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1. Introduction

We work throughout in the theory ZF +AD+DC. In the mid 80’s, Jack-
son computed the values of the projective ordinals δ

1
n. The upper bound in

the general case appears in [J2], and the complete argument for δ
1
5 appears

in [J1]. We refer the reader to [Mo] or [Ke] for the definitions and basic
properties of the δ

1
n. A key part of the projective ordinal analysis is the

concept of a description. Intuitively, a description is a finitary object “de-
scribing” how to build an equivalence class of a function f : δ

1
3 → δ

1
3 with

respect to certain canonical measures W m
3 which we define below. The proof

of the upper bound for the δ
1
2n+3 proceeds by showing that every successor

cardinal less than δ
1
2n+3 is represented by a description, and then counting

the number of descriptions. The lower bound for δ
1
2n+3 was obtained by em-

bedding enough ultrapowers of δ
1
2n+1 (by various measures on δ

1
2n+1) into

δ
1
2n+3. A theorem of Martin gives that these ultrapowers are all cardinals,

and the lower bound follows. A question left open, however, was whether
every description actually represents a cardinal. The main result of this pa-
per is to show, below δ

1
5, that this is the case. Thus, the descriptions below

δ
1
5 exactly correspond to the cardinals below δ

1
5. Aside from rounding out

the theory of descriptions, the results presented here also serve to simplify
some of the ordinal computations of [J1]. In fact, implicit in our results is a
simple (in principle) algorithm for determining the cardinal represented by
a given description. This, in itself, could prove useful in addressing certain
questions about the cardinals below the projective ordinals.

The results of this paper are self-contained, modulo basic AD facts about
δ

1
1, δ

1
3 which can be found, for example, in [Ke]. In particular, δ

1
1 = ω1, δ

1
3 =

ωω+1, δ
1
1 has the strong partition relation, and δ

1
3 has the weak partition

relation (actually, the strong relation as well, but we do not need this here).
ω, ω1, ω2 are the regular cardinals below δ

1
3, and they, together with the

c.u.b. filter, induce the three normal measures on δ
1
3.

Since we are not assuming familiarity with [J1], we present in the next
section the definition of description and some related concepts. A few of our
definitions are changed slightly from [J1]. We carry along through the paper
some specific examples to help the reader through the somewhat technical
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definitions. In § 4 we give an application, and present a computational
example.

2. Preliminaries

We define first the three families of canonical measures, W m
1 , Sm

1 , W m
3 .

If f : α → ON , we say f has the correct type if is strictly increasing,
everywhere discontinuous, and of uniform cofinality ω; that is, there is a
strictly increasing function g : ω · α → ON such that ∀β < α f(β) =
supγ<ω·(β+1) f(γ). Recall κ has the strong partition property, κ → (κ)κ

2 if

for all partitions P : (κ)κ → {0, 1} of the increasing functions, there is an
A ⊆ κ of size κ and an i ∈ {0, 1} such that P(f) = i for all f ∈ (A)κ. This
is easily seen to be equivalent to the following variation: for every partition
P of the functions from κ to κ of the correct type into two pieces, there is
a c.u.b. C ⊆ κ and an i ∈ {0, 1} such that for all f : κ → C of the correct
type, P(f) = i. In using this form of the partition relation, we usually have
some well-order ≺ specified, and apply it to functions f : dom (≺) → κ of
the correct type. Formally, we are just identifying x ∈ dom (≺) with |x|≺.

For r ∈ ω, let <r be the well-ordering of (ω1)
r defined by: (α1, . . . , αr) <r

(β1, . . . , βr) iff (αr, α1, . . . , αr−1) <lex (βr, β1, . . . , βr−1). If h :<r→ ω1 is of
the correct type, we define the invariants of f as follows: for 0 ≤ j ≤ r − 2,
we define

h(j)(α1, . . . , αj+1)
= supαj<βj+1<···<βr−1<αj+1

h(α1, . . . , αj , βj+1, . . . , βr−1, αj+1).

We also define h(r − 1) = h. Similarly, for 1 ≤ j ≤ r − 1 we define

h̃(j)(α1, . . . , αj+1)
= supβj<αj ,βj<βj+1<···<βr−1<αj+1

h(α1, . . . , αj−1, βj , βj+1, . . . , βr−1, αj+1).

If α = [h]W r
1
, where h :<r→ ω1 is of the correct type (where W m

1 is defined
below), let α(j) = [h(j)]

W
j+1
1

for 0 ≤ j ≤ r − 1. This is easily well-defined.

Definition 2.1 (Canonical Measures).

1. W m
1 is the m-fold product of the normal measure on ω1.

2. Sm
1 is the measure on ℵm+1 defined as follows: A ⊆ ℵm+1 has

measure one iff ∃ c.u.b. C ⊆ ω1 ∀f :<m→ C of the correct type,
[f ]W m

1
∈ A.

3. W m
3 is the measure on δ

1
3 defined as follows: A ⊆ δ

1
3 has measure one

iff ∃ c.u.b. C ⊆ δ
1
3 ∀f : ℵm+1 → C of the correct type, [f ]Sm

1
∈ A.

The strong, weak partition relations on δ
1
1, δ

1
3 respectively and our pre-

vious remarks easily show that these are measures (i.e., countably additive
ultrafilters). These are the measures used in [J1]. For our purposes, it is con-
venient to introduce a variation of the family W m

3 . For each of the (m− 1)!
permutations π = (m, i1, . . . , im−1) of m beginning with m, let <π be the
corresponding well-ordering of (ω1)

m; that is, (α1, . . . , αm) <π (β1, . . . , βm)
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iff (αm, αi1 , . . . , αim−1) <lex (βm, βi1 , . . . , βim−1). Let Sπ
1 denote the corre-

sponding measure on ℵm+1 (as in the definition of Sm
1 ). W m is the measure

on (m− 1)! tuples (. . . , απ, . . . ) of ordinals < δ
1
3 defined by: A has measure

one iff ∃ c.u.b. C ⊆ δ
1
3 ∀f : ℵm+1 → C which are strictly increasing and

continuous, (. . . , [f ]Sπ
1
, . . . ) ∈ A. The weak partition relation on δ

1
3 easily

shows that this is a measure.
We turn now to the definition of descriptions. A description is a finitary

object, and has an index associated with it. An index is of the form (fm)
or (), and written as a superscript of the description. Descriptions indexed

as d(fm) will be called type–0 descriptions, and those of the form d(), type–1
descriptions. Later we will suppress writing the index when it is understood
or irrelevant. The descriptions defined directly will be also referred at as
basic descriptions, and the ones defined in terms of the other descriptions
will be called non–basic.

The following definitions are from [J1].

Fix m, t ∈ ω, let r(i) ∈ ω and Ki = S
r(i)
1 or W

r(i)
1 for i = 1, . . . , t

be a sequence of canonical measures of length t. A set of descriptions,
Dm = Dm(K1, . . . ,Kt), is defined relative to this sequence of measures.
Along with Dm is also defined a numerical function k : D → {1, . . . , t}∪{∞}.

Definition 2.2 (Descriptions). Dm(K1, . . . ,Kt) and k : D → {1, . . . , t} ∪
{∞} are defined by reverse induction on k(d) through the following cases:

Basic Type-1:

d() := (k; p)() where 1 ≤ k ≤ t, Kk = W r
1 , and 1 ≤ p ≤ r. k(d) := k.

Basic Type-0:

1. d(fm) := (k; p)(fm) where 1 ≤ k ≤ t, Kk = W r
1 , and 1 ≤ p ≤ r(k).

k(d) := k.

2. d(fm) := (p)(fm) where 1 ≤ p ≤ m. k(d) := ∞.

Non–Basic Descriptions:

1. d(fm) := (k; d
(fm)
r , d

(fm)
1 , d

(fm)
2 , . . . , d

(fm)
l )(fm) where 1 ≤ k ≤ t, Kk =

Sr
1 , l ≤ r − 1, and k(d1), . . . , k(dl), k(dr) > k. k(d) := k.

2. d(fm) := (k; d
(fm)
r , d

(fm)
1 , d

(fm)
2 , . . . , d

(fm)
l )s(fm) (Here s stands for “sup”),

where r ≥ 2, 1 ≤ k ≤ t, Kk = Sr
1 , l ≤ r−1, and k(d1), . . . , k(dl), k(dr) >

k.
k(d) := k.

3. Same as 1. with () replacing (fm) everywhere.
4. Same as 2. with () replacing (fm) everywhere.

Now let D(K1, . . . ,Kt) := ∪mDm(K1, . . . ,Kt) to be the set of descrip-
tions relative to K1, . . . ,Kt. We will suppress the background sequence of
measures simply writing D or Dm. We call Dm the set of m–descriptions.
Note that if K̄ is a subsequence of K̄ ′, then Dm(K̄) ⊆ Dm(K̄ ′).

