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How is scientific knowledge used, adapted and extended in deriving phenomena and real-world 
systems? This paper aims at developing a general account of "applying science" within the 
exemplar-based framework of Data-Oriented Processing (DOP), which is also known as 
Exemplar-Based Explanation (EBE). According to the exemplar-based paradigm, phenomena 
are explained not by deriving them all the way down from theoretical laws and boundary 
conditions but by modelling them on previously derived phenomena that function as exemplars. 
To accomplish this, DOP proposes to maintain a corpus of derivation trees of previous 
phenomena together with a matching algorithm that combines subtrees from the corpus to 
derive new phenomena. By using a notion of derivational similarity, a new phenomenon can be 
modelled as closely as possible on previously explained phenomena. I will propose an 
instantiation of DOP which integrates theoretical and phenomenological modelling and which 
generalises over various disciplines, from fluid mechanics to language technology. I argue that 
DOP provides a solution for what I call Kuhn’s problem and that it redresses Kitcher’s 
account of explanation. 
 
1.  Introduction 
How do we get from theory to the real world? That is to say, how is scientific 
knowledge used, adapted and extended in deriving concrete phenomena and real-world 
systems? It has for a long time been assumed that phenomena and systems are derived 
by solving the laws from pure science for specific boundary conditions (see Boon 2006). 
Yet it has become increasingly clear that in deriving a phenomenon or real-world system 
we also add non-theoretical elements, such as corrections, normalisations and other 
adjustments, that stand in no deductive relation to laws (see Cartwright 1983, 1999; 
Boumans 1999; Morrison and Morgan 1999). Applying a scientific theory to a concrete 
situation is a matter of intricate approximation and de-idealisation for which no general 
rules are known. How then do we derive a real-world system or phenomenon in science 
and engineering? According to Ronald Giere, Thomas Nickles and others, scientists 
work in an exemplar-based way. In deriving a new phenomenon they look for known 
phenomena that are in various ways similar to the new phenomenon. The derivations 
and techniques that successfully accounted for the known phenomena are extended and 
adapted to the new phenomena (see Giere 1988, 1999; Nickles 2003). Such known 
phenomena function as exemplars on which new phenomena are modelled. 
 The notion of exemplar is usually attributed to Thomas Kuhn in his account of 
normal science (Kuhn 1970). Kuhn urged that exemplars are "concrete problem 
solutions that students encounter from the start of their scientific education" (ibid. p. 
187) and that "scientists solve puzzles by modeling them on previous puzzle-solutions" 
(ibid. p. 189). Scientists possess what Kuhn called "acquired similarity relations" that 
allow them "to see situations as like each other, as subjects for the application of the 
same scientific law or law-sketch" (ibid. p. 190). Instead of explaining a phenomenon 
from scratch (i.e. all the way down from laws), Kuhn maintained that scientists try to 
match the new phenomenon to one or more previous phenomena-plus-explanations. 
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In similar vein, Philip Kitcher argues that new phenomena can be derived by 
using the same patterns of derivations ("argument patterns") as used in previously 
explained phenomena: "Science advances our understanding of nature by showing us 
how to derive descriptions of many phenomena, using the same patterns of derivation 
again and again" (Kitcher 1989, p. 432). Unlike Kuhn, Kitcher proposes a rather 
concrete account of explanation, known as the "unificationist view", which he explicitly 
links to Kuhn's view by interpreting exemplars as argument patterns (ibid., p. 437-8). 
However, neither Kitcher's account is entirely formalised, leaving most intermediate 
steps in derivations and argument patterns undiscussed. 
 Thomas Nickles relates Kuhn's view to Case-Based Reasoning (Nickles 2003, p. 
161). Case-Based Reasoning (CBR) is an artificial intelligence (AI) technique that 
stands in contrast to rule-based problem solving. Instead of solving each new problem 
from scratch, CBR stores previous problem-solutions in memory as cases. When CBR 
begins to solve a new problem, it retrieves from memory a case whose problem is 
similar to the problem being solved. It then adapts the example's solution and thereby 
solves the problem. CBR has been instantiated in many different ways and has been 
used in various applications such as reasoning, learning, perception and understanding 
(cf. Falkenhainer et al. 1989; Kolodner 1993; Veloso and Carbonell 1993; VanLehn 
1998). Yet, to the best of my knowledge, CBR has never been employed to develop a 
formal model of applying science. 

