
PROJECTIVE ABSOLUTENESS UNDER SACKS
FORCING

DAISUKE IKEGAMI

Abstract. We show that Σ1
3-absoluteness under Sacks forcing is

equivalent to the Sacks measurability of every ∆1
2 set of reals. We

also show that Sacks forcing is the weakest forcing notion among
all of the preorders which always add a new real with respect to
Σ1

3 forcing absoluteness.

1. Introduction

In this paper we will concentrate on forcing absoluteness. Forcing
absoluteness connects forcing with descriptive set theory, which is one
of the main areas of set theory.

Forcing, which was introduced by Cohen [Coh63, Coh64], is a useful
method to construct models of ZFC. He used it to show the indepen-
dence of CH (Continuum Hypothesis) from ZFC (Zermelo-Fraenkel set
theory with the Axiom of Choice) and that of AC (Axiom of Choice)
from ZF (Zermelo-Fraenkel set theory). By using forcing, many propo-
sitions have been proved to be independent from ZFC or consistent
with ZFC.

In forcing we use a transitive model M of ZFC (called a ground
model), a preorder P in M (called a forcing notion), and a filter G
of P, which is generic in a certain sense (called a P-generic filter over
M), to construct the transitive model M [G] of ZFC (called a generic
extension). M [G] is the smallest transitive model of ZFC such that
M ⊂ M [G] and G ∈ M [G]. Furthermore M [G] is a model on whose
properties we have some control in the ground model. These facts are
called the generic model theorem and the forcing theorem respectively.

Since properties of generic extensions mainly depend on the combi-
natorial properties of the corresponding forcing notions, many forcing
notions have been investigated. Typical examples are Cohen forcing,
Hechler forcing, random forcing, amoeba forcing, and Sacks forcing
(denoted by C, D, B, A, and S respectively). Generic filters of these
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forcing notions (except amoeba forcing) can be seen as reals. Such
reals are called Cohen reals, Hechler reals, random reals, and Sacks
reals respectively. In this way these forcing notions have something to
do with reals. This is one of the reasons why forcing is a very useful
method in descriptive set theory.

In descriptive set theory, we investigate the properties of ‘definable’
sets of reals. Usually we work on the real line or similar spaces. Our
interest in subsets of such spaces is mainly in Borel sets, or in the
more complicated ones called projective sets. Projective sets form the
hierarchy called the projective hierarchy, which is defined with respect
to their complexity (See Theorem 2.12). This hierarchy consists of the
classes Σ1

n, Π1
n, and ∆1

n, where n is a natural number. We concentrate
on regularity properties of sets of reals. Regularity properties are ‘nice’
properties: a set with such a property can be approximated by a Borel
set in some sense. Typical examples are the Baire property, Lebesgue
measurability, and Sacks measurability. While a Lebesgue measurable
set can be approximated by a Borel set in the measure-theoretical sense,
a set with the Baire property can be approximated by a Borel set in the
topological sense. A Sacks measurable set can be locally approximated
by a perfect set (a closed set without isolated points).

Soon after the invention of forcing, it was realized that certain ‘sim-
ple’ statements were absolute between a ground model and a generic
extension (i.e. the truth values of these statements were the same be-
tween them). Forcing absoluteness is this type of absoluteness between
a ground model and a generic extension. More precisely, for a ground
model M , a preorder P, and a class of formulas Φ, M is Φ-P-absolute if
for any sentence φ in Φ with some parameters and any P-generic filter
G over M ,

φ is true in M ⇐⇒ φ is true in M [G].

If a statement is absolute under some forcing extension, we can use it to
prove the statement by showing that it is true in the generic extension
instead of the ground model. This is a useful method to prove theorems.
This is why forcing absoluteness has been investigated for many years.

We can find a close relationship between forcing absoluteness under
the above forcing notions and the above regularity properties. The
following are typical examples:

Theorem 2.94 ([JS89, BJ95]).
The following are equivalent:

(1) Σ1
3-C-absoluteness holds.

(2) Every ∆1
2 set of reals has the Baire property.
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(3) For any real x, there exists a Cohen real over L[x].

Theorem 2.95 ([JS89, BJ95]).
The following are equivalent:

(1) Σ1
3-B-absoluteness holds.

(2) Every ∆1
2 set of reals is Lebesgue measurable.

(3) For any real x, there exists a random real over L[x].

Theorem 2.96 ([Sol69, Jud93, BL99]).
The following are equivalent:

(1) Σ1
3-D-absoluteness holds.

(2) Every Σ1
2 set of reals has the Baire property.

(3) For any real x, {c | c is a Cohen real over L[x].} is comeager.
(4) For any real x, there is a Hechler real over L[x].

Theorem 2.97 ([Sol69, Jud93]).
The following are equivalent:

(1) Σ1
3-A-absoluteness holds.

(2) Every Σ1
2 set of reals is Lebesgue measurable.

(3) For any real x, {r | r is a random real over L[x].} is of Lebesgue
measure one.

Theorem 2.98 ([BJ95]).

(1) If Σ1
4-D-absoluteness holds, then every Σ1

3 set of reals has the
Baire property.

(2) Let n be a natural number with n ≥ 4. If Σ1
n+1-D-absoluteness

and Σ1
n-(D ∗D)-correctness hold, then every Σ1

n set of reals has
the Baire property.

Theorem 2.99 ([Bre93, BJ95]).

(1) If Σ1
4-A-absoluteness holds, then every Σ1

3 set of reals is Lebesgue
measurable.

(2) Let n be a natural number with n ≥ 4. If Σ1
n+1-A-absoluteness

and Σ1
n-A-correctness hold, then every Σ1

n set of reals is Lebesgue
measurable.

Uniformization is also important in considering the relationship be-
tween forcing absoluteness and regularity properties. Uniformization is
a property of pointclasses, sets of sets of reals with certain properties.
The uniformization property for a pointclass Γ is a choice principle as
follows: any relation in Γ has a choice function also in Γ. By using the
uniformization property for a part of the projective hierarchy, we can
turn relations into functions without increasing the complexity of the
objects.
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The following is a typical example of the connection between uni-
formization, forcing absoluteness, and regularity properties:

Theorem 2.100 ([Woo82]).
Let n be a natural number with n ≥ 1. Assume that Π1

2n−1 ¹ ω2×ω2
has the uniformization property. If every ∆1

2n set of reals has the Baire
property, then Σ1

2n+1-C-absoluteness holds.

The following are our results:

Main Theorem 4.1.

(1) The following are equivalent:
(a) Σ1

3-S-absoluteness holds.
(b) Every ∆1

2 set of reals is Sacks measurable.
(c) Every Σ1

2 set of reals is Sacks measurable.
(d) For any real r, there is a real x such that x is not in L[r].

(2) Suppose that P is a preorder which always adds a new real.
Then Σ1

3-P-absoluteness implies Σ1
3-S-absoluteness.

Theorem 4.2.
Let n be a natural number with n ≥ 1.

(1) If Σ1
n+1-S-absoluteness holds, then every ∆1

n set of reals is Sacks
measurable.

(2) Assume that Π1
2n−1 ¹ ω2× ω2 has the uniformization property.

If every ∆1
2n set of reals is Sacks measurable, then Σ1

2n+1-S-
absoluteness holds.

Note that the equivalence of (b), (c), and (d) of (1) in Main Theorem
was already proved by Brendle and Löwe [BL99].

(1) in Main Theorem is an analogy of Theorems 2.94–2.97. (2) in
Main Theorem states that Sacks forcing is the weakest forcing notion
among all of the preorders which always add a new real with respect
to Σ1

3 forcing absoluteness. (1) in Theorem is an analogy of Theorems
2.98 and 2.99. (2) in Theorem is an analogy of Theorem 2.100.

This paper consists of four sections. In the second section we will
look at the definitions of and elementary facts about the basic notions.
In the third section we will list some facts used in the proofs of our
results. In the last section we will prove Main Theorem and Theorem.

This paper was written under the supervision of Yo Matsubara.
Thanks to him, the author could concentrate on work for this the-
sis. The author would also like to thank Joan Bagaria, through whose
lecture in Kobe he became interested in forcing absoluteness. He also
appreciates the help given by Yasuo Yoshinobu, who gave him useful
comments on this paper and made the proof of Main Theorem very
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simple. Finally, he is pleased to thank the set theorists in Nagoya.
They arranged a comfortable environment for his study.

