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Abstract. Revision is a method to deal with non-monotonic processes.
It has been used in theory of truth an an answer to semantic paradoxes
as the liar, but the idea is universal and resurfaces in many areas of logic
and applications of logic.
In this survey, we describe the general idea in the framework of pointer se-
mantics and point out that beyond the formal semantics given by Gupta
and Belnap, the process of revision itself and its behaviour may be the
central features that allow us to model our intuitions about truth, and is
applicable to a lot of other areas like belief, rationality, and many more.

1 Paradoxes

Paradoxes have been around since the dawn of formal and informal logic, most
notably the liar’s paradox:

This sentence is false.

Obviously, it is impossible to assign one of the truth values true or false to the
liar’s sentence without a contradiction. One of the most pertinacious urban leg-
ends about the liar’s paradox and related insolubilia is that the problem is just
self-reference. But it cannot be so simple; a lot of self-referential sentences are
completely unproblematic (“This sentence has five words”), and others that for-
mally look very similar to the liar, have a very different behaviour. For example,
look at the truthteller

This sentence is true.

As opposed to the liar, the truthteller can consistently take both the truth values
true and false, but it is still intuitively problematic: there is no way we can find
out whether the sentence is correctly or incorrectly asserting its own truth. The
same happens with the so-called nested liars:

The next sentence is false,

the previous sentence is false.

Here, the assumption that the first sentence is false and the second is true is
perfectly consistent, as is the assumption that the first sentence is true and the
second false. If you mix the liar with a truthteller and let them refer to each
other, you get the nested mix,



the next sentence is false,

the previous sentence is true,

which again does not allow a consistent truth value assignment.
Even though all of them are problematic, their status is subtly different and

we get a rather clear picture of how and why they are different. Even more
striking is the following hemi-tautology:

At least one of the next and this sentence is false,

both the previous and this sentence are false.

Here we get a unique consistent truth value assignment; the first sentence must
be true and the second one false, and our intuition allows us to identify it
accurately.1

In this survey, we shall discuss structural approaches based on the concept
of revision due to Herzberger [He82a,He82b] and Gupta and Belnap [GuBe93]
called revision theory. We describe revision theory both as a partial truth
predicate based on revision (this is the way Gupta and Belnap phrase it in
their book) and as a conceptual method. We argue that the underlying ideas of
revision theory are widely applicable; the formal semantics has been reinvented
independently in many areas of logic (§ 6.1), and the conceptual framework of
recurrence and stability describes a wide range of phenomena (§ 6.2).

2 Pointer Semantics

In § 3, we shall describe the semantics of Herzberger, Gupta and Belnap in the
simple logical language of pointer semantics invented by Gaifman [Ga88,Ga92].
The presentation of the system in this section is taken from [Bo03, § 5].

We shall define a propositional language with pointers L with countably many
propositional variables pn and the usual connectives and constants of infinitary
propositional logic (

∧

,
∨

, ¬, ⊤, ⊥). Our language will have expressions and
clauses; clauses will be formed by numbers, expressions and a pointer symbol
denoted by the colon : .

We recursively define the expressions of L:

– Every pn is an expression.
– ⊥ and ⊤ are expressions.
– If E is an expression, then ¬E is an expression.
– If the Ei are expressions, then

∧

i∈N
Ei and

∨

i∈N
Ei are expressions.

– Nothing else is an expression.

If E is an expression and n is a natural number, then n : E is a clause.
We intuitively interpret n : E as “pn states E”. We can easily express all of the
examples from § 1 as (sets of) clauses in this language. For instance, the liar
is just the clause 0: ¬p0 (“the 0th proposition states the negation of the 0th

1 For a critical discussion of reasoning of this type, cf. [Kr003, p. 331-332].



proposition”). The truthteller is 0 : p0, the nested liars are {0: ¬p1, 1: ¬p0}, the
nested mix is {0: ¬p1, 1: p0}, and the hemi-tautology is {0: ¬p0 ∨¬p1, 1: ¬p0 ∧
¬p1}.

We now assign a semantics to our language L. We say that an interpreta-
tion is a function I : N → {0, 1} assigning truth values to propositional letters.
Obviously, an interpretation extends naturally to all expressions in L. Now, if
n : E is a clause and I is an interpretation, we say that I respects n : E if
I(n) = I(E). We say that I respects a set of clauses if it respects all of its ele-
ments. Finally, we call a set of clauses paradoxical if there is no interpretation
that respects it.