Next we give the definition of the function h which interprets descriptions.
Fix d ∈ D, let h1, . . . , ht be functions of type K1, . . . ,Kt, i.e., if Ki =
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W r
1 , then hi : r → ℵ1, and if Ki = Sr

1, then h :<r→ ℵ1 of correct type.
We define the ordinal h(d; h̄) = h(d;h1, . . . , ht) through cases by reverse

induction on k(d). If d = d() then h(d;h1, . . . , ht) < ℵ1 and if d = d(fm)

then h(d;h1, . . . , ht) < ℵm+1 and is represented with respect to W m
1 by a

function which is also denoted by h(d;h1, . . . , ht)(α1, . . . , αm).

Definition 2.3 (Interpretation of Descriptions).

Basic Type-1: If d() = (k; p), then h(d; h̄) = hk(p).
Basic Type-0:

1. If d(fm) = (k; p), then h(d; h̄)(α1, . . . , αm) = hk(p).

2. If d(fm) = (p), 1 ≤ p ≤ m, then h(d; h̄)(α1, . . . , αm) = αp.

Non–Basic:

1. d(fm) := (k; d
(fm)
r , d

(fm)
1 , d

(fm)
2 , . . . , d

(fm)
l )(fm) where 1 ≤ k ≤ t, Kk =

Sr
1 , l ≤ r − 1, and k(d1), . . . , k(dl), k(dr) > k.
a. If l = r−1, then h(d; h̄)(ᾱ) := hk( h(d1; h̄)(ᾱ), . . . , h(dr; h̄)(ᾱ) )
b. If l < r − 1, then

h(d; h̄)(ᾱ) := supβl+1<···<βr−1<h(dr ;h̄)(ᾱ) hk( h(d1; h̄)(ᾱ), . . . ,

h(dl; h̄)(ᾱ), βl+1, . . . , βr−1, h(dr; h̄)(ᾱ) ).

2. Let d(fm) := (k; d
(fm)
r , d

(fm)
1 , d

(fm)
2 , . . . , d

(fm)
l )s(fm) where 1 ≤ k ≤

t, Kk = Sr
1 , l ≤ r − 1, and k(d1), . . . , k(dl), k(dr) > k. Then

h(d; h̄)(ᾱ) := supβl<h(dl;h̄)(ᾱ), βl+1<···<βr−1<h(dr ;h̄)(ᾱ) hk( h(d1; h̄)(ᾱ), . . . ,

h(dl−1; h̄)(ᾱ), βl, βl+1, . . . , βr−1, h(dr; h̄)(ᾱ) )
3. Same as 1., except now h(d; h̄) is a single ordinal < ℵ1.
4. Same as 2., except now h(d; h̄) is a single ordinal < ℵ1.

Next we put an ordering < on Dm(K1, . . . ,Kt) as follows.

Definition 2.4 (Order < on D(K1, . . . ,Kt)).
If d1, d2 ∈ D have the same index, then d1 < d2 iff for almost all h1, . . . , ht,
h(d1, h̄) < h(d2, h̄).

This ordering can be easily checked to be a well-ordering on
Dm(K1, . . . ,Kt).

The following definition give a condition which descriptions must satisfy
in order to be well defined with repect to the equivalence classes of h1, . . . , ht,
as made precise in lemma 2.1 below.

Definition 2.5 (Condition C). Inductively, we say d ∈ D satisfies con-
dition C if either d is basic or else d is non–basic, say of the form d =
(k; dr, d1, . . . , dl)

s, where s may or may not appear, and d1 < d2 < · · · <

dl < dr, and d1, . . . , dl, dr satisfy condition C.

Lemma 2.1. Suppose d satisfies C. Then for ∀∗h1, if h1 = h′
1 a.e., then

∀∗h2, if h2 = h′
2 a.e., . . . , ∀∗ht, if ht = h′

t, then h(d; h̄) = h(d; h̄′).

The lemma is proved by a straightforward induction on the definition of
description. We omit the details.
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Having formally defined descriptions and their interpretations, we intro-
duce now a simpler, less formal notation to represent them, which we refer
to as the functional representation of the description. In the functonal repre-
sentation, the notation more closely identifies the description with its inter-
pretation. The functional representation of a description can be viewed as a

term in the language with function symbols hi(j), h̃i(j), and variables αi,j , ·r.
A basic (type 0 or -1) description, of the form (k; p) will be represented as
αk,p. The basic type 0 description (p) will be represented as ·p. A non-

basic description of the form d(fm) := (k; d
(fm)
r , d

(fm)
1 , d

(fm)
2 , . . . , d

(fm)
l )(fm)

will then be represented as hk(l)(g1, . . . , gl, gr), where g1, . . . , gl, gr are the
representations of d1, . . . , dl, dr. Similarly,

d(fm) := (k; d(fm)
r , d

(fm)
1 , d

(fm)
2 , . . . , d

(fm)
l )s(fm)

is represented as h̃k(l)(g1, . . . , gl, gr).
Thus, αi,j is identified with the description whose interpretation relative

to h1, . . . , ht is the ordinal αi,j, where hi = (αi,1, . . . , αi,j, . . . ). Also, ·p
corresponds to the description whose interpretation is represented by the
function (α1, . . . , αm) → αp.

Examples . For the sequence of measures K1 = S4
1 , K2 = S4

1 , K3 = S3
1 ,

K4 = W 4
1 , some descriptions (satisfying condition C) in D4 are: d =

h1(2)(α4,2, h2(1)(α4,1, ·3), ·4), d = h1(0)(h2(1)(α4,4, h3(0)(·4))). For the first
of these, and for fixed h1, . . . , h4 = (α4,1, . . . , α4,4), the interpretation of d

is the ordinal represented with repect to W 4
1 by the function (β1, . . . , β4) →

h1(2)(α4,2, h2(1)(α4,1, β3), β4).

Definition 2.6 (Sup of a description). If q ∈ Dm(K1, . . . ,Kt), and 1 ≤ n ≤
t, then by supKn,...,Kt

q we mean a description q′ ≥ q, q′ ∈ Dm(K1, . . . ,Kn−1)

such that ∀?
K1

h1∀
?
K2

h2 . . . ∀?
Kn−1

hn−1 ∀α < h(q′; h̄) ∀?
Kn

hn . . . ∀?
Kt

ht α <

h(q; h̄).
Formally, q′ may be defined inductively through the following cases:

(1) If q = αi,j , then q′ = αi,j if i < n, and q′ = ·1 if i ≥ n.

(2) If q = ·r, q′ = q. If q = g(f1, . . . , fl, f0), where g = hi(l) or h̃i(l) and
i ≥ n, then q′ = ·r+1 if f0 = ·r, and otherwise q′ = f ′

0.
(3) If q = hi(l)(f1, . . . , fl, f0) where i < n, then q′ = f ′

0 if f ′
0 > f0.

Otherwise, let k > 0 be least such that f ′
k > fk. If f ′

k < f0,
set q′ = hi(k)(f1, . . . , fk−1, f

′
k, f0). If f ′

k = fk, set q′ = hi(k −
1)(f1, . . . , fk−1, f0) if k > 1, and for k = 1, q′ = hi(0)(f0).

A straightforward induction on the definition of description shows that q ′

has the stated supremum property. Also, q ′ = q iff q ∈ Dm(K1, . . . ,Km−1).

Example . If K1 = S3
1 , K2 = S3

1 , K3 = W 3
1 , K4 = S3

1 , and

q = h1(1)(α3,1, h2(1)(h4(0)(·2), ·3)),

then supK3,K4
(q) = h2(0)(·3).



6 STEVE JACKSON AND FARID T. KHAFIZOV

Definition 2.7 (Cofinality of d). If d ∈ Dm(K1, . . . ,Kt) (and satisfies
condition C), we say d has cofinality κ (= ω, ω1, or ω2) if ∀∗h1, . . . , ht

cof h(d;h1, . . . , ht) = κ.
This may also be defined formally as follows.

(1) If q = αi,j , then κ = ω.
(2) If q = ·r, then κ = ω1 if r = 1, and κ = ω2 if r > 1.
(3) If q = hi(l)(f1, . . . , fl, f0), and Ki = Sr

1 , then κ = ω if l = r − 1, and
if l < r − 1 then κ = cof f0.

(4) If q = h̃i(l)(f1, . . . , fl, f0), then κ = cof fl.

In [J1], the set of descriptions D was extended to a set D, and a property
called “condition D” was introduced. Here, we have no need of D, and
condition D simpifies to a fairly trivial condition. Nevertheless, to maintain
consistency with [J1] we define:

Definition 2.8 (Condition D). If d = dfm ∈ Dm(K1, . . . ,Kt) (and satisfies
condition C), then we say d satisfies condition D if d > ·m.

If d satisfies condition D, then ∀∗h1, . . . ∀
∗ht h(d;h1, . . . , ht) > ℵm, that

is, ∀∗h1, . . . , ht ∀∗α1, . . . , αm h(d;h1, . . . , ht)(α1, . . . , αm) > αm. The signif-
icance of this is explained in remark 2.1 below.