2. Basic Concepts

From now on, we will work in ZFC. We assume that readers are
familiar with the elementary theories of forcing, general topology, and
measure theory. (For basic definitions we will not mention, see [Kun80],
[Kel75], and [Hal74].) Also, we follow from [Kun80] about basic nota-
tions. For example, ω is the set of natural numbers containing 0 as
well as the least infinite ordinal. ω1 is the least uncountable cardinal.
We identify a natural number n with {0, · · · , n− 1}.
2.1. Borel sets, projective sets, the definability under second-
order arithmetic, and Borel codes.

Notation 2.1.

• For a set X and a natural number m, Xm is the set of all m-
tuples of elements of X. In particular, X0 = {∅} where ∅ is the
empty sequence.

• Let X be a set. <ωX is the set of all finite sequences in X.
Therefore,

<ωX =
⋃

m∈ω

Xm.

• For sets X, Y , XY is the set of all functions from X to Y .
• Let X, Y be sets and f be a function from X to Y .

– pr1 : X × Y → X is the first projection.
– If f is injective, f−1 is the inverse function of f .
– For a subset A of X, f “A is the image of A by f .
– For a subset B of Y , f−1“B is the preimage of B by f .

• L is the smallest transitive model of ZFC that contains all the
ordinals.

• For a set X, L[X] is the smallest transitive model of ZFC that
contains all the ordinals and L[X] ∩X as elements.

• DC, called the dependent choice, is the following statement:
For any set X and any subset R of X ×X,

if

(∀x ∈ X)(∃x′ ∈ X) (x, x′) ∈ R,

then

(∃f : ω → X)(∀n ∈ ω) (f(n), f(n + 1)) ∈ R.
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• V is the class of all sets.

Remark 2.2.
Suppose that X is a set of ordinals. Then, L[X] is the smallest tran-

sitive model of ZFC that contains all the ordinals and X as elements.

Definition 2.3.
Let X be a topological space.

(1) X is a Polish space if X is a separable, completely metrizable
space.

(2) X is perfect if X has no isolated points.

Example 2.4.

(1) The real line R is a perfect Polish space.
(2) Topologize ω by the discrete topology and topologize ωω by the

product topology. Then ωω is a perfect Polish space. This space
is called Baire space.

(3) Topologize 2 by the discrete topology and topologize ω2 by the
product topology. Then ω2 is a perfect Polish space. This space
is called Cantor space.

(4) Suppose that X is a Polish space and Y is a closed subspace of
X. Then Y is also a Polish space.

(5) Suppose that X, Y are Polish spaces and topologize X × Y
by the product topology. Then X × Y is also a Polish space.
Moreover, if X is perfect, so is X × Y .

(6) Let X be a perfect Polish space and m be a natural number
with m ≥ 1 and topologize Xm by the product topology. Then
Xm is also a perfect Polish space.

(7) Suppose that X is a compact metrizable space and Y is a Polish
space. Let C(X, Y ) be the set of all continuous functions from
X to Y . Fix a compatible complete metric ρ on Y . Topologize
C(X, Y ) by the sup metric induced by ρ. Then C(X, Y ) is a
Polish space.

Definition 2.5.
Let X be a set and A be a subset of P(X). A is a σ-algebra on X

if A satisfies the following conditions:

(1) ∅, X are in A.
(2) For any A in A, X \ A is also in A. Hence A is closed under

complements of X.

(3) For any {An ∈ A | n ∈ ω},
⋃
n∈ω

An is also in A. Hence A is

closed under countable unions.
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Definition 2.6.
Let X be a topological space. The set of all σ-algebras on X contain-

ing all open sets in X is closed under arbitrary intersections. Therefore,
the set

B ¹ X =
⋂
{A | A is a σ-algebra on X containing all open sets in X.}

is the smallest σ-algebra containing all open sets in X. Elements of
B ¹ X are called Borel subsets of X.

Definition 2.7.
Let X, Y be topological spaces.

(1) A function f : X → Y is a Borel function if for any Borel subset
P of Y , f−1“P is a Borel subset of X.

(2) A function f : X → Y is Borel isomorphic if f is bijective and
both f and f−1 are Borel functions.

Remark 2.8.
Let X, Y be topological spaces and f be a function from X to Y .

Then f is a Borel function iff for any open subset P of Y , f−1“P is
a Borel subset of X. Therefore, every continuous function is a Borel
function.

The following theorem is basic and important:

Theorem 2.9 ([Kur58]).
Suppose that X, Y are perfect Polish spaces. Then there is a Borel

isomorphic function f from X to Y . Therefore, the structure of the set
of all Borel sets in a perfect Polish space is unique.

Definition 2.10.
Let X be a topological space and topologize Xm by the product

topology for each natural number m with m ≥ 1.
We will define Σ1

n ¹ Xm, Π1
n ¹ Xm ⊂ P(Xm) by induction on

1 ≤ n < ω for all m with 1 ≤ m < ω simultaneously.

P ∈ Σ1
1 ¹ Xm def⇐⇒ There is a Borel subset Q of Xm ×X

such that P = pr1
“Q.

P ∈ Π1
1 ¹ Xm def⇐⇒ X \ P ∈ Σ1

1 ¹ Xm.
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For n ≥ 2,

P ∈ Σ1
n ¹ Xm def⇐⇒ There is a Q ∈ Π1

n−1 ¹ Xm ×X

such that P = pr1
“Q.

P ∈ Π1
n ¹ Xm def⇐⇒ X \ P ∈ Σ1

n ¹ Xm.

Then, for n ≥ 1,

P ∈ ∆1
n ¹ Xm def⇐⇒ P ∈ Σ1

n ¹ Xm and P ∈ Π1
n ¹ Xm.

We refer to members of Σ1
n ¹ X as Σ1

n subsets of X. Elements of
Π1

n ¹ X, ∆1
n ¹ X are called in the analogous way. Also, if X = ω2, we

refer to members of Σ1
n ¹ X as Σ1

n sets of reals. Elements of Π1
n ¹ ω2,

∆1
n ¹ ω2 are called in the analogous way.

The following theorems and proposition are basic:

Theorem 2.11 ([Sus17, LS18]).
Suppose that X is a perfect Polish space. Then

∆1
1 ¹ X = B ¹ X.

Theorem 2.12 ([Lus25, Sie25]).
Suppose that X is a perfect Polish space. Then the following inclu-

sions hold:

∆1
n ¹ X

(

(

Σ1
n ¹ X

Π1
n ¹ X

(

(
∆1

n+1 ¹ X
(

(

· · ·

· · ·

· · ·
where n is a natural number with n ≥ 1. This hierarchy is called the
projective hierarchy. We refer to sets in Σ1

n ¹ X for some n as projective
sets.

Proposition 2.13.
Let X, Y be perfect Polish spaces and f be a Borel isomorphic

function from X to Y . (The existence of such a function is ensured by
Theorem 2.9.)

Then for any natural number n with n ≥ 1 and any subset P of X,
P is in Σ1

n ¹ X iff f “P is in Σ1
n ¹ Y .

Therefore, the structure of Σ1
n ¹ X for a perfect Polish space X is

unique.
Also, we can deduce the same results for Π1

n ¹ X, ∆1
n ¹ X.
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From now on, we will identify P(ω) with ω2 in a canonical way. Also
when we call a real, it is an element of Cantor space. (Usually, we mean
an element of Baire space by a real. But for simplicity, we will work
on Cantor space and there are no essential differences in the following
arguments.)

Remark 2.14.
Let x be a real. By the above identification and Remark 2.2, L[x] is

the smallest transitive model of ZFC that contains all the ordinals and
x as elements.

Definition 2.15.
Consider the second-order arithmetic structure A2 = 〈ω, P(ω), ∈

, +, · , 0, 1〉, where ∈ is the relation between ω and P(ω), + is the
addition on ω, · is the multiplication on ω, and 0, 1 are the constants
in ω.

(1) We mean an A2-formula by a second-order formula of the lan-
guage of A2.