In this paper, I intend to show that an instantiation of CBR which is known as 
Data-Oriented Processing (DOP) (Bod 1998), and which has also been referred to as 
Exemplar-Based Explanation (EBE) (Bod 2004), can be used to develop a formalised 
model of applying science. While DOP/EBE was originally developed in AI, in 
particular for natural language processing (cf. Bod 1998; Kaplan 1996; Collins and 
Duffy 2002), it can be rather straightforwardly extended to exemplar-based explanation 
in science and engineering. The key idea of DOP is to represent derivations of 
phenomena by trees. Given a corpus of previously derived phenomena that function as 
exemplars, DOP proposes that new phenomena can be derived by combining subtrees 
from the corpus. In Scha et al. (1999) it is demonstrated that DOP can be defined as a 
probabilistic, recursive instantiation of CBR. 
 In the following section, I will first show how derivations in physics can be 
represented by trees that describe each step from laws to a description of a phenomenon. 
Next, I show how explanations of new phenomena can be constructed by combining 
subtrees from previously explained phenomena. In section 3, I demonstrate that an 
(extremely) large number of different derivations exists for virtually every phenomenon, 
even though these derivations are all subsumed under the same general laws. In other 
words, derivational explanation is massively redundant, a problem which has been 
largely underestimated in the philosophy of science.  I argue that redundancy can be 
dealt with by maximising a notion of "derivational similarity" which mimics as closely 
as possible prior exemplars and which constructs new derivations out of largest possible 
derivational chunks. In section 4, I will show how the resulting DOP model can be 
extended to real-world systems and technological devices from fluid mechanics and 
hydraulics. In section 5, I will provide an excursion into a field at the other end of the 
technological spectrum, discussing some examples from language technology. What 
counts for fluid mechanics also counts for language technology: (linguistic) phenomena 
are derived not all the way down from theory, but from concrete derivations of previous 
phenomena. I contend that DOP provides a general model of "applying science" across 
different disciplines. 
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2.  The DOP view of scientific explanation 
What do derivational explanations in physics look like? Let’s start with a simple 
textbook example. Consider the derivation in figure 1 of the Earth's mass from the 
Moon's orbit in the textbook by Alonso and Finn (1996, p. 247). 

 
Suppose that a satellite of mass m describes, with a period P, a circular orbit of radius r around a 
planet of mass M. The force of attraction between the planet and the satellite is F = GMm/r2.
This force must be equal to m times the centripetal acceleration v2/r = 4π2r/P2 of the satellite. 
Thus, 
 

4π2mr/P2 = GMm/r2

Canceling the common factor m and solving for M gives 
 

M = 4π2r3/GP2.

Figure 1. Derivation of the Earth's mass according to Alonso and Finn (1996) 
 
By substituting the data for the Moon, r = 3.84 ⋅ 108 m and P = 2.36 ⋅ 106 s, Alonso and 
Finn compute the mass of the Earth: M = 5.98 ⋅ 1024 kg. In doing so, Alonso and Finn 
abstract from many features of the actual Earth-Moon system, such as the gravitational 
forces of the Sun and other planets, the magnetic fields, the solar wind, etc. Albeit 
heavily idealised, the derivation provides a concrete problem solution on which various 
other (idealised) phenomena can be modelled. In fact, Alonso and Finn reuse parts of 
this derivation to solve problems such as the velocity of a satellite and the escape 
velocity from the Earth. 
 To create a formal model that reuses derivational patterns, we first need a formal 
representation of derivations. Analogous to proof trees in formal logic, DOP proposes to 
represent derivations by tree structures which indicate how a mathematical description 
of a phenomenon (or problem) is compositionally derived from theoretical laws and 
conditions. Figure 2 shows how the derivation for the Earth's mass in figure 1 can be 
turned into a tree. 
 