Next, we show how to use descriptions to generate equivalence classes
of functions from δ

1
3 to δ

1
3 with respect to the measures W m (in [J1], the

measures W 3
m were used).

Definition 2.9 (Ordinal represented by description). Fix m ∈ ω, and let
d = dfm ∈ Dm(K1, . . . ,Kt) satisfy condition D. Let g : δ

1
3 → δ

1
3 be given.

• We define (g; d;K1, . . . ,Kt)(W
m
3 ) to be the ordinal represented w.r.t.

Wm by the function which assigns to (. . . , [f ]Sπ
1
, . . . ) the ordinal

(g; f ; d; K̄), where f : ℵm+1 → δ
1
3 is continuous and represents

(. . . , [f ]Sπ
1
, . . . ).

• (g; f ; d; K̄) is represented w.r.t. K1 by the function which assigns to
[h1] the ordinal (g; d;h1,K2, . . . ,Kt).

• In general, (g; d;h1, . . . , hi−1,Ki, . . . ,Kt) is represented w.r.t. Ki by
the function which assigns to [hi] the ordinal

(g; d;h1, . . . , hi−1, hi,Ki+1, . . . ,Kt).

• Finally, (g; d;h1, . . . , ht) = g(f(h(d;h1, . . . , ht))).

Remark 2.1. If d satisfies condition D, then (g; d; K̄)(W m) is well defined.
To see this, let f, f ′ : ℵm+1 → δ

1
3 be strictly increasing, continuous, and

(. . . , [f ]Sπ
1
, . . . ) = (. . . , [f ′]Sπ

1
, . . . ). Then there is a c.u.b. C ⊆ ω1 such that

∀π = (m, i1, . . . , im) ∀h :<π→ ω1 of the correct type, f([h]) = f ′([h]).
Now, ∀∗h1, . . . , ht ∀∗α1, . . . , αm h(d;h1, . . . , ht)(α1, . . . , αm) ∈ C. Since
∀∗h1, . . . , ht h(d;h1, . . . , ht) > ℵm, it follows there is a permutation π such
that ∀∗h1, . . . , ht h(d;h1, . . . , ht) can be represented by a function h such
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that either h :<π̄→ C is of the correct type, or [h] is the supremum of ordi-
nals represented by such functions. Since f, f ′ are continuous, in either case
we have f([h]) = f ′([h]).

Finally in this section we introduce the lowering operator L on D. For
every description d ∈ Dm(K1, . . . ,Kt), L applied to d gives the largest de-
scription L(d) ∈ Dm(K1, . . . ,Kt) below d. First, given measures K1, . . . ,Kt

and an integer k (1 ≤ k ≤ t or k = ∞), an operator Lk is defined on those
d satisfying k(d) ≥ k, except for a unique d = d(k) which is called the mini-
mal description with respect to Lk. Then L := L1. Lk is defined by reverse
induction on k as follows:

Definition 2.10 (Operator Lk).

I. k = ∞. So, d is basic type–0 with d = d(fm) = ·i for 1 ≤ i ≤ m. If
i > 1, then L∞ := ·i−1. If i = 1, d is minimal with respect to L∞.

II. 1 ≤ k ≤ t.
1. k = k(d)

a. d is basic type–1, so d = αk,p. If p > 1, then Lk := αk,p−1.
If p = 1, d is minimal.

b. d = d(fm) = hk(l)(d1, . . . , dl, d0), with l = r − 1 and Kk =

Sr
1 . Then Lk(d) := h̃k(l)(d1, . . . , dl) if l ≥ 1, and if l = 0,

that is, d = hk(0)(d0), then Lk(d) := d0.
c. d as in (b), but l < r − 1. If Lk+1(d0) is defined, and also

> dl in case l ≥ 1, then

Lk(d) := hk(l + 1)(d1, . . . , dl,L
k+1(dl), d0).

If Lk+1(dl) is not defined, or is ≤ dl (and l ≥ 1), then

we set Lk(d) := h̃k(l)(d1, . . . , dl, d0) if l ≥ 1; otherwise
Lk(d) := d0.

d. d = h̃k(l)(d1, . . . , dl, d0). If Lk+1(dl) is defined and
Lk+1(dl) > dl if l ≥ 2, set

Lk(d) := hk(l)(d1, . . . , dl−1,L
k+1(dl), d0).

Otherwise, set Lk(d) := ˜hk(l − 1)(d1, . . . , dl−1, d0) if l ≥
2, and for l = 1, Lk(d) := d0.

2. k < k(d),Kk = W
r(k)
1 .

a. d is not minimal with respect to Lk+1. Then Lk(d) :=
Lk+1(d).

b. d is minimal with respect to Lk+1. Then Lk(d) := αk,r(k).

3. k < k(d),Kk = S
r(k)
1

a. d is not minimal with respect to Lk+1. Then Lk(d) :=
hk(0)(L

k+1(d)).
b. d is minimal with respect to Lk+1. Then d is minimal

with respect to Lk.
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A straightforward induction on the definition of description shows that
L(d), when defined, is the largest description strictly smaller than d (in
Dm(K1, . . . ,Kt)).

Example . For the sequence of measures K1 = S4
1 , K2 = S4

1 , K3 = S3
1 ,

K4 = W 4
1 , and

d(f4) = h1(2)(α4,2, h2(1)(α4,1, ·3), ·4), and

L(d) = h1(3)(α4,2, h2(1)(α4,1, ·3), h2(0)(h3(0)(·3)), ·4).

3. Representation of cardinals below δ
1
5

We state our main result.

Theorem 3.1. Let m ∈ ω, S1, . . . , St ∈ ∪i(W
i
1∪Si

1) be a sequence of canon-
ical measures. Let d = dfm ∈ Dm(S1, . . . , St) be defined and satisfy condi-
tion D with respect S1, . . . , St. Then, (id; d;S)(W m) is a cardinal, where
id : δ

1
3 → δ

1
3 is the identity function.

Remark 3.1. As mentioned previously, the converse is also true [J1], that
is, every cardinal below the predecessor of δ

1
5 is of this form. Also, if g is

strictly greater than the identity function (almost everywhere with respect
to the appropriate measure), then one can show that (g; d;S)(W m) is not a
cardinal.

For the remainder of this paper, d̄, etc., will denote a tuple d̄ = (d;S),
where d ∈ Dm(S̄).

The strategy of our proof is as follows. First we will define for each d̄

a corresponding tree Td̄ = (Td̄, <). The tree Td̄ will have infinitely many
nodes, which we will partition into finitely many blocks. For each such
block we will assign an ordinal. Being added in a proper way these ordinals
will give an ordinal ξd̄. Then we will show that (id; d; S̄)(W m) = ℵω+ξd̄

.

Given d̄, we define < to be the transitive closure of <′, where q̄ <′ p̄ ⇐⇒
[p̄ = (p; S̄), q̄ = ((Lp̄); S̄,K), and q̄ satisfies condition D]. Here L(p̄) denotes
L(p) defined relative to the sequence S̄. d̄ is the root of Td̄. Intuitively, Td̄

is constructed by repeatedly applying the lowering operator L to d̄, adding
at most one new measure each time. In the definition of <′ above, the
type of new measure K depends on cof(Lp̄): if it is ω0, then no measure
is added; if ω1, then K must be of the form W i

1; and if ω2, then K = Si
1.

[We note that the restriction on K is a minor point, and could be dispensed
with. For conceptual simplicity, we are restricting to only those K which
are necessary.] As in [J1], we define the rank function on the nodes of the
tree Td̄ by |q̄| := (supp̄<′ q̄ |p̄|) + 1, and |Td̄| = |d̄|.

Given d̄ = (d; S̄), note that every node q̄ ∈ Td̄ is of the form q̄ = (q; S̄, M̄ ),
for some sequence of measures M̄ . For such nodes in Td̄, we employ a
notational convention when writing the functional representation of q. We

will use the symbols hi(j), h̃i(j), αi,j when refering to the measures in S̄,
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and ki(j), k̃i(j), γi,j when to the measures in M̄ . For example, if S̄ =

(S3
1 , S4

1 ,W 3
1 ), M̄ = (S4

1 ,W 4
1 ), then a functional representation for q = q(f4)

might look like h1(2)(α3,1, h2(0)(k4(1)(γ5,2, ·3)), ·4).
For d̄ as above and q̄ ∈ Td̄, we define a sequence, oseqd̄(q̄), which will be

a sequence of terms of the form γi,j, ki(·r).