(2) Let φ be an A2-formula and n be a natural number with n ≥ 1.
(a) φ is arithmetical if φ has no second-order quantifiers.
(b) φ is a Σ1

n-formula if there exists an arithmetical formula ψ
such that

φ ≡
n quantifiers︷ ︸︸ ︷

∃1α1∀1α2 · · ·Qαn ψ

where ∃1, ∀1 are second-order quantifiers and Q is ∃1 if n
is odd, otherwise ∀1.

(c) φ is a Π1
n-formula if there exists an arithmetical formula ψ

such that

φ ≡
n quantifiers︷ ︸︸ ︷

∀1α1∃1α2 · · ·Qαn ψ

where Q is ∀1 if n is odd, otherwise ∃1.
Therefore, a Σ1

n formula has n alternate second-order quantifiers
beginning from ∃1 and a Π1

n formula has n alternate second-
order quantifiers beginning from ∀1.

Notation 2.16.
From now on, we abbreviate “A2 ² φ(~r)” to “φ(~r)” for a finite

sequence of reals ~r.

Definition 2.17.
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For natural numbers m, n with m, n ≥ 1 and a finite sequence ~r in
ω2,

P ∈ Σ1
n(~r) ¹ (ω2)m def⇐⇒ There is a Σ1

n-formula φ such that

P = {~x ∈ (ω2)m | φ(~x,~r)}.
P ∈ Π1

n(~r) ¹ (ω2)m def⇐⇒ There is a Π1
n-formula φ such that

P = {~x ∈ (ω2)m | φ(~x,~r)}.
P ∈ ∆1

n(~r) ¹ (ω2)m def⇐⇒ P ∈ Σ1
n(~r) ¹ (ω2)m and P ∈ Π1

n(~r) ¹ (ω2)m.

We refer to members of Σ1
n(~r) ¹ (ω2)m as Σ1

n(~r) subsets of (ω2)m.
Elements of Π1

n(~r) ¹ (ω2)m, ∆1
n(~r) ¹ (ω2)m are called in the analogous

way.
Also, when m = 1, we refer to members of Σ1

n(~r) ¹ (ω2)m as Σ1
n(~r)

sets of reals. Elements of Π1
n(~r) ¹ (ω2)m, ∆1

n(~r) ¹ (ω2)m are called in
the analogous way.

Notation 2.18.
For natural numbers m, n with m, n ≥ 1 and a finite sequence ~r in

ω2,

• lh(~r) is the length of ~r.
• For i < lh(~r), ri is the i-th coordinate of ~r. Hence

~r = 〈r0, · · · , rlh(~r)−1〉.
• If ~r = 〈r0〉 (i.e. ~r is a sequence with lh(~r) = 1), then Σ1

n(~r) ¹
(ω2)m is abbreviated to Σ1

n(r0) ¹ (ω2)m. Π1
n(~r) ¹ (ω2)m, ∆1

n(~r) ¹
(ω2)m are abbreviated in the same way.

• If ~r = ∅ (i.e. the empty sequence), then Σ1
n(~r) ¹ (ω2)m is

abbreviated to Σ1
n ¹ (ω2)m. Π1

n(~r) ¹ (ω2)m, ∆1
n(~r) ¹ (ω2)m are

abbreviated in the same way.

Remark 2.19.
A finite sequence of reals is coded by a real.
For natural numbers m, n with m, n ≥ 1 and a finite sequence ~r in ω2

with lh(~r) > 0, put l = lh(~r) and define a bijective map f : (ω2)l → ω2
as follows:

f(~x) = y if y(q · l + i) = xi(q)

where q, i are natural numbers with i < l.
Put r′ = f(~r). Then,

Σ1
n(r′) = Σ1

n(~r), Π1
n(r′) = Π1

n(~r), ∆1
n(r′) = ∆1

n(~r), and L[r′] = L[~r].
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The following proposition states the important relationship between
projective sets and the definability under second-order arithmetic:

Proposition 2.20 ([Add59a]).
Let m, n be natural numbers with m, n ≥ 1. Then

Σ1
n ¹ (ω2)m =

⋃
r∈ω2

Σ1
n(r) ¹ (ω2)m,

Π1
n ¹ (ω2)m =

⋃
r∈ω2

Π1
n(r) ¹ (ω2)m,

∆1
n ¹ (ω2)m =

⋃
r∈ω2

∆1
n(r) ¹ (ω2)m.

Definition 2.21.
Suppose that M , N are transitive models of ZF+DC with M ⊂ N .

For a formula φ of the language of set theory, φ is absolute between M
and N if for any ~x ∈ M ,

M ² φ(~x) ⇐⇒ N ² φ(~x).

Theorem 2.22 ([Sol70]).
There is a Π1

1 set of reals BC and a surjection π : BC → B ¹ ω2 such
that for any transitive models M , N of ZF+DC with M ⊂ N , the
following statements are absolute between them:

(1) c is in BC.
(2) c is in BC and x is in π(c).
(3) c1, c2 are in BC and π(c1) = π(c2).

In particular, if c ∈ BCM , then c ∈ BCN and

π(c)M = π(c)N ∩M.

Elements of BC are called Borel codes and π(c) is denoted by Bc for a
Borel code c.

Therefore, we can consider a natural extension of Borel sets.

Definition 2.23.
Suppose that M , N are transitive models of ZF+DC with M ⊂ N

and B is a Borel set of reals in M .

BN def
= BN

c for any Borel code c with c ∈ M and BM
c = B.

By the above theorem, this definition is well-defined.

2.2. Regularity properties.
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2.2.1. The Baire property.

Notation 2.24.

• For a topological space X and a subset P of X,
– Int(P ) is the interior of P in X.
– Cl(P ) is the closure of P in X.

• Let X, Y be sets.

X4Y = (X \ Y ) ∩ (Y \X).

X4Y is called the symmetric difference between X and Y .
• Let S, T be sets of sentences of the language of set theory.

Con(S) is the assertion that S is consistent. We say that S, T
are equiconsistent if Con(S) is equivalent to Con(T ).

Definition 2.25.
Let X be a set and I be a subset of P(X).

(1) I is an ideal on X if I satisfies the following conditions:
(a) For any A in I and any subset B of A, B is also in I. Hence

I is closed under subsets.
(b) For any A, B in I, A ∪ B is also in I. Hence I is closed

under finite unions.
(2) Let I be an ideal on X. I is a σ-ideal if for any {An ∈ I | n ∈ ω},⋃

n∈ω

An is also in I. Hence I is closed under countable unions.

Usually, we consider an ideal on some set a set of small sets.

Definition 2.26.
For a topological space X and a subset P of X,

(1) P is nowhere dense if Int(Cl(P )) = ∅.
(2) P is meager if P is a union of a countable set of nowhere dense

sets.
(3) P has the Baire property if there is an open subset O of X such

that P4O is meager.
(4) P is comeager if X \ P is meager.

Remark 2.27.
Suppose that X is a perfect T1 space.

(1) Every singleton in X is nowhere dense.
(2) Every countable subset of X is meager. Moreover, the set of

all meager sets in X is a σ-ideal on X. Therefore, meager
sets are small sets and a set with the Baire property can be
approximated by an open set in the topological sense.
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(3) Every open subset of X has the Baire property. Moreover, the
set of all subsets of X with the Baire property is the smallest σ-
algebra containing all open subsets in X and all meager subsets
of X. In particular, every Borel subset of X has the Baire
property.

The following theorems are basic and important:

Theorem 2.28 ([Bai99]).
Let X be a completely metrizable space. Then every nonempty open

set in X is not meager.

Theorem 2.29 ([Vit05, Ber08]).
Suppose that X is a perfect Polish space. Then there is a subset of

X which does not have the Baire property.

Therefore, the Baire property cannot be trivial in a perfect Polish
space.

Note that the last theorem needs the axiom of choice by the following
theorem:

Theorem 2.30 ([She84, Rai84]).
Suppose that Con(ZFC) holds. Then Con(ZF + DC+ “Every set of

reals has the Baire property.”) holds.

The following theorems are important:

Theorem 2.31 ([LS23]).
Suppose that X is a perfect Polish space. Then every Σ1

1 subset of
X has the Baire property.