F = ma

F = GMm/r2

a = v 2/r

F = mv2/r v = 2πr/P

F = 4π2mr/P2

M = 4π2r3/GP2

π2mr/P24 = GMm/r2

Figure 2. Derivation tree for the derivation in figure 1 
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The derivation tree in figure 2 represents the various derivation steps, insofar as they are 
carried out in figure 1, from higher-level laws to an equation for the mass of a planet. In 
general, a derivation tree is a finite tree in which each node is labelled with a formula; 
the boxes are only convenient representations of these labels. The formulas at the top of 
each "vee" (i.e. each pair of connected branches) in the tree can be viewed as premises, 
and the formula at the bottom of each "vee" can be viewed as a conclusion, which in this 
tree is arrived at by simple term substitution. The last derivation step in the tree is not 
formed by a "vee" but consists in a unary branch which solves the directly preceding 
formula for a certain variable (in this case, for the mass M). Thus, a binary branch refers 
to a physical derivation step which introduces and combines physical laws or 
conditions, while a unary branch refers to a mathematical derivation step which solves 
an equation for (a) certain variable(s). 
 The notion of derivation tree is clearly reminiscent of the deductive-nomological 
(D-N) account of explanation by Hempel and Oppenheim (1948). In the D-N account, a 
phenomenon is explained if it can be deduced from general laws and antecedent 
conditions. But while the D-N model usually focuses on the initial premises (laws and 
antecedent conditions) and the final conclusion, a derivation tree describes each step in 
getting from general laws to a description of the phenomenon. DOP thus interprets 
Kitcher's "switch in conception from premise-conclusion pairs to derivations" (Kitcher 
1989, p. 432) by tree representations. Although there may be other representations of 
derivations, trees are exceedingly flexible structures that can be decomposed into parts 
(subtrees) and be recomposed to derive new phenomena. 
 For example, consider the subtree in figure 3 which is extracted from the 
derivation tree in figure 2 by leaving out the last derivation step (i.e. the solution for the 
mass M). 
 

F = ma

F = GMm/r 2

a = v 2/r

F = mv2/r v = 2πr/P

F = 4π2mr/P2

π2mr/P24 = GMm/r2

Figure 3. A subtree from figure 2 reflecting a theoretical model of a planet-satellite 
system 

 
This subtree can be applied to a range of other situations. For instance, in deriving the 
regularity known as Kepler's third law (which states that r3/P2 is constant for all planets 
orbiting around the Sun, or satellites around the Earth if you wish) the subtree in figure 
3 needs only to be extended with a derivation step that solves the last equation for r3/P2,
as represented in figure 4. 
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F = ma

F = GMm/r 2

a = v 2/r

F = mv2/r v = 2π r/P

F = 4π2mr/P2

π2mr/P24 = GMm/r2

r3/P2 = GM/4π2

Figure 4. Derivation tree for Kepler's third law from the subtree in figure 3 
 

Thus instead of starting each time from scratch, we learn from previous derivations and 
can reuse them for solving new problems. In a similar way we can derive the distance of 
a geostationary satellite, namely by solving the subtree in figure 3 for r and taking P as 
the rotation period of the Earth. 
 However, it is not typically the case that derivations involve only one subtree. In 
deriving the velocity of a satellite at a certain distance from a planet, we cannot directly 
use the large subtree in figure 3, but need to extract two smaller subtrees from figure 2 
that are first combined by term substitution (represented by the operation "°") and then 
solved for v in figure 5. 
 

o =

mv2/r = GMm/r2

<=>

v = √(GM/r)

F = ma a = v 2/r

F = mv2/r 

F = GMm/r 2 F = ma a = v 2/r

F = mv 2/r F = GMm/r 2

mv2/r = GMm/r2

F = ma a = v 2/r

F = mv2/r F = GMm/r 2

Figure 5. Constructing a derivation tree for a satellite's velocity by combining two 
subtrees from figure 2 

 
Figure 5 shows that we can create new derivation trees by combining subtrees from 
previous derivation trees that function as exemplars. The notion of term substitution, 
though widely used in rewriting systems, may need some further specification. The 
combination of tree t and tree u, written as t ° u, yields a tree that expands the root nodes 
of t and u to a new common root node where the righthandside of the equation at the 
root node of u is substituted in the corresponding term in the equation at the root node 
of t. Note that the substitution operation can be iteratively applied to a sequence of trees, 
with the convention that ° is left-associative. 
 We now have the basic ingredients for a DOP model of derivational explanation. 
This DOP model employs (1) a corpus of derivation trees representing exemplars and 
(2) a matching procedure that explains a phenomenon by combining subtrees from the 
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corpus into a derivation tree such that the root of the tree represents the phenomenon 
and the leaves represent laws or antecedent conditions. Note that subtrees can be of any 
size: from single equations to any combination of laws up to entire derivations. This 
reflects the continuum between laws, law-schemes and derivations in DOP. 
 