Proposition 1 The liar 0: ¬p0, and the nested mix {0: ¬p1, 1: p0} are para-

doxical, the truthteller 0: p0, the nested liars {0: ¬p1, 1: ¬p0} and the hemi-

tautology {0: ¬p0 ∨ ¬p1, 1: ¬p0 ∧ ¬p1} are non-paradoxical.

Proof. There are four relevant interpretations here:

I00 0 7→ 0; 1 7→ 0

I01 0 7→ 0; 1 7→ 1

I10 0 7→ 1; 1 7→ 0

I11 0 7→ 1; 1 7→ 1

It is easy to check that none of these respects the liar and the nested mix. All
four interpretations respect the truthteller, and the interpretations I01 and I10

respect the nested liars. In the case of the hemi-tautology, the only respecting
interpretation is I10. q.e.d.

So, if the truthteller and the nested liars are non-paradoxical, does that
mean that they are not problematic? Well, both I01 and I10 are interpretations
of the nested liars, but the interpretations disagree about the truth values of
both p0 and p1 and therefore do not allow any determination of truth. The
situation is quite different for the hemi-tautology where there is exactly one
respecting interpretation. We call a set of clauses Σ determined if there is
a unique interpretation respecting Σ. With this notation, the truthteller and
the nested liars are non-paradoxical but also non-determined, and the hemi-
tautology is determined.

In [Bo02, §§ 5&6], Bolander investigates self-referentiality and paradoxicality
in order to highlight that these two notions are related but there can be self-
reference without paradox and paradox without self-reference. The framework of
pointer semantics described so far is perfectly fit to making these claims precise.

Let Σ be a set of clauses. Then we can define the dependency graph of Σ
by letting {n ; pn occurs in some clause in Σ} be the set of vertices and defining
edges by

nEm if and only if pm occurs in X for some n : X ∈ Σ.
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Fig. 1. Dependency graphs of our five examples from § 1: the first graph is the depen-
dency graph for the liar and the truthteller, the second is the one for the two nested
examples, and the third is the one for the hemi-tautology.

With this definition, we get the following dependency graphs for our five
examples as depicted in Figure 1.

We now call a set of clauses Σ self-referential if there is a loop in the
dependency graph of Σ. With this definition, it is obvious that self-reference
does not imply paradoxicality; the clause 0: p0 ∨ ¬p0 shares the simple loop
as a dependency graph with the liar and the truthteller, but the interpretation
I(0) = 1 respects it. Yablo [Ya93] gave an example for the converse of this simple
fact:

Proposition 2 (Yablo) Let En :=
∧

i>n ¬pi and Υ := {n : En ; n ∈ N}. Then

Υ is not self-referential, but paradoxical.

Proof. The dependency graph of Υ is 〈N, <〉, so it doesn’t contain any loops.
Let I be an interpretation respecting Υ . If for any n ∈ N, we have I(n) = 1,

then 1 = I(n) = I(
∧

i>n ¬pi), so we must have that I(i) = 0 for all i > n. That
means that 0 = I(n+1) = I(

∧

i>n+1 ¬pi), whence there must be some i∗ > n+1
such that I(i∗) = 1. But this is a contradiction.

So, I(n) = 0 for all n. But then I(E0) = I(
∧

n>0 ¬pn) = 1 6= 0 = I(0).
Contradiction. q.e.d.

3 Revision

So far, our analysis did not involve revision at all – everything was solely based on
the static picture given by the set of clauses. Revision theory now adds a rather
natural idea of revision along the pointers established by the clauses. From now
on, we shall assume that all sets of clauses Σ satisfy a simple consistency
condition: If n : E ∈ Σ and n : F ∈ Σ, then E = F . If Σ is a set of clauses,
then we can define the revision operator on interpretations I by

δΣ(I)(n) := I(E)

where E is the unique expression such that n : E ∈ Σ. This can now be used
to recursively define a revision sequence of interpretations from an initial
interpretation I (called “hypothesis” in revision theory) as

IΣ,0 := I

IΣ,n+1 := δΣ(IΣ,n).

We call an interpretation J Σ-recurring if there is some I such that there are
infinitely many n with J = IΣ,n and we call it Σ-stable if there is some I and
some n such that for all k > n, we have J = IΣ,k.