Theorem 2.32 ([Göd38, Nov51]).
In L, “There is a ∆1

2 set of reals which does not have the Baire
property.” holds. In particular, we cannot prove in ZFC that every ∆1

2

set of reals has the Baire property.

2.2.2. Lebesgue measurability.

Notation 2.33.

• Let I be a set and 〈(Xi, Bi, µi) | i ∈ I〉 be an I-sequence of

probability spaces.

(∏
i∈I

Xi,
⊗
i∈I

Bi,
⊗
i∈I

µi

)
is the completion

of the product of 〈(Xi, Bi, µi) | i ∈ I〉.
• µR is Lebesgue measure on R.
• For a set of ordinals X, supX is the supremum of X. Therefore,

supX is the ordinal such that

(∀α ∈ X) α ≤ supX and (∀α < supX) (∃β ∈ X) α < β.
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• Let X be a set. |X| is the cardinality of X.
• Let κ be a cardinal.

2κ = |κ2|.
Definition 2.34.

Consider the probability measure µ2 on 2 such that

µ2({0}) =
1

2
, µ2({1}) =

1

2
.

Put

µ(ω2) =
⊗
n∈ω

µ2.

This measure is also called the Lebesgue measure on ω2.

(1) A subset P of ω2 is Lebesgue measurable on ω2 if P is in
⊗
n∈ω

P(2).

(2) A subset P of ω2 is null if P is Lebesgue measurable on ω2 and
µ(ω2)(P ) = 0.

(3) A subset P of ω2 is of Lebesgue measure one if ω2 \ P is null.

The reason why we call µ(ω2) Lebesgue measure is the following:

Proposition 2.35 (See [Lév02].).
There is a Borel isomorphic function π : ω2 → R such that for any

subset P of ω2, P is Lebesgue measurable on ω2 iff π“P is Lebesgue
measurable on R.

By the above proposition, from now on, we will concentrate on the
Lebesgue measurability on Cantor space.

The following theorem is analogous to Theorem 2.29:

Theorem 2.36 ([Vit05]).
There is a set of reals which is not Lebesgue measurable.

Similar to the Baire property, the above theorem needs the axiom of
choice. For stating that, we see the definition of a strongly inaccessible
cardinal.

Definition 2.37.
Let κ be an infinite cardinal.

(1) κ is regular if for any ordinal α with α < κ and any function
f : α → κ, sup(f “α) < κ.

(2) Suppose that κ is uncountable.
κ is strongly inaccessible if κ is regular and for any cardinal γ
with γ < κ, 2γ < κ.
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A strongly inaccessible cardinal is a basic example of large cardi-
nals. We cannot deduce Con(ZFC+“There is a strongly inaccessible
cardinal.”) from Con(ZFC).

Theorem 2.38 ([Sol70] and [She84, Rai84]).
The following are equiconsistent:

(1) ZFC+“There is a strongly inaccessible cardinal.”
(2) ZF+DC+“Every set of reals is Lebesgue measurable.”
(3) ZF+DC+“Every Σ1

3 set of reals is Lebesgue measurable.”

By Theorem 2.30, 2.38, we can find one of the differences between
the Baire property and Lebesgue measurability.

The following theorems are analogous to Theorem 2.31 and Theo-
rem 2.32 respectively:

Theorem 2.39 ([Lus17]).
Every Σ1

1 set of reals is Lebesgue measurable.

Theorem 2.40 ([Göd38, Nov63]).
In L, “There is a ∆1

2 set of reals which is not Lebesgue measurable.”
holds. In particular, we cannot prove in ZFC that every ∆1

2 set of reals
has the Baire property.

2.2.3. Bernstein sets and Sacks measurability.

Notation 2.41.

• Let X, Y be sets, f be a function from X to Y , and A be a
subset of X. Put

f ¹ A = {(x, f(x)) ∈ X × Y | x ∈ A}.
f ¹ A is called the restriction of f to A.

• For s in <ω2, put

Ns = {x ∈ ω2 | s ⊂ x}.
Remark 2.42.
{Ns | s ∈ <ω2} forms a basis for Cantor space.

Definition 2.43.
Let X be a nonempty set and T be a subset of ωX.

(1) T is a tree on X if for any element t of T and any subsequence
s of t, s is also in T . Hence T is closed under subsequences. We
call elements of T nodes of T .

(2) Let T be a tree on X.
(a) For nodes s, t of T , s, t are incompatible in T if there are

no nodes u of T such that s, t are subsequences of u.
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(b) T is perfect if for any node t of T , there are two nodes u,
v of T such that t is a subsequence of u, v and u, v are
incompatible in T .

(c) Define [T ] as follows:

[T ]
def
= {x ∈ ωX | (∀n ∈ ω) x ¹ n ∈ T.}.

We call elements of [T ] branches of T .
(d) stem(T ) is the maximal node t0 of T such that for any node

t of T , either t0 ⊂ t or t ⊂ t0 holds.

Definition 2.44.
For a topological space X and a subset A of X,

(1) A is perfect if A is closed in X and A is perfect as a topological
subspace of X.

(2) A is a Bernstein set if neither A nor X \ A contains a perfect
subset of X.

Remark 2.45.
Let X be a discrete topological space and topologize ωX by the

product topology.

(1) For any subset A of ωX, A is closed iff there is a tree T on X such
that A = [T ]. Therefore, there is a canonical correspondence
between closed subsets of ωX and trees on X.

(2) For any subset A of ωX, A is perfect iff there is a perfect tree
T on X such that A = [T ]. Therefore, there is a canonical
correspondence between perfect subsets of ωX and perfect trees
on X.

Remark 2.46.
Suppose that X, Y are perfect Polish spaces and f is a Borel isomor-

phic function from X to Y . (The existence of such a function is ensured
by Theorem 2.9.) Then for any subset A of X, A is a Bernstein subset
of X iff f “A is a Bernstein subset of Y . Therefore, a Borel isomorphic
function between perfect Polish spaces preserves the property of being
a Bernstein set.

The following theorem is analogous to Theorem 2.29, 2.36:

Theorem 2.47 ([Ber08]).
Suppose that X is a perfect Polish space. Then there is a subset of

X which is a Bernstein set.

Remark 2.48.
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Suppose that X is a perfect Polish space. If P is a Bernstein subset
of X, then P does not satisfy the Baire property and the Lebesgue
measurability.

By Theorem 2.30 and Remark 2.48, the following theorem holds:

Theorem 2.49.
Suppose that Con(ZFC) holds. Then Con(ZF + DC + “Every set of

reals is not a Bernstein set.”) holds.

Note that Theorem 2.47 needs the axiom of choice by the last theo-
rem.

By Theorem 2.31, 2.39 and Remark 2.48, the following theorem
holds:

Theorem 2.50.
Suppose that X is a perfect Polish space. Then every Σ1

1 subset of
X is not a Bernstein set.

The following theorem is analogous to Theorem 2.32, 2.40:

Theorem 2.51 (See [BL99].).
In L, “There is a ∆1

2 set of reals which is a Bernstein set.” holds. In
particular, we cannot prove in ZFC that every ∆1

2 set of reals is not a
Bernstein set.

Definition 2.52.
For a set of reals P ,

(1) P is Sacks null if for any perfect tree S on 2, there is a perfect
tree S ′ on 2 such that S ′ ⊂ S and [S ′] ∩ P = ∅.

(2) P is of Sacks measure one if for any perfect tree S on 2, there
is a perfect tree S ′ on 2 such that S ′ ⊂ S and [S ′] ⊂ P .

(3) P is Sacks measurable if for any perfect tree S on 2, there is a
perfect tree S ′ on 2 such that S ′ ⊂ S and either [S ′]∩P = ∅ or
[S ′] ⊂ P holds.

Note that some typical regularity properties can be expressed in the
analogous way to the above definition.

Remark 2.53.
For a set of reals P ,

(1) P has the Baire property iff for any s in <ω2, there exists a s′

in <ω2 such that s′ ⊃ s and either Ns′ ∩ P is meager or Ns′ \ P
is meager.

(2) P is Lebesgue measurable iff for any Borel subset B of ω2 with
a positive measure, there exists a Borel subset B′ of ω2 with a
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positive measure such that B′ ⊂ B and either B′ ∩ P is null or
B′ \ P is null.