Definition 3.1 (The o–sequence of q̄, oseqd̄(q̄)).
Given d̄ = (d; S̄) and q̄ = (q; S̄, M̄ ), let g(d1, d2, . . . , dl, d0) be the functional
representation of q̄. Here g stands for an invariant of some h or some k

function. We have numbered the arguments of g according to their signif-
icance in determining size of h(q, S̄). (Each di is a subdescription defined
relative to the same sequence of measures S̄, M̄ .) We define recursively the
o–sequence of q̄ as follows.

oseqd̄(q̄) :=





[oseqd̄(d0)
aoseqd̄(d1)

a . . . aoseqd̄(dl)]
′

if g = hi(j) or h̃i(j)

oseqd̄(d0) if (g = ki(j) or k̃i(j)) and d0 6= ·r
ki(·r) if g = ki(j) and d0 = ·r

ki(·r) if g = k̃i(j)( with j ≥ 1) and d0 = ·r
γi,j if q = γi,j

∅ if q = ·r or αi,j

Here ′ denotes the operation which eliminates repetition of ordinals and
functions: we concatenate all oseqd(di), and then if a symbol γi,j, or ki(·r)
appears in the resulting sequence more than once, we keep it only in the
first position where it appears.

We define also a variation of oseqd̄(q̄) which we denote oseq∗
d̄
(q̄). This is

defined exactly as oseqd̄(q̄), except that in the first case we do not apply the
deletion operation ′ to the concatenated sequence. Now, each term t = γi,j or
t = ki(·r) may appear several times in the sequence. For each such term, say
ki(·r), we will attach superscripts to the occurences of this term in oseq∗

d̄
(q̄).

The occurences of this term will thus be of the form k1
i (·r), . . . , k

a
i (·r). The

attachment of the superscripts is defined (inductively) as follows. If ta, tb

both correspond to subdescriptions of p = g(p1, . . . , pl, p0) (where p is a
subdescription of q) then a < b if ta corresponds to a subdescription of pi

which appears to the left of the subdescription pj corresponding to tb. If

ta, tb both correspond to subdescriptions of pi, the ordering of a, b is given
by induction.

Example . For q =

h1(2)(h2(2)(k2(·2), k3(·2), ·3), h2(2)(k2(·2), k4(·3), ·4), h2(2)(k2(·2), k4(·3), ·5)),

oseqd̄(q) = (k2(·2), k4(·3), k3(·2)), and oseq∗
d̄
(q) = (k3

2(·2), k2
4(·3), k1

2(·2),

k1
3(·2), k2

2(·2), k1
4(·3)).
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Note that oseqd̄(q̄), oseq∗
d̄
(q̄) are uniquely determined by the functional

representation of q̄ (with our notational conventions). In particular, oseq d̄(q̄),
oseq∗

d̄
(q̄) depend only on d̄, q, and we may write oseqd̄(q), oseq∗

d̄
(q). While the

measures S̄ are fixed in considering Td̄, the other measures, M̄ , vary as we
range over all possible nodes. The fact that the k–functions and γ–ordinals
from oseqd̄(q̄) are in some sense arbitrary is important in our computation.

For d̄ = (d; S̄), q̄ = (q; S̄, M̄), we define supd̄ q := supM̄ q.

Proposition 3.2. Let p ∈ D(S̄), and consider p̄ = (p; S̄,K) where K =
Sn

1 if cof(p) = ω2, and K = W n
1 if cof(p) = ω1. If cof p = ω2, then k,

which represents the function corresponding to K, occurs in the functional
representation of L(p̄). If cof p = ω1, then γn, which represents the largest
ordinal corresponding to K, occurs in the functional representation of L(p̄).

Proof. By induction on the definition of p. We suppose cof p = ω2, the other
case being similar. Then K = Sn

1 for some n ≥ 1. We consider the following
cases.

case 1.) p = ·r. Then r > 1, and k(0)(·r−1) is a subdescription of L(p̄).

case 2.) p = h̃i(l)(. . . , q, s). Since cof p = ω2, we have cof q = ω2. By
induction, k appears in the functional representation of L(q̄). Since
q is greater than all descriptions to its left, L(q̄) is ≥ all descriptions
to the left of q. Since L(q̄) has k in its functional representation,
and the others do not, L(q̄) is greater than these descriptions. Thus,
L(p̄) = hi(l)(. . . ,L(q̄), s).

case 3.) p = hi(l)(. . . , q, s). Then hi(l) is a proper invariant of hi (as oth-
erwise cof(p) = ω). Also, cof(s) = ω2, and so k appears in the
functional representation of L(s̄). Arguing as in the previous case,
we have L(p̄) = hi(l + 1)(. . . , q,L(s̄), s), and we are done.

�

Proposition 3.3. If d̄ = (d; S̄), q ≤ L(d̄), and q ∈ D(S̄), then there is a
node q̄ in Td̄ with description q.

Proof. By induction on |Td̄|. Let p = L(d̄). Consider p̄ = (L(d̄); S̄,K) ∈ Td̄.
If q = p, we are done, and if q < p, then since q ∈ D(S̄) ⊆ D(S̄,K), there is
by induction a node q̄ in Tp̄ with the description q. However Tp̄ ⊂ Td̄, hence
we are done. �

Proposition 3.4. Let d̄ = (d; S̄), and q̄ in Td̄. Then p := supd̄ q appears in
some node p̄ ∈ Td̄.

Proof. We easily have p ≤ d. If p = d, then we may take p̄ = d̄ ∈ Td̄.
Otherwise, p ≤ L(d̄), and hence p in a node in Td̄ by proposition 3.3. �

Definition 3.2 (Level of q̄ with respect to d̄). Let u be a sequence of
terms of the form γi,j or ki(·r). We define a linear order <u on the elements
of the sequence u as follows:

1. γi,j <u γk,l iff (i, j) <lex (k, l)
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2. γi,j <u kl(·r) for all i, j, l, r

3. ki(·r) <u kj(·s) ⇐⇒ (r, i) <lex (s, j)

Next define a subsequence w of u as follows: w(0) = u(0). Assume that
w(i) has been defined for all i = 0, . . . , l, and w(l) = u(r). If there is
r′ > r such that u(r) <u u(r′), then let r′′ be the least such, and we put
w(l + 1) = u(r′′). If there is no such r′, we stop. Let #ki(·n) := n and let
#γi,j := 0, for all i, j, n. Then we set

lev(u) := Σ0
i=|w|−1ω

#w(i).

Suppose now d̄ = (d; S̄), and q̄ ∈ Td̄. Let uq̄,d̄ = oseqd̄(q̄). Then define

levd̄(q̄) = lev(uq̄,d̄). If oseqd̄(q̄) = ∅, set levd̄(q̄) = 0.

Note that the ordering <u is just the ordering on descriptions translated
to their functional representations.

Example . If q = h0(h1(γ1,1, ·1), h1(γ1,2, k2(·1)), ·2), then u = oseqd̄(q̄) =

〈γ1,1, k2(·1), γ1,2〉, and w = 〈γ1,1, k2(·1)〉. So, levd̄(q̄) = ω#k2(·1) + ω#γ1,1 =
ω + 1.

Lemma 3.5. Fix d̄ = (d; S̄). Then {levd̄(q̄) | q̄ ∈ Td̄} is finite.

Proof. Consider a node q̄ ∈ Td̄ with functional representation g(f1, . . . , fl, f0).
Let us temporarily call the description g(f1, . . . , fl, f0) of rank one. We re-
fer to each subdescription fi as having rank two, to subdescriptions of fi,
of rank three, and so on. Without loss of generality assume g = hi(j). Be-
cause the S̄ measures are fixed (hence there are only finitely many hi(j),
αi,j) there is v < ω, such that all of the subdescriptions of q̄ that do not
start with ki(j), for some i, j, have rank less than v. This gives a bound
on the length of oseqd̄(q). Also, for terms of oseqd̄(q) of the form ki(·r), we
must have r ≤ m. The result now follows. �

We now group the nodes of Td̄ into blocks.

Definition 3.3 (Block Bd̄(q), Depth of a block depth(Bd̄(q))). Fix d̄ =
(d; S̄), d ∈ Dm(S̄). For q ∈ Dm(S̄), q ≤ d, we define the block, Bd̄(q), as the
set of all nodes p̄ ∈ Td̄ with supd̄ p = q. We also define the depth of a block
by depth(Bd̄(q)) := max{levd̄(p̄) | p̄ ∈ Bd̄(q)}.

Observe that the number of blocks is determined by the number of de-
scriptions q ∈ Dm(S̄), which is clearly finite. Let us enumerate them in
decreasing order: d = q1 > q2 > · · · > qn. Therefore the number of blocks is
also finite and equal to n.

Note that every node q̄ ∈ Td̄ is in one of these blocks. Now we define the
ordinal

ξd̄ := ωdepth(Bd̄(qn)) + · · · + ωdepth(Bd̄(q2)) + ωdepth(Bd̄(q1))

which as we shall see determines the cardinality of (id; d; S̄)(W m).
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Remark 3.2. The last summand in the definition of ξd̄ is always 1. That is
because L(d̄) is defined relative to S̄, and therefore Bd̄(q1) = Bd̄(d) = {d̄}.
Consequently, depth(Bd̄(q1)) = 0 and ωdepth(Bd̄(q1)) = 1.