Proposition 3 Let Σ be a set of clauses and I an interpretation. Then I re-

spects Σ if and only if I is Σ-stable.

Proof. Obviously, “I respects Σ” is equivalent to δΣ(I) = I. q.e.d.

Let us check our examples from § 1. For the liar and the truthteller, relevant
interpretations are just one bit (I(0) = 0 and I(0) = 1). For the liar, both
interpretations are recurring, but none of them is stable. For the truthteller,
both are recurring and stable. For the two nested examples, we have four relevant
interpretations whose revision sequences are as follows:

nested mix: 0: ¬p1 0 1 1 0 0 · · · 0 0 1 1 0 · · ·

1: p0 0 0 1 1 0 · · · 1 0 0 1 1 · · ·

0: ¬p1 1 1 0 0 1 · · · 1 0 0 1 1 · · ·

1: p0 0 1 1 0 0 · · · 1 1 0 0 1 · · ·

nested liars: 0: ¬p1 0 1 0 1 0 · · · 0 0 0 0 0 · · ·

1: ¬p0 0 1 0 1 0 · · · 1 1 1 1 1 · · ·

0: ¬p1 1 1 1 1 1 · · · 1 0 1 0 1 · · ·

1: ¬p0 0 0 0 0 0 · · · 1 0 1 0 1 · · ·

For the nested mix, all four interpretations are recurring, but none of them
is stable; for the nested liars, all of them are recurring, but only 01 and 10 are
stable.

Analysing the revision sequences for the hemi-tautology gives us a unique
stable interpretation 10 and two more recurring interpretations 00 and 11 as
described in Figure 2.

hemi-tautology: 0: ¬p0 ∨ ¬p1 0 1 0 1 · · · 0 1 1 1 · · ·

1: ¬p0 ∧ ¬p1 0 1 0 1 · · · 1 0 0 0 · · ·

0: ¬p0 ∨ ¬p1 1 1 1 1 · · · 1 0 1 0 · · ·

1: ¬p0 ∧ ¬p1 0 0 0 0 · · · 1 0 1 0 · · ·

Fig. 2. The revision sequences for the hemi-tautology.

All of this conforms with the analysis of § 2, but doesn’t add any new insights.
However, the revision approach can add new insights in the case that there is no
unique stable solution. For this, let us consider the following example that we
shall call nested liars with two observers:

The second sentence is false,

the first sentence is false,

exactly one of the first two sentences is true,

exactly one of the first three sentences is true.

Intuition tells us that exactly one of the first two sentences should be true,
and therefore the third sentence should be true and the fourth sentence should



be false. (Again, we point the reader to Kremer’s debate [Kr003, p. 331-332]
concerning the dangers of applying ordinary reasoning to sets of sentences with
self-reference.) The natural language sentences can be translated into a set of
clauses as follows:

0 : ¬p1

1: ¬p0

2: (p0 ∨ p1) ∧ (¬p0 ∨ ¬p1)

3 :
∨

i∈3

pi ∧ ¬
∨

i6=j

i,j∈3

(pi ∧ pj)

They give rise to the revision sequences depicted in Figure 3, establishing
0110 and 1010 as the two stable interpretations, and 1100 and 0000 as recurring,
yet unstable.

0 0 1 0 1 · · · 0 1 0 1 · · · 0 1 0 1 · · · 0 1 0 1 · · ·

1 0 1 0 1 · · · 0 1 0 1 · · · 0 1 0 1 · · · 0 1 0 1 · · ·

2 0 0 0 0 · · · 0 0 0 0 · · · 1 0 0 0 · · · 1 0 0 0 · · ·

3 0 0 0 0 · · · 1 0 0 0 · · · 0 1 0 0 · · · 1 1 0 0 · · ·

0 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · ·

1 1 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · ·

2 0 1 1 1 · · · 0 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · ·

3 0 1 0 0 · · · 1 1 0 0 · · · 0 0 0 0 · · · 1 0 0 0 · · ·

0 1 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · ·

1 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · ·

2 0 1 1 1 · · · 0 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · ·

3 0 1 0 0 · · · 1 1 0 0 · · · 0 0 0 0 · · · 1 0 0 0 · · ·

0 1 0 1 0 · · · 1 0 1 0 · · · 1 0 1 0 · · · 1 0 1 0 · · ·

1 1 0 1 0 · · · 1 0 1 0 · · · 1 0 1 0 · · · 1 0 1 0 · · ·

2 0 0 0 0 · · · 0 0 0 0 · · · 1 0 0 0 · · · 1 0 0 0 · · ·

3 0 0 0 0 · · · 1 0 0 0 · · · 0 0 0 0 · · · 1 0 0 0 · · ·

Fig. 3. The revision patters of nested liars with two observers.