The Sacks measurability coincides with the property of not being a
Bernstein set in the following sense:

Remark 2.54.
Let n be a natural number with n ≥ 1 and Γ denote one of the fol-

lowing pointclasses, Σ1
n ¹ ω2, Π1

n ¹ ω2, or ∆1
n ¹ ω2. Then the following

are equivalent:

(1) Every set of reals in Γ is Sacks measurable.
(2) For any set of reals P in Γ, there exists a perfect tree S on 2

such that either [S] ∩ P = ∅ or [S] ⊂ P holds.
(3) No sets of reals in Γ are Bernstein sets.

2.3. Uniformization.

Notation 2.55.
Let f be a function from some set to some set. dom(f) denotes the

domain of f .

Definition 2.56.
Let X, Y be sets, P be a subset of X ×Y , and f be a function from

a subset of X to Y .
f uniformizes P if for any x ∈ dom(f), (x, f(x)) ∈ P and dom(f) =

pr1
“P . We call such an f a choice function for P .

If we use the axiom of choice, we can find a choice function for any
subset of any product of two sets. But, the question is the complexity
of such a choice function.

Definition 2.57.
Let X, Y be sets and Γ be a subset of P(X × Y ). Γ has the uni-

formization property if for any P in Γ, there exists a function f in Γ
such that f uniformizes P .

In the above definition, our main concern is the case when X, Y
are perfect Polish spaces and Γ is one of the following, Σ1

n ¹ X × Y ,
Π1

n ¹ X × Y , or ∆1
n ¹ X × Y , where n is a natural number with n ≥ 1.

Remark 2.58.
Let n be a natural number with n ≥ 1. Suppose that X, X ′, Y , Y ′

are perfect Polish spaces. (By Example 2.4, X × Y , X ′ × Y ′ are also
perfect Polish spaces.)

Then Σ1
n ¹ X×Y has the uniformization property iff Σ1

n ¹ X ′×Y ′ has
the uniformization property. Also, Π1

n ¹ X × Y has the uniformization
property iff Π1

n ¹ X ′ × Y ′ has the uniformization property.
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By the above remark, from now on, we concentrate when X = Y =
ω2. Also, we consider when Γ is Σ1

n(~r), Π1
n(~r), or ∆1

n(~r), where ~r is a
finite sequence of reals.

The following propositions are basic:

Proposition 2.59 (See [Mos80].).
Let n be a natural number with n ≥ 1 and ~r be a finite sequence of

reals.

(1) Neither ∆1
n ¹ ω2 × ω2 nor ∆1

n(~r) ¹ ω2 × ω2 can have the uni-
formization property.

(2) If Σ1
n ¹ ω2×ω2 has the uniformization property, then Π1

n ¹ ω2×
ω2 cannot have the uniformization property and vice versa. The
same result also holds for Σ1

n(~r) ¹ ω2× ω2 and Π1
n(~r) ¹ ω2× ω2.

Proposition 2.60 (See [Mos80].).
Let n be a natural number with n ≥ 1 and ~r be a finite sequence of

reals.

(1) Suppose that Σ1
n ¹ ω2 × ω2 has the uniformization property.

Then Σ1
n(~r) ¹ ω2 × ω2 has the uniformization property. The

same result also holds for Π1
n ¹ ω2× ω2 and Π1

n(~r) ¹ ω2× ω2.
(2) Suppose that Σ1

n(~r) ¹ ω2× ω2 has the uniformization property.
Then Σ1

n ¹ ω2× ω2 has the uniformization property. The same
result also holds for Π1

n(~r) ¹ ω2× ω2 and Π1
n ¹ ω2× ω2.

Proposition 2.61 (See [Mos80].).
Let n be a natural number with n ≥ 1 and ~r be a finite sequence of

reals. Suppose that Π1
n(~r) ¹ ω2 × ω2 has the uniformization property.

Then Σ1
n+1(~r) ¹ ω2 × ω2 has the uniformization property. The same

result also holds for Π1
n ¹ ω2× ω2 and Σ1

n+1 ¹ ω2× ω2.

The following theorem is important:

Theorem 2.62 ([Kon39]).
Let ~r be a finite sequence of reals. Then Π1

1(~r) ¹ ω2 × ω2 and Π1
1 ¹

ω2 × ω2 have the uniformization property. Therefore, Σ1
2(~r) ¹ ω2 × ω2

and Σ1
2 ¹ ω2× ω2 have the uniformization property.

We cannot generalize Theorem 2.62 to higher pointclasses in ZFC.

Theorem 2.63 ([Lév65]).
We cannot prove in ZFC that every Π1

2 ¹ ω2 × ω2 subset can be
uniformized by some projective set.

We can generalize Theorem 2.62 to higher pointclasses under the
existence of certain large cardinals.
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Theorem 2.64 ([MS88, MS89] and [Mos71]).
Let n be a natural number with n ≥ 1. Suppose that there exist

2n− 1 Woodin cardinals and a measurable cardinal above them. Then
Π1

2n+1 ¹ ω2× ω2 and Σ1
2n+2 ¹ ω2× ω2 have the uniformization property.

Note that measurable cardinals and Woodin cardinals are typical
examples of large cardinals.

2.4. Typical forcing notions and forcing absoluteness.

Notation 2.65.
Let P be a preorder.

• Suppose that G is a P-generic filter over V . For any set X in
V [G] with X ⊂ V , V [X] is the smallest transitive model of ZFC
that contains all the sets in V and X as elements.

• P ∗ P is the two step iteration of P.

Definition 2.66.

C def
= <ω2.

For any p, q in C, p ≤ q (i.e. p is stronger than or equal to q) if p ⊃ q.
This forcing notion is called Cohen forcing.

Remark 2.67.
Suppose that G is a C-generic filter over V . Put

c =
⋃
p∈G

p.

Then, by the genericity of G, c is a real. Such a real is called a Cohen
real over V .

On the other hand, G is constructed from c because

G = {p ∈ C | p ⊂ c}.
Therefore, there is a canonical correspondence between Cohen reals

over V and C-generic filters over V .

Definition 2.68.
Let P be a preorder. P is non-atomic if for any condition p of P,

there are two conditions q, r of P such that q, r ≤ p and q, r are
incompatible.

Remark 2.69.
Suppose that P is a forcing notion which always adds a new real (i.e.

°P “There is a real which is not in V ”.). Then P is non-atomic. (But
the converse does not hold in general.)
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The following characterization of Cohen forcing is useful and impor-
tant:

Proposition 2.70 (Folklore. See [Kun80].).
Suppose that P is a countable non-atomic forcing notion. Then P is

forcing equivalent to Cohen forcing.

Remark 2.71.

(1) Cohen forcing is forcing equivalent to the following preorder C′:
C′ = {B | B is a non-meager Borel set of reals.}.

For B1, B2 in C′, B1 ≤ B2 if B1 \B2 is meager.
(2) Let x be a real and M be a transitive model of ZF+DC.

Then x is a Cohen real over M iff for any meager Borel set of
reals B in M , x is not in BV .

Definition 2.72.

D def
= ω × ωω.

For 〈m, f〉, 〈n, g〉 in D,

〈m, f〉 ≤ 〈n, g〉 if m ≥ n, f ¹ n = g ¹ n, and (∀k ≥ n)f(k) ≥ g(k).

This forcing notion is called Hechler forcing.

Remark 2.73.

(1) Suppose that G is a D-generic filter over V . Put

d =
⋃
{f ¹ n | 〈n, f〉 ∈ G}.

Then, by the genericity of G, d is in ωω. Such a function is
called a Hechler real over V .

On the other hand, G is constructed from d and V because

G = {〈n, f〉 ∈ D ∩ V | f ¹ n ⊂ d}.
Therefore, there is a canonical correspondence between Hechler
reals over V and D-generic filters over V .

(2) Suppose that d is a Hechler real over V . Then d is a dominating
real over V , namely

(∀x ∈ ωω ∩ V ) (∃n ∈ ω) (∀k ≥ n) d(k) ≥ f(k).

Definition 2.74.

B def
= {B | B is a Borel subset of ω2 with a positive measure.}.