3.  Derivational redundancy and derivational similarity 
Given a corpus of derivation trees and a mathematical description of a phenomenon, 
existing equational reasoning systems, such as TKSolver or Mathematica, can be 
employed to derive the phenomenon from the equations in the subtree-roots (see Baader 
and Nipkow 1998 for an overview on equational reasoning). However, there is a 
problem we have not considered so far: there can be many, sometimes extremely many, 
different derivation trees for the same phenomenon. In general, the number of derivation 
trees grows exponentially with the number of terms in the mathematical description of 
the phenomenon. To give a simple example, let's enlarge our corpus with another 
derivation from Alonso and Finn's textbook. This derivation again provides an 
exemplary problem solution for the Earth's mass but this time by computing it from the 
acceleration of an object at the Earth's surface (Alonso and Finn 1996, p. 246). This 
second exemplar can be represented by the derivation tree in figure 6. 
 

ma = GMm/r2

M = ar2/G
a = g
r = R

M = gR 2/G

F = ma F = GMm/r 2

Figure 6. An additional exemplar in the corpus for deriving the Earth’s mass 
 
By substituting the values for g (the acceleration at the Earth's surface), R (the Earth's 
radius) and G (the gravitational constant), Alonso and Finn obtain roughly the same 
value for the Earth's mass as in the derivation in figure 1. They argue that this agreement 
is "a proof of the consistency of the theory" (ibid., p. 247). (Note that the derivation is 
again idealised: no centrifugal force is taken into account, let alone influences from the 
Sun or other planets.) Thus the problem of the Earth's mass is derivationally redundant 
in that it can be solved in at least two different ways. And both derivations are used in 
Alonso and Finn's textbook as exemplars for deriving solutions to other problems. 
 When we add the tree in figure 6 to our corpus of exemplars, we can also derive 
Kepler's third law from this exemplar, resulting in the alternative derivation in figure 7, 
which uses a large subtree from figure 6 in combination with two small subtrees from 
the exemplar in figure 2. 
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o o

M = v r/G2

ma = GMm/r2

M = ar2/G

F = ma F = GMm/r2 a = v2/r v = 2πr/P

ma = GMm/r2

M = ar2/G

F = ma F = GMm/r2

a = v2/r

v = 2πr/P

M = 4π2r3/GP2

r3/P2 = GM/4π2

=

Figure 7. An alternative derivation tree for Kepler's third law 
 
There is nothing wrong with this alternative derivation tree: there are no spurious non-
explanatory laws that are irrelevant (as would be e.g. Hooke's or Boyle's law): Kepler's 
third law is subsumed under the same general laws in both cases. The main difference is 
that the derivation in figure 7 is modelled on a different exemplar, i.e., different from 
the exemplar the derivation in figure 4 is modelled on. The alternative derivation in 
figure 7 is insightful as it refers to the conceptual equivalence between terrestrial and 
celestial mechanics in Newtonian dynamics. The fact that Kepler's third law can be 
derived from figure 6 suggests that if we bring a satellite down to the Earth's surface it 
still follows the same law. Note that there are even more derivation trees for Kepler's 
law. By combining subtrees from the two exemplars in figures 2 and 7 in different ways, 
we get a combinatorial explosion of possible derivations. 
 Yet, experiments with advanced physics students show that no student comes up 
with the alternative derivation tree in figure 7 (see Bod 2004). Why? Apart from the fact 
that the derivation tree in figure 4 is slightly smaller, the tree in figure 4 is more 
"derivationally similar" to an exemplar in the corpus. That is, the tree in figure 4 can be 
constructed by just one large subtree from the corpus, whereas the tree in figure 7 needs 
at least 3 smaller subtrees to be constructed from the corpus.  
 This suggests that if we want to model the way humans derive phenomena, we 
should mimic as closely as possible the exemplary derivations that were learned from 
textbooks. The distinctive feature between different derivations of a phenomenon is that 
some derivations are more similar to exemplary derivations than others. The larger the 
partial match between a derivation and an exemplar the more "derivationally similar" 
they are. Since students learn physics not just by memorising laws, but also by studying 
exemplary problem solutions, I conjecture that they derive a phenomenon by 
maximising derivational similarity, or equivalently, by minimising derivation length 
where the length of a derivation is defined as the number of corpus-subtrees it consists 
of. I will refer to the derivation of minimal length also as the "shortest derivation". Since 
subtrees can be of arbitrary size, the shortest derivation corresponds to the derivation 
tree which consists of largest partial match(es) with previous derivation trees in the 
corpus.