While the four recurring interpretations disagree about the truth values of
p0, p1, and p2, all of them agree that p3 should receive value 0. Therefore, even
in the absence of a unique solution, we can get information out of the revision
procedure and define a partial truth predicate.

If Σ is a set of clauses and n : X ∈ Σ, then we say that pn is stably true
(recurringly true) if for every stable (recurring) interpretation I, we have
I(n) = 1. Similarly, we define notions of being stably false and recurringly
false. The difference between the stable partial truth predicate and the recur-
ring partial truth predicate is roughly the difference between the Gupta-Belnap



systems S0 and Sn.2 Gupta and Belnap argue [GuBe93, Example 5A.17] that S0

is not good enough to capture intuitions. The systems S∗ and S# proposed by
Gupta and Belnap [GuBe93, p. 182 & 191] are refinements of these systems. The
differences hardly matter for simple examples of the type that we are covering
in this paper.

Proposition 4 In the nested liars with two observers, the fourth sentence is

recurringly false.

Proposition 4 sounds like a success for the revision theoretic analysis of the
concept of truth, as it gives a prediction or analysis for a truth value that co-
incides with the intuition. However, it is important to note that our reasoning
used to intuitively determine the truth value of the fourth sentence used the fact
that the third sentence seemed to be intuitively true. But the revision analysis
is less informative about the third sentence: it is neither recurringly true nor
recurringly false, but stably true. This phenomenon (with a different example)
was the topic of the discussion between Cook and Kremer in the journal Analysis

[Co02,Kr003,Co03] and will be discussed in detail in § 4.

4 Fully revised sequences and the Cook-Kremer debate

In a dispute in the journal Analysis [Co02,Kr003,Co03], Roy Cook and Michael
Kremer debated whether the revision-theoretic analysis of self-referential sen-
tences yields intuitive or counterintuitive readings. Both Cook and Kremer fo-
cussed on what we called “recurring truth” in the last section.

The hemi-tautology from § 1 is a special case of the following set of clauses.
As usual, denote by

(

k
n

)

the set of k-element subsets of n = {0, ..., n − 1}. For
every positive natural number n, the set Σn has the n clauses

k :
∨

X∈(k+1

n )

∧

i∈X

¬pi

(for k < n), i.e., “there are at least k+1 many false sentences”. If n is odd, Σn is
paradoxical, if n is even, then it has a unique respecting interpretation, viz. the
one in which sentences 0, ..., n

2 are true and the rest false. The original example
in [Co02] is Σ4, the hemi-tautology is the example used in [Kr003] and is Σ2 in
the above notation. Analysing the revision sequences in Figure 2, we get:

Proposition 5 In the hemi-tautology, neither of the sentences receives a recur-

ring truth value.

Proof. The recurring interpretations are 10, 00 and 11, and so they agree on
neither of the truth values. q.e.d.

2 Cf. [GuBe93, p. 123 & 147].



Cook [Co02] contrasts the partial truth predicate of recurring truth as calcu-
lated Proposition 4 with our intuitive expectations of a favoured interpretation
10 for the hemi-tautology, and considers this a failure of the revision theoretic
analysis.

It is surprising that neither Cook nor Kremer mention that this phenomenon
has been observed by Gupta and Belnap. They discuss this in a slightly less
transparent example [GuBe93, Example 6C.10]:

The third sentence is true,

It is true that the third sentence is false,

One of the first two sentences is false,

formalized as
{0: p3, 1: ¬p3, 2: p1, 3: ¬p0 ∨ ¬p2},

where intuition suggests that 1001 should be the only solution. Analysing the
revision sequences, we find that 1001 is the only stable interpretation, but 0101,
1011, and 1000 are recurring, and thus none of the four truth values is deter-
mined in the Gupta-Belnap revision semantics defined via recurring interpreta-
tions.