For B1, B2 in B, B1 ≤ B2 if B1 \B2 is null.
This forcing notion is called random forcing.
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Remark 2.75.
Suppose that G is a B-generic filter over V . Then, by the genericity

of G,
⋂

B∈G

BV [G] is a singleton. Let r be the element of the singleton.

Such a real is called a random real over V .
On the other hand, G is constructed from r and V in the following

way:

G = {BV | r ∈ BV [r]}.
Therefore, there is a canonical correspondence between random reals

over V and B-generic filters over V .

Definition 2.76.
For a real number ε with 0 < ε < 1, let

Aε
def
= {U | U is a nonempty open subset of ω2 and µ(ω2)(U) < ε.}.

For U1, U2 in Aε, U1 ≤ U2 if U1 ⊃ U2.
Also, put

A = A 1
2
.

A is called amoeba forcing.

Lemma 2.77 ([Tru88]).
Suppose that ε is a real number with 0 < ε < 1.
Then Aε is isomorphic to A.

Remark 2.78.
Suppose that G is a A-generic filter over V . Then, in V [G], the set

{r ∈ ω2 | r is a random real over V.}
is of Lebesgue measure one.

Definition 2.79.

S def
= {S | S is a perfect tree on 2.}.

For S1, S2 in S, S1 ≤ S2 if S1 ⊂ S2.
This forcing notion is called Sacks forcing.

Remark 2.80.
Suppose that G is an S-generic filter over V . Put

s =
⋃
{stem(S) | S ∈ G}.

Then, by the genericity of G, s is a real. Such a real is called a Sacks
real over V .



PROJECTIVE ABSOLUTENESS UNDER SACKS FORCING 23

On the other hand, G is constructed from s and V because

G = {S ∈ S ∩ V | s ∈ [S]}.
Therefore, there is a canonical correspondence between Sacks reals

over V and S-generic filters over V .

The following property is known as the minimality of Sacks forcing:

Theorem 2.81 ([Sac71]).
Suppose that s is a Sacks real over V . Then, in V [s], for any set X

such that X is not in V and X ⊂ V , V [X] = V [s].

The following theorems are important:

Theorem 2.82 ([Sac71]).
Suppose that s is a Sacks real over V . Then, in V [s], for any real s′

which is not in V , s′ is also a Sacks real over V .

Theorem 2.83 ([Bre00]).
Suppose that s is a Sacks real over V . Then, in V [s], the set

{s′ | s′ is a Sacks real over V.}
is of Sacks measure one.

Definition 2.84.
Let n be a natural number with n ≥ 1, P be a preorder, and Γ be

Σ1
n or Π1

n.

(1) Γ-P-absoluteness is the following statement:
For any Γ-formula φ and any finite sequence of reals ~r,

φ(~r) iff °P φ(~r )̌.

(2) Γ-P-correctness is the following statement:
If G is a P-generic filter over V , then for any Γ-formula φ and

any real x in V [G],

V [x] ² φ(x) iff V [G] ² φ(x).

Remark 2.85.
Let n be a natural number with n ≥ 1 and P be a preorder.

(1) By Remark 2.19, Σ1
n-P-correctness implies Σ1

n-P-absoluteness.
Also, Π1

n-P-correctness implies Π1
n-P-absoluteness.

(2) Σ1
n-P-correctness is equivalent to Π1

n-P-correctness.
(3) In general, Σ1

n-P-absoluteness is not equivalent to Π1
n-P-absoluteness.

But, the following notion for a preorder is sufficient for the equiva-
lence:



24 D. IKEGAMI

Definition 2.86.
Let P be a preorder.

(1) A function π : P→ P is an automorphism on P if π is bijective
and for any conditions p, q of P, p ≤ q iff π(p) ≤ π(q).

(2) P is weakly homogeneous if for any conditions p, q of P, there are
conditions p′, q′ of P with p′ ≤ p, q′ ≤ q and an automorphism
π on P such that π(p′) = π(q′).

Proposition 2.87.
Suppose that P is a weakly homogeneous preorder. Then for any

natural number n with n ≥ 1, Σ1
n-P-absoluteness is equivalent to Π1

n-
P-absoluteness.

Example 2.88.
Cohen forcing, Sacks forcing are weakly homogeneous.

Remark 2.89.
Let n be a natural number with n ≥ 1. By Proposition 2.87 and

Example 2.88, Σ1
n-C-absoluteness is equivalent to Π1

n-C-absoluteness.
The same result holds for Sacks forcing. Moreover, by Theorem 2.81,
Σ1

n-S-correctness is equivalent to Σ1
n-S-absoluteness.

The following theorem is basic and important:

Theorem 2.90 ([Sho61]).
Suppose that M is a transitive model of ZF+DC and ω1 ⊂ M . Then

every Σ1
2-formula is absolute between M and V .

The following corollary is the start line of the investigation on forcing
absoluteness:

Corollary 2.91.
For any preorder P, Σ1

2-P-absoluteness, Π1
2-P-absoluteness, Σ1

2-P-
correctness, and Π1

2-P-correctness hold.

The following theorem is also basic and important:

Theorem 2.92 ([Göd40, Add59b]).

(1) The statement “x is a real and x is in L” is equivalent to a
Σ1

2-formula under ZF+DC.
(2) The statement “x, y are reals and x is in L[y]” is equivalent to

a Σ1
2-formula under ZF+DC.

The following corollary states that the above corollary is optimal in
ZFC:
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Corollary 2.93.
The statement “There is a real which is not in L” is equivalent to a

Σ1
3 sentence under ZF+DC. In particular, if P is a forcing notion which

always adds a new real, then in L, Σ1
3-P-absoluteness fails.

2.5. Known results on forcing absoluteness.
There is a close relationship between forcing absoluteness and regu-

larity properties.

Theorem 2.94 ([JS89, BJ95]).
The following are equivalent:

(1) Σ1
3-C-absoluteness holds.

(2) Every ∆1
2 set of reals has the Baire property.

(3) For any real x, there exists a Cohen real over L[x].

Theorem 2.95 ([JS89, BJ95]).
The following are equivalent:

(1) Σ1
3-B-absoluteness holds.

(2) Every ∆1
2 set of reals is Lebesgue measurable.

(3) For any real x, there exists a random real over L[x].

Theorem 2.96 ([Sol69, Jud93, BL99]).
The following are equivalent:

(1) Σ1
3-D-absoluteness holds.

(2) Every Σ1
2 set of reals has the Baire property.

(3) For any real x, {c | c is a Cohen real over L[x].} is comeager.
(4) For any real x, there is a Hechler real over L[x].

Theorem 2.97 ([Sol69, Jud93, BL99]).
The following are equivalent:

(1) Σ1
3-A-absoluteness holds.

(2) Every Σ1
2 set of reals is Lebesgue measurable.

(3) For any real x, {r | r is a random real over L[x].} is of Lebesgue
measure one.

The following theorems are generalizations of the above theorems:

Theorem 2.98 ([BJ95]).

(1) If Σ1
4-D-absoluteness holds, then every Σ1

3 set of reals has the
Baire property.

(2) Let n be a natural number with n ≥ 4. If Σ1
n+1-D-absoluteness

and Σ1
n-(D ∗D)-correctness hold, then every Σ1

n set of reals has
the Baire property.

Theorem 2.99 ([BJ95]).
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(1) If Σ1
4-A-absoluteness holds, then every Σ1

3 set of reals is Lebesgue
measurable.

(2) Let n be a natural number with n ≥ 4. If Σ1
n+1-A-absoluteness

and Σ1
n-A-correctness hold, then every Σ1

n set of reals is Lebesgue
measurable.

Theorem 2.100 ([Woo82]).
Let n be a natural number with n ≥ 1. Assume that Π1

2n−1 ¹ ω2×ω2
has the uniformization property. If every ∆1

2n set of reals has the Baire
property, then Σ1

2n+1-C-absoluteness holds.

3. Facts

In this section, some known facts we will use in the proof of our
theorems are listed.

Notation 3.1.

• For a set X and finite sequences s and t in X, sat is the con-
catenation of s and t. Hence

sat = 〈s0, · · · , slh(s)−1, t0, · · · , tlh(t)−1〉.
• For a metric space (X, d) and a subset A of X,

diam(A) = sup{d(x, y) | x, y ∈ A}.
Fact 3.2 ([BL99]).