Proposition 3.6. Fix d̄ = (d; S̄) and p̄ = (p; S̄, S∗) ∈ Td̄, with p = L(d̄).
Suppose q̄ ∈ Tp̄ ⊆ Td̄. Then levp̄(q̄) ≤ levd̄(q̄). Moreover, if oseqd̄(q̄) starts
with the function induced by the S∗ measure, then strict inequality holds,
and if otherwise, then supd̄ q = supp̄ q.

Proof. Assume q̄ = (q; S̄, S∗, M̄) ∈ Tp̄ ⊂ Td̄ for some sequence of measures
M̄ . We consider the case S∗ = Si

1, the other case being easier. Extending
our notational convention slightly, we use terms hi(j), αi,j corresponding to
the S̄ measures, k∗ corresponding to S∗, and ki(j), γi,j corresponding to the
M̄ measures.

We may consider the o–sequences of q̄ defined relative to p̄ and d̄. Let
us fix them: up := oseqp̄(q̄) and ud := oseqd̄(q̄). We want to analyze the
relationship between these two sequences. Recall the definition of the o–
sequence. In that definition we concatenated recursively o–sequences of the
corresponding subdescriptions. We can repeat the same constructions with
the only difference that we stop when the subdescription is k∗(j)(. . . ), for
some j. Suppose that happens t times. Then

ud = [u1
aoseqd̄(k

∗(j1)(. . . ))
a . . .a u2

aoseqd̄(k
∗(jt)(. . . ))

aut+1]
′

up = [u1
aoseqp̄(k

∗(j1)(. . . ))
a . . .a u2

aoseqp̄(k
∗(jt)(. . . ))

aut+1]
′

In other words, the difference between ud and up is determined only by the
o–sequences of the subdescriptions starting with an invariant of k∗. Let us fix
such a subdescription sm = k∗(jm)(f1, . . . , fl, f0), for some 1 ≤ m ≤ t. Note
that every fi either starts with an invariant of some k–function (different
from k∗), is an ordinal γi,j, or it is ·r, for some r. We first argue that
levp̄(sm) ≤ levd̄(sm).

Suppose f0 = ·r. Then oseqd̄(sm) = k∗(·r), hence levd̄(sm) = ωr, and

oseqp̄(sm) = [oseqp̄(f1)
a . . .a oseqp̄(fl)]

′. Because for each 1 ≤ i ≤ l, fi < ·r,
fi can not have k–functions with dot variables ≥ ·r. Thus levp̄(fi) < ωr,
and hence levp̄(sm) < levd̄(sm).

Suppose now f0 begins with some k–function and has the highest dot
variable ·r, for some r. Then oseqd̄(sm) = ki(·r) for some i, and oseqp̄(sm) =

ki(·r)
aoseqp̄(f1) . . . aoseqp̄(fl). Note that for all 1 ≤ i ≤ l, fi can not have

a k–function with a dot variable higher than ·r. If oseqp̄(fi) contains some
kj(·r), then j ≤ i, because fi < f0. Thus kj(·r) will be canceled when
we compute levp̄(sm). Therefore, levp̄(sm) = ωr = levd̄(sm). Similarly
levp̄(sm) = levd̄(sm), when f0 = γi,j.

From the results of the last two paragraphs, an easy argument shows that
levp̄(q̄) ≤ levd̄(q̄).

Finally, suppose oseqd̄(q̄) begins with the term b, which is of the form
k∗(·r), ki(·r), or γi,j. If b = k∗, we must have s1 = k∗(j1)(. . . , ·r). Then,
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as we argued above, levp̄(s1) < levd̄(s1), and an easy argument then shows
levp̄(q̄) < levd̄(q̄).

If b = ki(·r) or γi,j, then both oseqd̄(q̄) and oseqd̄(q̄) begin with b, which
corresponds to the most important subdescription in determining the rank
of q̄. Let f(g1, . . . , gl, g0) be the functional representation of q̄. Let i be
the least integer so that a subdescription with term b appears in gi. Then
oseqp̄(gi) and oseqd̄(gi) both begin with b. By induction we may assume
supp̄ gi = supd̄ gi, which implies supp̄ q = supd̄ q. �

Lemma 3.7. Let d̄ = (d, S̄), and p̄ be a node in Td̄ below d̄. Then ξp̄ ≤ ξd̄−1.

Proof. By induction on the rank of d̄, we may assume that p̄ has description
p = L(d̄). If cof p̄ = ω, i.e., the tree Td̄ does not split at the root d̄,
then the proof is trivial. Suppose cof p̄ = ω2. Thus, p̄ = (p; S̄, S∗), where
S∗ = Si

1 for some i. Keeping with the previous conventions, we denote the
function corresponding to the measure S∗ by k∗. A node s̄ whose o-sequence,
oseqd̄(s̄), begins with a term of the form k∗(·i) will be called a star node.
Otherwise s̄ is called a nonstar node.

Let Bd̄(q1), . . . ,Bd̄(qn) be all the blocks of Td̄ where q1 = d > q2 = p >

q3 > · · · > qn and qi ∈ Dm(S̄). Note that all the qi with i > 1 are in Tp̄ as
well.

It is a trivial observation that oseqd̄(s̄) = ∅ ⇒ oseqp̄(s̄) = ∅. The converse,
however, is not true: there could be a node s̄ with oseqp̄(s̄) = ∅ while
oseqd̄(s̄) 6= ∅. If we fix a d–block, Bd̄(qi) with i > 1, then some of the nodes
q̄ ∈ Bd̄(qi) may be such that oseqp̄(q) = ∅, whence a d̄–block may split into

several p̄–blocks. The idea of the proof then is to show that ωdepth(Bd̄(qi)) is
no less than the sum of the ordinals assigned to the corresponding p̄–blocks.

Let us fix for the moment some qi, for 2 ≤ i ≤ n. Let si1 = qi > si2 >

. . . sit enumerate the s ∈ Dm(S̄, S∗) such that supS∗ s = qi. Thus, the d̄

block corresponding to qi splits into p̄ blocks determined by the sij .
Part (1) of the following claim is true in general, while part (2) uses our

assumption that cof p̄ > ω.

Claim . With the notation as above:

(1) Σ1
j=tω

depth(Bp̄(sij
)) ≤ ωdepth(Bd̄(s1)).

(2) If i = 2 (that is, si1 = p), then Σ1
j=tω

depth(Bp(sij
))

< ωdepth(Bd(s1)).

Proof. From proposition 3.6, lev p̄(s̄) ≤ levd̄(s̄) for all s̄ ∈ Tp̄, and in particu-
lar for all s̄ ∈ Bp̄(si1). Since Bp̄(si1) ⊆ Bd̄(qi), it follows that depth(Bp̄(si1)) ≤
depth(Bd̄(qi)).

Now let 2 ≤ j ≤ t, and consider s̄ ∈ Bp̄(sij ). Then s must be a star node,
because otherwise si1 = qi = supd̄ s = supp̄ s, by proposition 3.6, and hence
s̄ ∈ Bp̄(si1), a contradiction. So, for every s ∈ Bp̄(sij ), levp̄(s) < levd̄(s).
Consequently, depth(Bp̄(sij )) < depth(Bd̄(qi)), for all j = 2, . . . , t. The first
part of the claim now follows.
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Suppose now i = 2, so si1 = p. By proposition 3.2, k∗ appears in a term
in the functional representaton of L(p̄). Since supS∗(L(p̄)) = p, it follows
that depth(Bd̄(p)) > 0. However, Bp̄(p) = {p̄}. So, 0 = depth(Bp̄(p)) <

depth(Bd̄(p)), and the second part of the claim follows from proposition 3.6.
�

Lemma 3.7 is an immediate consequence of the last claim:

ξp̄ = Σ2
i=n[Σ1

j=ti
ω

depth(Bp(sij
))] ≤ Σ2

i=nωdepth(Bd(qi)) = ξd̄ − 1.

The proof of the case when cof p = ω1 is entirely similar. �

Corollary 3.8. Let d ∈ Dm(K̄), and satisfy condition D. Then

(id; d; K̄)(W m) ≤ ℵω+ξd̄
.

Proof. Lemma 3.7 and a trivial induction show that |Td̄| ≤ ξd̄. By the results
of [J1], (id; d; S̄)(W m) ≤ ℵω+|Td̄|

. So (id; d; S̄)(W m) ≤ ℵω+ξd̄
. �

To show that the lower bound for (id; d; s̄)(W m) is also ℵω+ξd̄
, we recall

the following fact.

Theorem 3.9 (Martin). Assume κ → κκ. Then for any measure ν on κ,
the ultrapower jκ(κ) is a cardinal.