Gupta and Belnap deal with this situation with their notion of “fully varied”
revision sequences. We extend the sequences from sequences indexed with natural
numbers to transfinite sequences indexed with ordinal numbers.3 Given a limit
ordinal λ, we say that a revision sequence s = 〈Iξ ; ξ < λ〉 coheres with an
interpretation I if the following two conditions are met:

1. If for some ξ < λ and all η > ξ, we have sη(n) = 1, then I(n) = 1.
2. If for some ξ < λ and all η > ξ, we have sη(n) = 0, then I(n) = 0.

So, going back to the case of λ = ω, if the value of n has stabilized after a finite
number of revisions, then an interpretation must agree with this value in order
to cohere. For those n that flip back and forth infinitely many times, the value
of I(n) can be both 0 or 1. Looking at the hemi-tautology as an example, we get
four revision sequences as in Figure 2:

0 1 0 1 · · ·
0 1 0 1 · · ·

0 1 1 1 · · ·
1 0 0 0 · · ·

1 1 1 1 · · ·
0 0 0 0 · · ·

1 0 1 0 · · ·
1 0 1 0 · · ·

3 The “forever” in the title of this paper is an allusion to this extension of the process
of revision into the transfinite.



The ones starting with 01 and 10 stabilize on 10, and so only 10 is a coherent
interpretation for them. The other two flip back and forth infinitely many times
in both slots, and so every interpretation is coherent with those.

Using the notion of coherence, we can now define the notion of a transfinite
revision sequence. If Σ is a set of clauses and δΣ is the revision operator derived
from Σ in the sense of § 3, then a sequence s = 〈Iξ ; ξ < λ〉 of interpretations is
called a transfinite revision sequence if Iξ+1 = δΣ(Iξ) and I̺ coheres with
s↾̺ for limit ordinals ̺. Note that for a fixed interpretation I0 there can be
different transfinite revision sequences starting with I0.

Gupta and Belnap call a transfinite revision sequence fully varied if ev-
ery interpretation coherent with it occurs in it [GuBe93, p. 168]. For the hemi-
tautology, the sequences starting with 01 and 10 are fully varied; the only co-
herent interpretation is 10 and it occurs in them. The other two sequences are
not fully varied, as 01 and 10 cohere with them, but don’t occur. However, we
can transfinitely extend them to the four revision sequences

0 1 0 1 · · · 0 1 1 1 · · ·
0 1 0 1 · · · 1 0 0 0 · · ·

0 1 0 1 · · · 1 1 1 1 · · ·
0 1 0 1 · · · 0 0 0 0 · · ·

1 0 1 0 · · · 0 1 1 1 · · ·
1 0 1 0 · · · 1 0 0 0 · · ·

1 0 1 0 · · · 1 1 1 1 · · ·
1 0 1 0 · · · 0 0 0 0 · · · ,

characterized by their values at 0 and the ordinal ω as 00/01, 00/10, 11/01, and
11/10. All of these sequences (of length ω · 2) are fully varied, and together with
the sequences starting with 01 and 10, they are essentially the only fully varied
sequences.

We can now define a new notion of recurrence. Given a transfinite revision
sequence s of length λ for a set of clauses Σ, we say that I is recurring in s if for
all ξ < λ there is some η > ξ such that sη = I. Based on this notion, we say that
pn is transfinitely true (transfinitely false) if for all fully varied transfinite
revision sequences s and all interpretations I that are recurring in s, we have
I(n) = 1 (I(n) = 0).

Proposition 6 The first sentence of the hemi-tautology is transfinitely true, the

second is transfinitely false.

This alternative analysis arrives at the intuitive expectations by enforcing
additional constraints on the notion of a revision sequence. Cook implicitly ac-
knowledges this possible defense of the revision analysis when he says

“The Revision Theorist might ... formulat[e] more complex revision rules
than the straightforward one considered here, ones that judged the sen-
tences [of the hemi-tautology] as non-pathological. [Co03, p. 257]”



The fact that there are so many different systems of revision theory, all with
slightly different requirements on the sequences or variations of the semantic
predicate, each of them with some other set of advantages and disadvantages, is
raising a concern: we are trying to model a phenomenon as central as truth; if
revision theory is a fundamental tool to understanding it, shouldn’t it provide
answers that do not depend on such minor details?