DOP embodies the hypothesis that scientists try to explain a new phenomenon by 
maximising derivational similarity between the new phenomenon and previously 
derived phenomena. And the shortest derivation provides a possible way to attain this 
goal. The rationale behind maximising derivational similarity is that it favours 
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derivation trees which maximally overlap with previous derivation trees, such that only 
minimal recourse to additional derivational steps needs to be made. 
 Rather than trying to get hold on similarity between phenomena (see Sterrett 
2006), I thus focus on the similarity between derivations of phenomena. This brings me 
back to Kuhn's problem, that is, how do we know on which exemplar a new 
phenomenon can be modelled (Kuhn 1970, p. 190)? Kitcher’s account does not help us 
here. His “unificationist” view does not tell us whether we can best model, for example, 
the gravitational acceleration at a planet’s surface on the exemplar in figure 2 or on the 
exemplar in figure 6. DOP's solution is to model a phenomenon on the exemplar from 
which the largest subtree can be reused to derive it. And hypotheses of the largest 
reusable subtree for deriving a phenomenon can be generated by best-first heuristics 
even before the problem gets actually solved (see Baader and Nipkow 1998). Thus DOP 
suggests a modification of Kitcher's account of explanation: rather than "using the same 
patterns of derivations again and again" as Kitcher argues, we use the largest possible 
patterns of derivations again and again. 
 We should keep in mind that the phenomena discussed so far are highly idealised 
and limited to textbook examples. There is no historical analogue of using parts from 
the derivation of the Earth's mass to derive Kepler's third law (it rather happened the 
other way round). Yet in science education the two problems are treated as closely 
interconnected, and with good reason: the two problems can be solved by using the 
same partial derivations. In the next section I will investigate how the DOP approach 
can be extended to real-world systems and technological devices. As an intermediate 
step, I could also have dealt with idealised phenomena that are not exactly solvable. A 
typical example is the three-body problem in Newtonian dynamics. Even if we make the 
problem unrealistically simple (e.g. by assuming that the bodies are perfect spheres that 
lie in the same plane), the motion of three bodies due to their gravitational interaction 
can only be approximated by techniques such as perturbation calculus. However, in 
perturbation calculus every derivation step still follows numerically from higher-level 
laws. Our main interest is in phenomena for which there are derivation steps that are not
dictated by any higher-level law. 
 
4. Extending DOP to real-world systems and technological devices 
Derivations of real-world systems and technological devices are strikingly absent in 
physics textbooks. But they are abundant in engineering practice. As an example I will 
discuss a concrete system from hydraulics: (the velocity of) a jet emerging from a small 
orifice in a tank, which I will refer to as an orifice system. I have chosen this system 
because it functions as a shared example in hydraulics on which several other systems 
are modelled, and yet it has no rigorous solution from higher-level laws but involves 
additional coefficients. I will extend the original DOP model and show how a 
"derivation" of the orifice system can be used as an exemplar by this model for deriving 
other real-world systems such as weirs, notches and water breaks. 
 The orifice system is usually derived from Daniel Bernoulli's famous equation, 
which in turn is derived from the Principle of Conservation of Energy.1 According to 
the Principle of Conservation of Energy the total energy of a system of particles remains 
constant. The total energy is the sum of kinetic energy (Ek), internal potential energy 
(Ep,int) and external potential energy (Ep,ext): 
 