Proof. See [J1]. �

Our stategy for the rest of the proof is to embed the ultrapower of δ
1
3 by

the measure corresponding to ξd̄ (made precise below) into (id; d̄; S̄)(W m).
We require first some embedding lemmas.

Definition 3.4 (Strong embedding). Let (Di, <Di
), (Ei, <Ei

), 1 ≤ i ≤ n

be well-orderings of length < δ
1
3, and Mi, Ni measures on Di, Ei. Let D =

D1 ⊕ · · · ⊕ Dl, E = E1 ⊕ · · · ⊕ El, the sum of the order types. We say
(D, {Mi}) strongly embeds into (E, {Ni}) if there is a measure µ on κ < δ

1
3,

and a function H with the following properties:

(1) ∀∗µθ H(θ) = ([φ1]M1 , . . . , [φl]Ml
), where φi : Di → Ei is order-

preserving.
(2) For all Ai ⊆ Ei, 1 ≤ i ≤ n, of Ni measure 1, ∀∗µθ ∀i ∀∗Mi

α ∈ Di

φi(α) ∈ Ai.

If (Di,Mi) strongly embeds into (Ei, Ni) for all 1 ≤ i ≤ n, then D = ⊕Di

strongly embeds into E = ⊕Ei.
Given the ordering D = D1 ⊕ · · · ⊕ Dl and measures Mi, let νD denote

the measure on l-tuples from δ
1
3 induced by the weak partition relation on

δ
1
3, functions f : D → δ

1
3 of the correct type, and the Mi.

Proposition 3.10. If (D, {Mi}), 1 ≤ i ≤ n, strongly embeds into (E, {Ni}),
then jνD

(δ1
3) ≤ jνE

(δ1
3).
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Proof. Let µ,H witness the strong embeddability. We define an embed-
ding π from jνD

(δ1
3) to jνE

(δ1
3). Define π([F ]νD

) = [G]νE
, where for g =

(g1 ⊕ · · · ⊕ gl) : E → δ
1
3 of the correct type, G([g1]E1 , . . . , [gl]El

) = [θ →
F ([g1 ◦ φ1]M1 , . . . , [gl ◦ φl]Ml

)]µ, where H(θ) = ([φ1]M1 , . . . , [φl]Ml
). Using

the properties of H, this is easily well-defined and an embedding. �

Proposition 3.11. Let O be an order type of length < δ
1
3, and ν a measure

on O. Let 0 ≤ k < l, m > 0. Let D be lexicographic order on (α1, . . . , αm, γ)
where αi < ℵk+1, γ ∈ O, and let M be the product measure M = Sk

1 × · · · ×
Sk

1 × ν, or = W 1
1 × · · · × W 1

1 × ν if k = 0. Let E be lexicographic order on
(β, γ), where β < ℵl+1 and γ ∈ O, and N the product measure S l

1 × ν on E.
Then (D,M) strongly embeds into (E,N). Similarly if D is the sum of m

copies of O, and l = 0 (with measure W 1
1 × ν).

Proof. We prove the result for k ≥ 1, the other cases being similar. Let
µ = Sl+m

1 . Define H([h]
W l+m

1
) = [φ]M , where φ : D → E is defined as

follows. φ([f1]W k
1
, . . . , [fm]W k

1
, γ) = ([g]W l

1
, γ), where

g(δ1, . . . , δl) =
h(δ1, . . . , δk, f1(δ1, . . . , δk), . . . , fm(δ1, . . . , δk), δk+1, . . . , δl).

This is easily well-defined, and gives a strong embedding. �

By a basic order type, we mean D = D1⊕· · ·⊕Dl, where for all 1 ≤ i ≤ l,
either Di = 1 (i.e., the order type of a single point), or Di = ℵki

m+1 ⊗
ℵki

m−1+1 · · ·⊗ℵki
1+1 (i.e., lexicographic ordering on tuples (α1, . . . , αm) where

αj < ℵki
j+1, and m depends on i). Let Mi be the product measure Mi =

S
ki
1

1 × · · · × S
ki

m

1 . We refer to such a Di as a sub-basic order type. To each
such D, we associate an ordinal c(D) as follows. If Di = 1, c(Di) = 1.

If Di = ℵkm+1 ⊗ · · · ⊗ ℵk1+1, then c(Di) = ωωkm
· · ·ωωk2 · ωωk1 . Finally,

c(D) = c(D1) + · · · + c(Dl).

Lemma 3.12. For D a basic order type with corresponding measure νD,
jνD

(δ1
3) ≥ ℵω+c(D)+1.

Proof. An easy induction on the length of D, |D|, using proposition 3.11. For
example, the inductive step at D = ℵ3 would be: jνℵ3

(δ1
3) ≥ supn jν(ℵ2)n

(δ1
3) ≥

supn ℵω+ωω·n+1 = ℵ
ωω2 . Since cof jν(δ1

3) > ω for any measure ν, we then

have jνℵ3
(δ1

3) ≥ ℵ
ωω2+1

= ℵ
ω+ωω2+1

. �

Suppose now M = M1×· · ·×Mk = M0
1 ×· · ·×M 0

a0
×· · ·×Mn

1 ×· · ·×Mn
an

is a product measure, where M i
j = W 1

1 if i = 0, and M i
j = Si

j for i > 0.

Let π = (p1, . . . , pk) be a permutation of k. Let D be the M measure one
set of (α1, . . . , αk) = (α0

1, . . . , α
0
a0

, . . . , αn
1 , . . . , αn

an
) such that α0

1 < · · · <

α0
a0

, αi
j > ℵi, and αi(0) < αj(0) for i < j and αi > ℵ1. Let <D be the

ordering of D defined by: (α1, . . . , αk) <D (β1, . . . , βk) iff (αp1 , . . . , αpk
)

<lex (βp1 , . . . , βpk
).
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We define the canonical subsequence π∗ of π as follows. π∗ = (q1, . . . , ql)
= (ps1 , . . . , psl

), where s1 = 1, and si+1 > si is least such that psi+1 > psi
.

Note that ql = k. To fix notation, let Mi = M
r(i)
u(i) for 1 ≤ i ≤ k. Define N

to be the product measure N = Mq1 ×· · · ×Mql
, and let E be lexicographic

ordering on tuples (β1, . . . , βl) with βi < ℵr(qi)+1.
Notice that (E,<E) is a basic order type.

Lemma 3.13. With (D,<D), (E,<E) as above, (E,<E) strongly embeds
into (D,<D).

Proof. Let µ = M1 × · · · × Mq1−1 ×
∏k

j=q1
M+

j , where (W 1
1 )+ = S1

1 , and

(Sr
1)

+ = Sr+1
1 . Fix θ = (θ1, . . . , θk), and let hi :<r(i)+1→ ℵ1 represent θi if

r(i) > 0 and i ≥ q1. Set H(θ) = [φ]N , where φ(α1, . . . , αl) = (β1, . . . , βk)
is defined as follows. First, β1, . . . , βq1−1 = θ1, . . . , θq1−1. Next, suppose
qi ≤ j < qi+1. If r(j) = 0, set βj = hj(αqi

). If r(j) > 0 and r(qi) = 0,
set βj = [gj ], where gj(γ1, . . . , γr(j)) = hj(αqi

, γ1, . . . , γr(j)). If r(qi) > 0, set
βj = [gj ], where

gj(γ1, . . . , γr(j)) =
hj(γ1, . . . , γr(qi), fi(γ1, . . . , γr(qi)), γr(qi)+1, . . . , fi(0)(γr(j))),

where [fi] = αqi
, and the argument γr(i) of hj is omitted if r(qi) = r(j) (this

is just to give the correct number of arguments). This is easily checked to
be well-defined and a strong embedding. �

Remark 3.3. The proof of lemma 3.13 also shows if π ′ is any subsequence
of the canonical sequence π∗ of π, and E ′, N ′ the corresponding order and
product measure, then (E ′, N ′) strongly embeds into (D,M).

Proposition 3.14. For every block Bd̄(qi), 1 ≤ i ≤ n with depth(Bd̄(qi)) >

0, there is a node p̄i, with description pi such that p̄i ∈ Bd̄(qi), levd(p̄i) =
depth(Bd̄(qi)), and pi has functional representation pi = hk(r)(f1, . . . , fr, f0)

where Sk = Sr+1
1 (that is, pi has maximal possible length).