One possible way out of trouble would be to get rid of the idea that a theory
of truth needs to define a partial truth predicate. Revision theory gives a rich
analysis of what happens, yielding patterns of behaviour of truth values. Instead
of superposing these patterns into a single (partial) interpretation as is done by
the notions of “stable truth”, “recurring truth” and “transfinite truth”, we could
understand the revision analysis as the description of what is going on:

The liar is problematic as there are no stable interpretations, the truthteller
is because there are two conflicting ones. This difference explains how they are
different types of problems for the theorist of truth – collapsing it into a uniform
partial truth function (which would give the value “undefined” to both the liar
and the truthteller) clouds a rather clear conceptual picture. We propose to
think of the sequences and their behaviour as the real analysis of truth without
the definition of a partial truth predicate; the fact that 10 is the only stable
interpretation for the hemi-tautology is good enough to explain our intuitions
with the set of sentences.4

It is this approach to revision sequences that we believe to be a powerful
tool for explaining intuitions with truth, much more than the different axiomatic
systems proposed by various authors in order to deal with inadequacies of earlier
definitions. We shall continue this discussion in § 6.2.

5 An aside: “And what is the connection to Belief

Revision?”

In the community of applied and philosophical logic, the word “revision” is
much closer associated to the area of belief revision and belief update than to
the revision theory described in § 3. In 2002, I gave a talk on the complexity of
revision-theoretic definability at the annual meeting of the Pacific Division of the
American Philosophical Association with the title “Where does the complexity
of revision come from?”,5 and received questions from philosophical logicians
asking about the complexity of belief revision in the style of [Li97,Li00].

Is the use of the phrase “revision” in both areas just an equivocation? Do the
two underlying concepts of revision (“update of belief states in light of changing
reality” and “update of truth value in a formal system”) have nothing to do with
each other?

4 Note that by Proposition 3, this is equivalent to saying that 10 is the only interpre-
tation that respects the hemi-tautology, so here the pointer semantics approach and
the revision approach are just two different ways of looking at the same phenomenon.

5 The results of this talk have in the meantime been published as [KüLöMöWe05].



In this section, we shall give a rough sketch of why revising belief states may
be incorporated into the framework described in §§ 2 and 3. Since this is a side
issue here, we cannot do justice to these questions here.

In belief revision and update, we have an ordinary propositional language
and consider sets of formulae as belief sets. Based on new information about
the true state of the world, we may get inconsistent intermediate stages of belief
sets which we then have to update in order to reach a consistent belief set again.
This is the main paradigm of an enormous amount of literature in philosophy,
logic and artificial intelligence.6

The most basic example is the following: an agent believes that p and p → q
are true, but then learns that ¬q is true. The belief set has to be updated to
either {p,¬q,¬(p → q)} or {¬p,¬q, p → q}. Of course, which one is the correct
update will depend on the context.

We believe that revision theory as described in § 3 can provide a partial
semantics for belief update procedures in general, but will only develop this idea
for the simple examples given above here. Given a belief set Λ and some new
fact represented by a propositional variable, we can assign a set of clauses in our
language L as follows:

Let Λ∗ be the set of propositional variables occurring in a formula in Λ and
let π : Λ∗ → N be an injective function with coinfinite range. We can think of
π as associating an L-variable pn to each element of Λ∗. Clearly, π naturally
extends to all elements of Λ.

In a second step, we take an injective function π∗ : Λ → N such that ran(π)∩
ran(π∗) = ∅. If n ∈ ran(π) ∪ ran(π∗), we define a clause n : E where

E :=

{

pn, if n ∈ ran(π),
π(ϕ), if ϕ ∈ Λ and π∗(ϕ) = n.

This defines the set Σ of L-clauses associated to Λ.
In our given example, this would be

{0: p0, 1: p1, 2: p0 → p1}.

The dependency graph of our set of clauses is

2
�� ��

0 1.

The key difference between the setting of revision theory and that of belief
update is that the new fact that triggers the update is given a special status: if
the initial belief set is {p, p → q} and we learn ¬q as a fact, then we don’t want
to disbelieve this fact in order to remedy the situation.

We fix some n ∈ ran(π) and some truth value b ∈ {0, 1} for this n, as-
suming that the new fact that we learned corresponds to pn or ¬pn. An 〈n, b〉-
interpretation is a function I : N → {0, 1} that satisfies I(n) = b.