1 Bernoulli used a precursor of this principle which was known as "Equality between the Potential Ascent 
and Actual Descent" (see Mikhailov 2002, p. 70). 
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ΣE = Ek + Ep,int + Ep,ext = constant 

Applied to an incompressible fluid, the principle comes down to saying that the total 
energy per unit volume of a fluid in motion remains constant, which is expressed by 
Bernoulli's equation: 
 

ρgz + ρv2/2 + p = constant 

The term ρgz is the external potential energy per unit volume due to gravity, where ρ is 
the fluid's density and z the height of the unit (note the analogy with mgh in classical 
mechanics). The term ρv2/2 is the kinetic energy per unit volume (which is analogous to 
mv2/2 in classical mechanics). And p is the potential energy per unit volume associated 
with pressure. Bernoulli's equation is also written as 
 

ρgz1 + ρv12/2 + p1 = ρgz2 + ρv22/2 + p2

which says that the total energy of a fluid in motion is the same at any two unit volumes 
along its path. 
 Figure 8 illustrates how the engineering textbook Advanced Design and 
Technology derives the orifice system (together with Torricelli's theorem) from 
Bernoulli's equation (Norman et al. 1990, p. 497): 
 

We can use Bernoulli's equation to estimate the velocity of a jet emerging from a small circular 
hole or orifice in a tank, Fig. 12.12a. Suppose the subscripts 1 and 2 refer to a point in the surface 
of the liquid in the tank, and a section of the jet just outside the orifice. If the orifice is small we 
can assume that the velocity of the jet is v at all points in this section. 
 

h

v

1

2

vena contracta

(a)

(b)

 

Figure 12.12 
 
The pressure is atmospheric at points 1 and 2 and therefore p1 = p2. In addition the velocity v1 is 
negligible, provided the liquid in the tank has a large surface area. Let the difference in level 
between 1 and 2 be h as shown, so that z1 − z2 = h. With these values, Bernoulli's equation 
becomes: 
 
h = v2/2g from which   v = √(2gh)

This result is known as Torricelli's theorem. If the area of the orifice is A the theoretical discharge 
is: 
 
Q(theoretical) = vA = A√(2gh)
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The actual discharge will be less than this. In practice the liquid in the tank converges on the 
orifice as shown in Fig. 12.12b. The flow does not become parallel until it is a short distance 
away from the orifice. The section at which this occurs has the Latin name vena contracta (vena = 
vein) and the diameter of the jet there is less than that of the orifice. The actual discharge can be 
written: 
 
Q(actual) = CdA√(2gh)

where Cd is the coefficient of discharge. Its value depends on the profile of the orifice. For a 
sharp-edged orifice, as shown in Fig. 12.12b, it is about 0.62. 

 
Figure 8. Derivation of Torricelli's theorem in Norman et al. (1990) 

