leave many questions unanswered. Here are a few.

Does our type oproof work for still further modallanguages®ne obviousdirection
are otherformalismsallowing for Lindstrom-typecharacterizationssuch as infinitary

modal logic(cf. Barwise & van Benthem 1999). In this case Jege Compactnesdyut
we havea substitute,viz. the projective undefinability of well-ordering.On the other
hand,definability of well-orderingis typical for the widespreadnodal languageswith

fixed-point operators(suchasthe p—calculus)- thoughLindstrom-typeresultsseem
unknown there in general, also for the extended first-order langjE(EO).

Next, consider first-order languages,and in particular, extendedmodal (‘hybrid')
languagesn betweerbasicmodallogic andfull FOL. Our proof still works for such
languages if they have a decent Finite Depth ProgE@). E.g., Balderten Catehas
given a Lindstrom theoremfor sucha languagewith additional 'graded modalities'.
But our methodfails for extendedmodal languagedacking FDP. The aboveissues
with the Guarded Fragment were a clear illustrati@r. a simplerillustration, consider
the basic modal language extended witmi@ersal modality (MLU¥aying that

M,s|=Up Iiff M, t |= ¢ for all worldst.

An extended modal formula like<>T says thatveryworld shouldhavea successor,
and this requirement is active at any depth oftioglel. So, we haveto find a different
way of encodingthings, closerto the original first-order proof, using the additional
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strengthof the unboundednodality U. The precedingdratft of this paperhada proof
for the obvious conjecturehere,viz. that an abstractmodal logic L extendingMLU
equalsthe latter languageff L satisfies(a) Invariancefor Total Bisimulation, and (b)
CompactnessHere a total bisimulation betweentwo modelsis an ordinary modal
bisimulation having one model for its domain and the other foartge.But our proof
has run aground — so we must leave this result open.

Finally, Balderten Catehasobservedhat our Lindstromtheoremevenholds on finite
models To achieve this, we need to replace Compactness (fdiiston finite models)
by the following condition implied by it, which does hold on finite models:

If ¢ globally impliesy (that is, all models whergholds throughout also
havew true throughout) , then there exists some finite nurkbach that
¢, [1 9, ..., [“¢ locally imply ¥, in all modelgM, s)at the special world

Going back to our proof in Section 5, this does the main imi@stablishinghe FDP.
After that, the rest of our argument also works for finite models only.

Summarizing, we seemo havemadea few stepsbeyondwhat wasknown in the area,
making nice Lindstrom theoremsfor weakerlanguageghan FOL more of a reality.
But given the narrow scope of our analysis sodiaarly, we needto think more about
the right 'spectacles' to chart the area of formalisms below first-order logic.
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