The following are equivalent:

(1) Every ∆1
2 set of reals is Sacks measurable.

(2) Every Σ1
2 set of reals is Sacks measurable.

(3) For any real r, there is a real x such that x is not in L[r].

Fact 3.3 ([Sol69]).
Let r be a real and P be a Σ1

2(r) subset of ω2 × ω2. Then either
P ⊂ L[r] or P contains a perfect subset.

Fact 3.4 ([Sac71]).
Suppose that 〈St | t ∈ <ω2〉 is a sequence of perfect trees on 2 such

that

(1) for any t1, t2 in <ω2 with t1 ⊂ t2, St1 ⊃ St2 ,
(2) for any t in <ω2, [Sta〈0〉] ∩ [Sta〈1〉] = ∅,
(3) for any t in <ω2, lh(stem(St)) ≥ lh(t).

Put

C =
⋃

m∈ω

⋂
t∈m2

[St].

Then, C is a perfect subset of ω2 with C ⊂ [S∅].
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4. Proofs of Theorems

Main Theorem 4.1.

(1) The following are equivalent:
(a) Σ1

3-S-absoluteness holds.
(b) Every ∆1

2 set of reals is Sacks measurable.
(c) Every Σ1

2 set of reals is Sacks measurable.
(d) For any real r, there is a real x such that x is not in L[r].

(2) Suppose that P is a preorder which always adds a new real.
Then Σ1

3-P-absoluteness implies Σ1
3-S-absoluteness.

Proof.
(1) By Fact 3.2, it suffices to show that (a) ⇔ (d).
First, we will show that (a) ⇒ (d), but this is taken care of by the

proof of (2). In fact, in the proof of (2), we will show that Σ1
3-P-

absoluteness implies (d). Since Sacks forcing adds a Sacks real over V ,
it satisfies the assumption about P in (2). (Of course, we will not use
(a) ⇒ (d) in the proof of (2).)

Next, we will show that (d) ⇒ (a).
Suppose that Σ1

3-S-absoluteness fails and we will derive a contradic-
tion.

Then there is a Σ1
3-formula φ and a finite sequence of reals ~r such

that

φ(~r) <°S φ(~r )̌.

First, we will show that φ(~r) implies °S φ(~r )̌. Let ψ be the Π1
2-

formula such that φ ≡ ∃1α1ψ. Since φ(~r) holds, there exists a real x
such that ψ(x, ~r). By Theorem 2.90, for any S-generic filter G over V ,
V [G] ² ψ(x, ~r), which implies V [G] ² φ(~r). Hence °S φ(~r )̌ holds.

Therefore,

°S φ(~r )̌, but ¬φ(~r).

Let θ be the Σ1
1-formula such that φ ≡ ∃1α1∀1α2θ.

Suppose that s is a Sacks real over V . Then, by °S φ(~r )̌, in V [s],
there is a real s′ such that for any real y, θ(s′, y, ~r). By ¬φ(~r) and
Theorem 2.90, s′ is not in V . Therefore, by Theorem 2.81 and Theorem
2.82, V [s′] = V [s] and s′ is also a Sacks real over V . Hence in V [s′],
for any real y, θ(s′, y, ~r). By the forcing theorem, there is an S in S
such that

S °S “
(∀y ∈ ω2

)
θ(ṡ, y, ~r )̌”, (∗)

where ṡ is a canonical name for a Sacks real.
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Next, by ¬φ(~r), for any real x, there is a real y such that ¬θ(x, y, ~r).
Since {(x, y) | ¬θ(x, y, ~r)} is a Π1

1(~r) subset of ω2 × ω2, by Theorem
2.62, there is a Π1

1(~r) function f : ω2 → ω2 such that for any real x,
¬θ(x, f(x), ~r).

We will approximate f ¹ [S] by some Borel function whose domain is
a perfect subset. Since S can be seen as a real, f ¹ [S] is in Π1

1 ¹ ω2×ω2.
By Proposition 2.20, there is a real r′ such that f ¹ [S] ∈ Π1

1(r
′) ¹

ω2 × ω2. By Fact 3.3, f ¹ [S] ⊂ L[r′] or f ¹ [S] contains a perfect
subset. By Remark (d), there is a real x such that x is not in L[r′].
Since there is a canonical bijection from ω2 to [S], such a real is also
in [S] and such a set is in f ¹ [S], hence f ¹ [S] * L[r′]. Therefore,
f ¹ [S] contains a perfect subset g. Note that g is a function since f is
a function. Put C = dom(g). Then pr1 ¹ g : g → C is surjective and
continuous. Since g is a function, it is also injective. Moreover, since
g is compact and C is Hausdorff, it is homeomorphism. Therefore, C
is perfect because g is perfect. Hence g is a Borel function which is a
restriction of f to a perfect subset, as we desired.

By Remark 2.45, there are perfect trees S ′ on 2 and T on 2× 2 such
that C = [S ′] and g = [T ]. Note that S ′ ⊂ S. Take a Sacks real s′′

over V with s′′ in [S ′]. Since for any real x, ¬θ(x, f(x), ~r) and g ⊂ f ,
the following statements hold in V :

∀x∀y
(
(x, y) ∈ [T ] → ¬θ(x, y, ~r)

)
,

∀x ∈ [S ′]∃y
(
(x, y) ∈ [T ]

)
.

Since a perfect tree on 2 and a perfect tree on 2 × 2 can be seen as
reals, the first statement is equivalent to a Π1

1-formula with parame-
ters T and ~r and the second statement is equivalent to a Π1

2-formula
with parameters S ′ and T . Therefore, by Theorem 2.90, the above
statements also hold in V [s′′]. Since s′′ is in [S ′],

V [s′′] ² “
(∃y ∈ ω2

)¬θ(s′′, y, ~r)”,

which contradicts with (∗).
(2) Suppose that P is a preorder which always adds a new real. By

(d) ⇒ (a), it suffices to show that (d).
Take any real r. By the assumption about P,

°P “(∃x ∈ ω2) x /∈ L[ř ]”.

By Theorem 2.92, the above statement is equivalent to a Σ1
3-formula

with a parameter r. By Σ1
3-P-absoluteness, it also holds in V . Hence

we obtained (d). ¥
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Theorem 4.2.
Let n be a natural number with n ≥ 1.

(1) If Σ1
n+1-S-absoluteness holds, then every ∆1

n set of reals is Sacks
measurable.

(2) Assume that Π1
2n−1 ¹ ω2× ω2 has the uniformization property.

If every ∆1
2n set of reals is Sacks measurable, then Σ1

2n+1-S-
absoluteness holds.

Proof.
(1) Take any ∆1

n set of reals P . By Remark 2.54, it suffices to show
that there exists a perfect tree S on 2 such that either [S] ∩ P = ∅ or
[S] ⊂ P holds.

By Proposition 2.20, there is a Σ1
n-formula φ, a Π1

n-formula ψ, and a
real r such that

∀x ∈ ω2
(
φ(x, r) ↔ ψ(x, r)

)
, (∗∗)

P = {x ∈ ω2 | φ(x, r)}.
Note that (∗∗) is equivalent to a Π1

n+1-formula with a parameter r.
By Remark 2.89 and Σ1

n+1-S-absoluteness, Π1
n+1-S-absoluteness holds.

Therefore, for any Sacks real s over V , (∗∗) also holds in V [s].
Let s be a Sacks real over V .

Claim 1.
Let Φ be a formula of the language of set theory. If V [s] ² Φ(s),

then there is a perfect tree S on 2 in V [s] such that for any real x in
[S] ∩ V [s], V [s] ² Φ(x).

Proof of Claim 1.
By the forcing theorem, there is an S ′ in S ∩ V such that

S ′ °S Φ(ṡ).

By Theorem 2.83, there is a perfect tree S on 2 in V [s] with S ⊂ S ′

such that for any real s′ in [S]∩V [s], s′ is a Sacks real over V . Then by
Theorem 2.81 and S ′ °S Φ(ṡ), V [s′] = V [s] and V [s′] ² Φ(s′). Hence
for any real x in [S] ∩ V [s], V [s] ² Φ(x). ¤

Suppose that V [s] ² φ(s, r). Then by Claim 1, there exists a perfect
tree S on 2 in V [s], for any real x in [S] ∩ V [s], V [s] ² φ(x, ~r).