Proof. Suppose qi has functional representation qi = hk(l)(f1, . . . , fl, f0),
and Sk = Sr+1

1 . Let q̄i = (qi; S̄) ∈ Td̄ with description qi. We must have
l < r, as otherwise depth(Bd̄(qi)) = 0. Likewise, we must have cof q̄i =
cof f̄0 > ω, as otherwise L(f̄0) ∈ D(S̄) and hence depth(Bd̄(qi)) = 0. Let
p̄ = (p; S̄, K̄) ∈ Bd̄(qi) have maximum possible level. Easily, p is of the

form p = f(f1, . . . , fl, . . . , fl′ , f0), where f = hk(l
′) or h̃k(l′). Since replacing

h̃k(l′) by hk(l
′) does not change the level or the block, we may assume

p = hk(l
′)(f1, . . . , fl, . . . , fl′ , f0). If l′ < r, then cof p̄ = cof f̄0 > ω, and the

last K̄ measure, say Kt, does not appear in p. By proposition 3.2, L(f̄0) will
have a term corresponding to the measure Kt in its functional representation,
and hence L(f̄0) > fl′ . Thus, L(p̄) = hk(l)(f1, . . . , fl, . . . , fl′ ,L(f̄0), f0).
Repeating the argument, we finish.
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Suppose now qi = h̃k(l)(f1, . . . , fl, f0). As above, let p̄ = (p; S̄, K̄) ∈
Bd̄(qi) have maximum possible level. Easily,
p = hk(l

′)(f1, . . . , fl−1, gl, . . . , gl′ , f0) for some l ≤ l′ ≤ r. As depth(Bd̄(qi)) >

0, cof fl > ω. Let u ≥ l be largest such that gu involves one of the K̄

measures. We may assume p is chosen to maximize u (subject to having
maximum level). If u = r, we are done, so assume u < r. Let g ′ = supK̄ gu.
Thus, cof g′ > ω. If g′ = f0, then cof f0 > ω, and we finish as before. Other-

wise, consider p′ = ˜hk(u + 1)(f1, . . . , fl−1, gl, . . . , gu, g′, f0). By considering
a path in Td̄ from d̄ to p̄, one easily sees that

(hk(u)(f1, . . . , fl−1, gl, . . . , gu, f0); S̄, L̄) ∈ Td̄,

for some subsequence L̄ of K̄. By proposition 3.3, for some sequence M̄ ,
(p′; S̄, L̄, M̄) ∈ Td̄. Since cof p′ = cof g′ > ω, M 6= ∅. By proposition 3.2,
L(g′; S̄, L̄, M̄ ) > gu, as it involves a measure from M̄ . Thus, L(p′; S̄, L̄, M̄) =
hk(u + 1)(f1, . . . , fl−1, gl, . . . , gu,L(g′; S̄, L̄, M̄ ), f0). This, however, gives a
node in Bd̄(qi) of maximum level which violates the maximality of u. �

We now prove our main lemma.

Lemma 3.15. Fix d̄ = (d; S̄) where d ∈ Dm(S̄), and satisfies condition D.
Then (id; d; S̄)(W m) ≥ ℵω+ξd̄

.

Let d = q1 > q2 > · · · > qn enumerate the q ∈ Dm(S̄), so the number of
d̄–blocks is also n. Recall that depth(Bd̄(q1)) = 0.

For 2 ≤ i ≤ n such that depth(Bd̄(qi)) > 0, let p̄i be as in proposition 3.14.
We refer to these blocks as the non-trivial blocks. For the trivial blocks,
let pi = qi. For non-trivial block i, let p̄i = (pi; S̄, K̄(i)), where K̄(i) =
(K1(i), . . . ,Kti(i)).

Recall that for non-trivial blocks, the ordinal lev d̄(pi) was derived from
wi, the subsequence of oseqd̄(pi) (see definition 3.2). Let t∗i = oseq∗

d̄
(pi), and

li = lhwi − 1, l∗i = lh t∗i − 1. Define two order types, Di, Ei as follows.
For non-trivial blocks, set Ei := ℵ1+#wi(li) · · · · · ℵ1+#wi(0), that is lexi-

cographic ordering on tuples (β0, . . . , βli), where βj < ℵ1+#wi(j), and where
β0 < · · · < βli . Let Ni be the product measure Ni = N(0) × · · · × N(li),

where N(j) = W 1
1 if #wi(j) = 0, and N(j) = S

#wi(j)
1 if #wi(j) > 0.

To define Di, let (t(0), . . . , t(l∗i )) be the sequence of terms from oseq∗
d̄
(pi)

written in increasing order (in the ordering of terms). Let Mi be the product
measure Mi = M(0) × · · · × M(l∗i ), where M(j) = W 1

1 if t(j) = γa
b,c, and

M(j) = Sr
1 if t(j) = ka

b (·r). Let πi be the permutation of l∗i defined by:
t∗i (j) = t(πi(j)). Let Di be the corresponding order type.

For trivial blocks, let Di = Ei = 1. Let E = En ⊕ · · · ⊕ E1, D =
Dn ⊕ · · · ⊕ D1. Let νE , νD be the corresponding measures on (δ1

3)
n.

Notice that for all non-trivial blocks i, (Ei, Ni) is the order type and
measure corresponding to a subsequence of the canonical sequence of πi.

Thus, by lemmas 3.12, 3.13 we have:
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jνD
(δ1

3) ≥ jνE
(δ1

3) ≥ ℵω+ξd̄
≥ (id; d; S̄)(W m)

We show now that jνD
(δ1

3) ≤ (id; d; S̄)(W m), which shows that equality
holds in the previous inequalities, and completes the proof of lemma 3.15.

We define an embedding φ : jνD
(δ1

3) → (id; d; S̄)(W m). Fix [G]νD
,

G : δ
1
3 → δ

1
3. φ([G]νD

) will be represented with respect to W m, S1, . . . , Ss

(as in the definition of (id; d; S̄)(W m)) by φ([G]νD
)(f, h1, . . . , hs). We set

φ([G]νD
)(f, h1, . . . , hs) = G([g]), where g : D → δ

1
3 is defined as follows.

It suffices to define gi = g � Di. If i is a trivial block, that is, Di = 1,
then set gi(0) = (id; f ; pi;h1, . . . , hs). Fix a non-trivial block i, let t∗ =
(t(0), . . . , t(l∗)) = oseq∗

d̄
(pi), and write K1, . . . ,Kt for K1(i), . . . ,Kti(i). Re-

call each term t(l) of oseq∗
d̄
(pi) is of the form tl = γ

al

il,jl
or t(l) = k

al

il
(·rl

).

We must define gi(β0, . . . , βl∗) where β̄ is as in the definition of Di. Fix
such β0, . . . , βl∗ , and for βl > ℵ1, let βl = [τl]W rl

1
, where τl :<rl

→ ℵ1 is of

the correct type.
Finally, define gi(β0, . . . , βl∗) = (id; f ; pi;h1, . . . , hs;β0, . . . , βl∗)

∗. Roughly
speaking, this is defined as (id; pi;h1, . . . , hs; k1, . . . , kt), except that for
subdescriptions q corresponding to terms t(l) of oseq∗

d̄
(pi), the interpreta-

tion of the description, h(q; h̄, k̄), is replaced by βl if t(l) = γa
i,j , and by

h(α1, . . . , αm) = τl(α1, . . . , αrl
) if t(l) = ka

i (·rl
).

More formally, define (id; f ; pi, h̄; β̄)∗ = f((pi; h̄; β̄)∗), where (q; h̄; β̄)∗ <

ℵm+1 is represented with respect to W m
1 by the function (q; h̄; β̄)∗(α1, . . . , αm)

defined inductively as follows:

(1) If q = ha(b)(q1, . . . , ql, q0), Sa = Sr
1 , and l = r−1, then (q; . . . )∗(ᾱ) =

ha((q1; . . . )
∗(ᾱ), . . . , (ql; . . . )

∗(ᾱ), (q0; . . . )
∗(ᾱ)).

(2) If q = ha(b)(q1, . . . , ql, q0), Sa = Sr
1 , and l < r−1, then (q; . . . )∗(ᾱ) =

supγl+1<···<γr−1<(q0;... )∗(ᾱ) ha((q1; . . . )
∗(ᾱ), . . . , (ql; . . . )

∗(ᾱ), γl+1,

. . . , γr−1,

(q0; . . . )
∗(ᾱ)).

(3) If q = h̃a(b)(q1, . . . , ql, q0), Sa = Sr
1 , 1 ≤ l ≤ r−1, then (q; . . . )∗(ᾱ) =

supγl<(ql;... )∗(ᾱ),γl+1<···<γr−1<(q0;... )∗(ᾱ) ha((q1; . . . )
∗(ᾱ), . . . ,

(ql−1; . . . )
∗(ᾱ), γl,

γl+1, . . . , γr−1, (q0; . . . )
∗(ᾱ)).

(4) If q = γi,j , and corresponds to t(e) = γa
i,j, then (q; . . . )∗(ᾱ) = βe <

ℵ1.

(5) If q = ka(b)(q1, . . . , ql, q0) or = k̃a(b)(q1, . . . , ql, q0), note that oseq∗
d̄
(q)

consists of a single term in oseq∗
d̄
(pi), and corresponds to a term, say

t(e) = kb
i (·r) of oseq∗

d̄
(pi). Then (q; . . . )∗(ᾱ) = τe(α1, . . . , αr).