6 As a token reference, we mention [Gä92], in particular the introduction.



0: p0 0 0 0 · · · 0 0 0 · · ·

1: p1 0 0 0 · · · 0 0 0 · · ·

2: p0 → p1 0 1 1 · · · 1 1 1 · · ·

0: p0 1 1 1 · · · 1 1 1 · · ·

1: p1 0 0 0 · · · 0 0 0 · · ·

2: p0 → p1 0 0 0 · · · 1 0 0 · · ·

We see that 001 and 100 are the only stable interpretations. Taking our
remarks at the end of § 4 seriously, we shall not use this to define a partial truth
function (which would say that p1 is recurringly false and the others have no
assigned truth value), but instead look at the two stable interpretations and see
that

{p0,¬p1,¬(p0 → p1)} and {¬p0,¬p1,p0 → p1}

are the two possible outcomes for the belief set after belief update.

6 The ubiquity of revision

In the abstract, we mentioned that revision is a concept that is “universal and
resurfaces in many areas of logic and applications of logic”. It comes in two
very different flavours as discussed at the end of § 4: as formal Gupta-Belnap
semantics defining a partial truth predicate on the basis of revision sequences,
and in the wider sense as a conceptual framework for analysing our intuitions
about truth and circularity. So far, we have argued that revision plays a rôle in
the analysis of paradoxes and insolubilia, and that the approach may be applied
to belief revision. In this section, we shall lay out how the general ideas can
be extended to yield applications in other areas. We split the discussion into
applications of the Gupta-Belnap semantics and applications of the wider scope.

6.1 Independent developments of Gupta-Belnap semantics

The crucial mathematical element to the Gupta-Belnap truth predicate as de-
fined in § 3 (as “recurring truth”) is the following: we have a set of nonmonotonic
processes assigning a function I : N → {0, 1} to each ordinal. While monotonic
processes give rise to fixed points and thus allow us to talk about an “eventual
value”, nonmonotonicity forces us to be inventive here. The processes give rise
to a notion of recurrence, and we can define

TGB(n) :=







0 if for all recurrent I, we have I(n) = 0,
1 if for all recurrent I, we have I(n) = 1,
↑ otherwise.

This is a general idea to integrate the process of revision into a single definition,
and Gupta and Belnap are not the only ones who came up with this idea. Es-
sentially the same semantics was developed independently by Stephan Kreutzer
in [Kr102] for his partial fixed point logics on infinite structures. Also Field’s



revenge-immune solution to the paradoxes from [Fi03] is based on ideas very
similar to the Gupta-Belnap semantics.7

Widening the scope to other types of transfinite processes, cognate ideas can
be found in the limit behaviour of infinite time Turing machines as defined by
Hamkins and Kidder [HaLe00]8 and definitions of game labellings for nonmono-
tone procedures for game analyses in [Lö03].

6.2 The wider scope

Despite the fact that the general ideas have found applications in many plases,
there are several problems with Gupta-Belnap semantics as a theory of truth. As
mentioned, there are many variants of formal systems with different properties,
thus raising the question of how to choose between them. The Cook-Kremer
debate discussed in § 4 is an indication for the problems generated by this. The
revision-theoretic definitions are also relatively complicated, leading (in the lan-
guage of arithmetic) to complete Π1

2 sets, in the case of using fully revised se-
quences even Π1

3 sets [We03a, Theorem 3.4]. This is too complicated for comfort,
as is argued in [We01, p. 351] and [LöWe01, § 6].

As we have discussed in § 4, the conceptual idea of analysing the nonmono-
tonic process by looking at the behaviour of interpretations under revision rises
above all this criticism. The problems associated with the arbitrariness and com-
plexity of the Gupta-Belnap are related to the fact that the full analysis has to
be condensed into one partial truth predicate. Allowing both 01 and 10 as stable
solutions of the nested liars is much more informative than integrating these two
solutions into undefined values.

This attitude towards allowing several possibilities as analyses should remind
the reader of game-theoretic solution concepts. In game theory, Nash equilibria
are not always unique. This connection between revision semantics and game
theory has been observed by Chapuis who gives a sketch of a general theory of
rationality in games based on revision analyses in his [Ch03]. We see Chapuis’
work as an interesting approach compatible with the spirit of the analysis of
belief update discussed in § 5, and would like to see more similar approaches to
revision in various fields of formal modelling.
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