On the other hand, suppose that V [s] ² ¬φ(s, ~r). Then by Claim 1,
there exists a perfect tree S on 2 in V [s], for any real x in [S] ∩ V [s],
V [s] ² ¬φ(x, ~r).
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Hence in V [s],

“There is a perfect tree S on 2 such that

either
(∀x ∈ [S]

)
φ(x, r) or

(∀x ∈ [S]
) ¬φ(x, r) holds.”

By (∗∗) in V [s], the above statement is equivalent to

“There is a perfect tree S on 2 such that

either
(∀x ∈ [S]

)
ψ(x, r) or

(∀x ∈ [S]
) ¬φ(x, r) holds.”

Since we took s arbitrarily,

°S “There is a perfect tree S on 2 such that

either
(∀x ∈ [S]

)
ψ(x, r) or

(∀x ∈ [S]
) ¬φ(x, r) holds.”.

This is equivalent to a Σ1
n+1-formula with a parameter r. Therefore,

by Σ1
n+1-S-absoluteness, the above statement also holds in V .

Since P = {x ∈ ω2 | φ(x, r)}, there exists a perfect tree S on 2 such
that either [S] ⊂ P or [S] ∩ P = ∅ holds.

This is what we desired.
(2) We will show that for any k ≤ 2n + 1, Σ1

k-S-absoluteness holds
by induction on k. The case k = 1 or 2 is done by Corollary 2.91.
Suppose that k ≥ 3.

Suppose that Σ1
k-S-absoluteness fails and we will derive a contradic-

tion.
Then there is a Σ1

k-formula and a finite sequence of reals ~r such that

φ(~r) <°S φ(~r )̌.

First, we will show that φ(~r) implies °S φ(~r )̌. Let ψ be the Π1
k−1-

formula such that φ ≡ ∃1α1ψ. Since φ(~r), there exists a real x such
that ψ(x, ~r). By the induction hypothesis and Remark 2.89, Π1

k−1-S-
absoluteness holds. Hence °S ψ(x̌, ~r )̌ and then °S φ(~r )̌.

Therefore,

°S φ(~r )̌, but ¬φ(~r).

Let θ be the Σ1
k−2-formula such that φ ≡ ∃1α1∀1α2θ.

Suppose that s is a Sacks real over V . Then, by °S φ(~r )̌, in V [s],
there is a real s′ such that for any real y, θ(s′, y, ~r). By ¬φ(~r) and
Π1

k−1-S-absoluteness, s′ is not in V . Therefore, by Theorem 2.81 and
Theorem 2.82, V [s′] = V [s] and s′ is also a Sacks reals over V . Hence
in V [s′], for any real y, θ(s′, y, ~r). By the forcing theorem, there is an
S in S such that

S °S “
(∀y ∈ ω2

)
θ(ṡ, y, ~r )̌”. (∗∗∗)
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Next, by ¬φ(~r), for any real x, there is a real y such that ¬θ(x, y, ~r).
Since {(x, y) | ¬θ(x, y, ~r)} is a Π1

k−2(~r) subset of ω2×ω2, k−2 ≤ 2n−1,
and Π1

2n−1 ¹ ω2× ω2 has the uniformization property, there is a Π1
2n−1

function f : ω2 → ω2 such that for any real x, ¬θ(x, f(x), ~r).
We will approximate f ¹ [S] by some Borel function whose domain

is a perfect subset.

Claim 2.
Suppose that 〈Nl

′ | l ∈ ω〉 is an enumeration of a basis for Cantor
space. Then for any perfect tree S ′ on 2, there are a perfect tree S ′′

on 2 with S ′′ ⊂ S ′ and a natural number l such that for any x in [S ′],
f(x) is in Nl

′.

Proof of Claim 2.
Suppose that the above statement fails. Then there is a perfect tree

S ′ on 2 such that for any perfect tree S ′′ on 2 with S ′′ ⊂ S ′ and any
natural number l, there is a real x in [S ′′] such that f(x) is not in Nl

′.
For any natural number l, put Pl = f−1“N ′

l . Then, since f is a Π1
2n−1

subset, Pl is a ∆1
2n set of reals for any l. By the assumption about the

Sacks measurability and the above condition which S ′ satisfies, we can
construct 〈Sl | l ∈ ω〉 such that

(1) for any l, Sl is a perfect tree on 2,
(2) for any l, Sl ⊃ Sl+1,
(3) for any l, [Sl] ∩ Pl = ∅.

Since [Sl] is compact for any l, we can take a real x in
⋂

l∈ω

[Sl].

By the construction of 〈Sl | l ∈ ω〉, for any l, x is not in Pl, hence
f(x) is not in Nl

′. But this is a contradiction because {Nl
′ | l ∈ ω} is

a basis for Cantor space. ¤

Fix a compatible complete metric d on Cantor space. By Claim 2,
we can construct 〈St | t ∈ <ω2〉 and 〈lt | t ∈ <ω2〉 such that

(1) for any t in <ω2, St is a perfect tree on 2 and lt is a natural
number,

(2) S∅ ⊂ S,
(3) for any t1, t2 in <ω2 with t1 ⊂ t2, St1 ⊃ St2 ,
(4) for any t in <ω2, [Sta〈0〉] ∩ [Sta〈1〉] = ∅,
(5) for any t in <ω2 and any x in [St], f(x) ∈ Nlt ,
(6) for any t in <ω2, lh(stem(St)) ≥ lh(t),
(7) for any t in <ω2, diam(Nlt) < 2−lh(t),

by induction on lh(t).
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(For the last condition, we only need to choose a subsequence 〈Nl
′ |

l ∈ ω〉 of 〈Nl | l ∈ ω〉 such that {Nl
′ | l ∈ ω} is a basis for Cantor space

and for any l, diam(Nl
′) < 2−lh(t).)

Put

C =
⋂

m∈ω

⋃
t∈m2

[St].

Then, by Fact 3.4, C is perfect and C ⊂ [S].
Define h : ω2 → C as follows:

h(z) = x if for any m ∈ ω, x ∈ [Sz—m].

Then h is a homeomorphism.
Define g : C → ω2 as follows:

g(x) = y if for any m ∈ ω, y ∈ Nlh−1(x)—m .

Then g is a continuous function on C.
We will show that g ⊂ f . Take any real x in C. Then for any natural

number m, x ∈ [Sh−1(x)—m]. By the fifth condition about 〈St | t ∈ <ω2〉
and 〈lt | t ∈ <ω2〉, f(x) ∈ Nlh−1(x)—m for any m. By the definition of g,

f(x) = g(x). Hence g is the desired one.
Since g is continuous, g is closed. By Remark 2.45, there is a perfect

tree S ′ on 2 and a tree T on 2×2 such that C = [S ′] and g = [T ]. Note
that S ′ ⊂ S. Take a Sacks real s′′ over V with s′′ in [S ′]. Since for any
real x, ¬θ(x, f(x), ~r) and g ⊂ f , the following statements hold in V :

∀x∀y
(
(x, y) ∈ [T ] → ¬θ(x, y, ~r)

)
,

∀x ∈ [S ′]∃y
(
(x, y) ∈ [T ]

)
.

Since a perfect tree on 2 and a tree on 2 × 2 can be seen as reals,
the first statement is equivalent to a Π1

k−2-formula with parameters
T and ~r and the second statement is equivalent to a Π1

2-formula with
parameters S ′ and T . Therefore, by Π1

k−2-S-absoluteness and Theorem
2.90, the above statements also hold in V [s′′].

Since s′′ is in [S ′],

V [s′′] ² “
(∃y ∈ ω2

)¬θ(s′′, y, ~r)”,

which contradicts with (∗∗∗). ¥

Remark 4.3.
When n = 1, the last proof is another proof for (d) ⇒ (a) of (1) in

Main Theorem.
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[Lév79] Azriel Lévy, Basic set theory, Springer-Verlag, Berlin, 1979.
[Lév02] Azriel Lévy, Basic set theory, Dover Publications Inc., Mineola, NY,

2002, Reprint of [Lév79].
[LS18] Nicolas Lusin and WacÃlaw Sierpiński, Sur quelques proprietés des ensem-
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