First note that for fixed G, f, h1, . . . , hu each gi(β0, . . . , βl∗i
), and hence g

is well-defined. Next, we claim that for fixed G, that ∀∗f , if [f ] = [f ′] then
∀∗[h1], if [h1] = [h′

1] . . . , ∀∗[hu] if [hu] = [h′
u] then ∀1 ≤ i ≤ n ∀∗β0, . . . , βl∗i

gi(β̄) = f((pi; h̄, β̄)∗) = f ′((pi; h̄′, β̄)∗) = g′i(β̄). To see this, note that
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∀∗β0, . . . , βl∗i
the functions τe (or βe if t(e) = γa

i,j) have range (almost ev-

erywhere) in a c.u.b. set C ⊆ ω1 on which hj = h′
j and is closed under the

hi(0), and without loss of generality, the hj , h
′
j have range in a c.u.b. set

defining a Sm
1 measure one set on which f = f ′. Note also, and this is a

key point, that in computing (pi; h̄; β̄)∗, compositions of the form hk ◦ hl

or hk ◦ τl may be used, but none of the form τk ◦ τl. Also, for a sub-
description q = g(q1, . . . , ql, q0) of pi, it is straightforward to check that
(q1; h̄; β̄)∗ < · · · < (ql; h̄, β̄)∗ < (q0; h̄, β̄)∗; it is here we use the definition of
the ordering of the βj in Di. From these observations the claim is immediate.

The proofs that φ depends only on [G]νD
, and that φ is one-to-one are

similar. So, suppose [G1] = [G2]. Let C ⊆ δ
1
3 be c.u.b. such that if g :<D→

C is of the correct type, then G1([g]) = G2([g]). Let C ′ = {α ∈ C : α

is the αth element of C}. Consider f, h1, . . . , ht such that f has range in
C ′, the hi are of the correct type, and hi+1 has range in a c.u.b. subset
of ω1 closed under hi(0). Let g :<D→ δ

1
3 be the function defined in the

definition of φ. Since f has range in C ′, so does g. Also, g is easily order-
preserving restricted to a measure one set, since the terms of each oseq∗

d̄
(pi)

were enumerated in order of their significance in determining the size of
(pi; S̄; K̄). If i is a non-trivial block, then from proposition 3.14 pi has

the form pi = hj(l)(q1, . . . , ql, q0) where Sj = Sl+1
1 . Then, gi has uniform

cofinality ω, since hj does, and f is continuous. If i is a trivial block, then
gi(0) = f((qi; S̄)), and has cofinality ω since q̄i does in this case. An easy
argument now shows that there is a g′ such that [g′] = [g], and g′ is of the
correct type with range in C.

This completes the proof of lemma 3.15, and of theorem 3.1. As we
remarked in the proof of lemma 3.15, we have actually shown the following.

Theorem 3.16. Let d ∈ Dm(K1, . . . ,Kt) satisfy condition D. Then

(id; d; K̄)(W m) = ℵω+ξd̄

(where ξd̄ is defined after definition 3.3).

Corollary 3.17. The successor cardinals κ, δ
1
3 ≤ κ < δ

1
5, are exactly the

ordinals of the form (id; d; K̄)(W m) for some d ∈ Dm(K1, . . . ,Kt) satisfying
condition D.

Proof. Use the theorem 3.16 and [J1]. �

Remark 3.4. As mentioned previously, our definitions are slightly different
from those of [J1]. However, a minor variation of our embedding argument
shows that the ordinals (id; d; K̄)(W m

1 ) as defined in [J1] are also cardinals
(essentially, one adds extra trivial blocks corresponding to (d) ∈ D̄, that is,
without the symbol s).
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4. Applications

Recall from § 3 the definitions of a basic order type, D, the ordinal
c(D), and the associated measure νD. Recall also lemma 3.12, which says
jνD

(δ1
3) ≥ ℵω+c(D)+1.

We show now that equality holds here, thereby providing another repre-
sentation for the successor cardinals δ

1
3 < κ < δ

1
5.

Theorem 4.1. For D a basic order type, and associated measure νD, we
have jνD

(δ1
3) = ℵω+c(D)+1.

Proof. Let κ = ℵω+c(D)+1. From Martin’s theorem (theorem 3.9), jνD
(δ1

3)

is a cardinal, and since cof(jνD
(δ1

3)) > ω, it is a successor cardinal. From
[J1], every successor δ

1
3 < κ < δ

1
5 is of the form (id; d; S̄)(W m) for some

d ∈ Dm(S̄). From the equality proved in lemma 3.15, κ = (id; d; S̄)(W m) =
jνE

(δ1
3) = ℵω+c(E)+1 for some basic order type E.

To finish, it is enough to observe that if D,E are basic order types with
c(D) = c(E), then jνD

(δ1
3) = jνE

(δ1
3). For this, it is enough to show that

if A,B are sub-basic order types, with c(A) < c(B), then A ⊕ B strongly
embeds into B. This, however, follows from a trivial variation of proposi-
tion 3.11 (replacing (ℵk+1)

m with ℵpm+1 · · · · · ℵp1+1, where p1, . . . , pm ≤
k). �

We thus have two ways of representing the successor cardinals below δ
1
5,

and the results of this paper give an algorithm for converting from one
representation to the other. Questions about the cardinals below δ

1
5 may

thus be approached in either manner. To illustrate this, we compute the
cofinality of a successor cardinal below δ

1
5.

Theorem 4.2. Suppose δ
1
3 = ℵω+1 < ℵα+1 < ℵωωω+1 = δ

1
5. Let α =

ωβ1 + · · ·+ωβn, where ωω > β1 ≥ · · · ≥ βn be the normal form for α. Then:

• If βn = 0, then cof(κ) = δ
1
4 = ℵω+2.

• If βn > 0, and is a successor ordinal, then cof(κ) = ℵω·2+1.
• If βn > 0 and is a limit ordinal, then cof(κ) = ℵωω+1.

We note that ℵω+2,ℵω·2+1, and ℵωω+1 are the three regular cardinals
strictly between δ

1
3 and δ

1
5, and are the ultrapowers of δ

1
3 by the three normal

measures on δ
1
3 (generated by the c.u.b. filter and the possible cofinalities

ω, ω1, ω2). This is proved in [J1].

sketch. The proof in all cases is similar, so suppose βn > 0 and is a limit.
Thus, βn = ωml +ωml−1 + · · ·+ωm1 , where ml ≥ ml−1 ≥ · · · ≥ m1 > 0. For
1 ≤ i ≤ n, let Di be the sub-basic order type corresponding to βi, that is,
c(Di) = ωβi .

Let D = D1⊕· · ·⊕Dn. Thus, Dn = ℵml+1 · · · · ·ℵm1+1. Also, κ := ℵα+1 =
jνD

(δ1
3) from theorem 4.1. Let ν2 be the ω2–cofinal normal measure on δ

1
3.

We embed jν2(δ
1
3) cofinally into κ. Given [F ]ν2 , let π([F ]) = [G]νD

, where for
g = (gl, . . . , g1) :<D→ δ

1
3 of the correct type, G([gl], . . . , [g1]) = F (sup g1).
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π is easily well-defined and strictly increasing. An easy partition argument
using the weak partition relation on δ

1
3 shows that π is also cofinal. �

Finally, we close by considering an example which illustrates the argu-
ments of this paper. Let S̄ = (S3

1 , S2
1), m = 2, and d ∈ Dm(S̄) with func-

tional representation d = h0(0)(·2). Let κ = (id; d; S̄)(W 2). The following
table lists the descriptions q1, . . . , q7 determining the blocks B1, . . . , B7, the
pi giving the depth of each block, and the rank ri := ωdepth(Bi) of eack block.

q1 = h0(0)(·2)

r1 = 1

q2 = h0(1)(h1(0)(·1), ·2)

p2 = h0(2)(h1(0)(·1), k3(0)(·1), ·2)

r2 = ωω

q3 = h̃0(1)(h1(0)(·1), ·2)

p3 = h0(2)(h1(1)(γ4,1, ·1), k5(0)(·1), ·2)

r3 = ωω · ω = ωω+1

q4 = h0(1)(·1, ·2)

p4 = h0(2)(·1, k6(0)(·1), ·2)

r4 = ωω

q5 = h0(2)(·1, h1(0)(·1), ·2)

p5 = h0(2)(·1, h1(1)(γ7,1, ·1), ·2)

r5 = ω

q6 = h̃0(2)(·1, h1(0)(·1), ·2)

p6 = h0(2)(·1, h1(1)(γ8,1, ·2)

r6 = ω

q7 = h̃0(1)(·1, ·2)

p7 = h0(2)(γ9,1, k10(0)(·1), ·2)

r7 = ω · ωω = ωω+1

Thus, κ = ℵωω+1+ω+ω+ωω+ωω+1+ωω+1 = ℵωω+1·2+ωω+1. From theorem 4.2,
cof(κ) = ℵωω+1.
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