 
Thus the theoretically derived discharge of the system differs substantially from the 
actual discharge and is corrected by a coefficient of discharge, Cd. This is mainly due to 
an additional phenomenon which occurs in any orifice system: the vena contracta.
Although this phenomenon has been known for more than three and a half centuries (cf. 
Torricelli 1644), no rigorous derivation exists for it and it is taken care of by a 
correction factor. The correction factor is not an adjustment of a few percent, but of 
almost 40%. The value of the factor varies however with the profile of the orifice and 
can range from 0.5 (the so-called Borda mouthpiece) to 0.97 (a rounded orifice). 
 Introductory engineering textbooks tell us that coefficients of discharge are 
experimentally derived corrections that need to be established for each orifice separately 
(see Norman et al. 1990; Douglas and Matthews 1996). While this is true for real-world 
three-dimensional orifices, there are analytical solutions for idealised two-dimensional 
orifice models by using free-streamline theory (see Batchelor 1967, p. 497). Moreover, 
Sadri and Floryan (2002) have shown that the vena contracta can also be simulated by a 
numerical solution of the general Navier-Stokes equations which is, however, again 
based on a two-dimensional model. For three-dimensional orifice models there are no 
analytical or numerical solutions (Munson 2002; Graebel 2002). The coefficients of 
discharge are then derived by physical modelling, i.e. by experiment. This explains 
perhaps why physics textbooks usually neglect the vena contracta in dealing with 
Torricelli's theorem. And some physics textbooks don't deal with Torricelli's theorem at 
all. To the best of my knowledge, all engineering textbooks that cover Torricelli's 
theorem also deal with the coefficient of discharge. (One may claim that the vena 
contracta can still be qualitatively explained: because the liquid converges on the 
orifice, the area of the issuing jet is less than the area of the orifice. But there exists no 
quantitative explanation of Cd for a three-dimensional jet.) 
 Although no analytical or numerical derivations exist for real-world orifice 
systems, engineering textbooks still link such systems via experimentally derived 
corrections to the theoretical law of Bernoulli, as if there were some deductive scheme. 
One reason for enforcing such a link is that theory does explain some important features 
of orifice systems: the derivation in figure 6, albeit not fully rigorous, explains why the 
discharge of the system is proportional to the square-root of the height h of the tank, and 
it also generalises over different heights h and orifice areas A. Another reason for 
enforcing a link to higher-level laws is that the resulting derivation can be used as an 
exemplar for solving new problems and systems. To show this, I will first turn the 
derivation in figure 8 into its corresponding derivation tree. But how can we create such 
a derivation tree if the coefficient of discharge is not derived from any higher-level 
equation? The orifice system indicates that there can be phenomenological models that 
are not derived from the theoretical model of the system. Yet, when we write the 
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coefficient of discharge as the empirical generalisation Q(actual) = CdQ(theoretical),
which is in fact implicit in the derivation in figure 8, we can again create a derivation 
tree and "save" the phenomenon. This is shown in figure 9 (where we also added the 
principle of conservation of energy). 
 

ΣE = constant

ρgz1 + ρv12/2 + p1 = ρgz2 + ρv22/2 + p2

p1 = p2
v1 = 0
z1 − z2 = h

v = √(2gh) Q(theoretical) = vA 

Q(theoretical) = A√(2gh) Q(actual) = CdQ(theoretical)

Q(actual) = CdA√(2gh)

Figure 9. Derivation tree for the derivation in figure 8 
 
The tree in figure 9 closely follows the derivation given in figure 8, where the initial 
conditions for p1, p2, v1, z1 and z2 are represented by a separate label in the tree. The 
coefficient of discharge is introduced in the tree by the equation Q(actual) = 
CdQ(theoretical). Although this equation does not follow from any higher-level law or 
principle, we can use it as if it were a law. Of course it is not a law in the universal 
sense; it is a correction, a rule of thumb, but it can be reused for a range of other 
hydraulic systems, ranging from nozzles, notches, weirs, open channels and many 
pipeline problems -- see Douglas and Matthews (1996). 
 What does this mean for DOP? By using the derivation tree in figure 9 as an 
exemplar and by using the same substitution mechanism for combining subtrees from 
exemplars as in section 2, together with a mathematical procedure that can solve an 
equation (see Baader and Nipkow 1998), we obtain an exemplar-based model for fluid 
mechanics that can explain a range of new real-world systems. For example, the three 
subtrees in figure 10 can be extracted from the derivation tree in figure 9 and be reused 
in deriving the rate of flow of a rectangular weir of width B and height h (see e.g. 
Norman et al. 1990, p. 498). 
 

ΣE = constant

ρgz1 + ρv12/2 + p1 = ρgz2 + ρv22/2 + p2

p1 = p2
v1 = 0
z1 − z2 = h

v = √(2gh)

Q(theoretical) = vA Q(actual) = CdQ(theoretical)

 

Figure 10. Three subtrees from figure 9 that can be reused to derive a description of a 
weir system 

 
By adding the mathematical equivalence vA = ∫vdA and the equation dA = Bdh, which 
follows from the definition of a rectangular weir, we can create the derivation tree in 
figure 11 for the discharge of a weir. 
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ΣE = constant

ρgz1 + ρv12/2 + p1 = ρgz2 + ρv22/2 + p2

p1 = p2
v1 = 0
z1 − z2 = h

v = √(2gh)

Q(theoretical) = vA 

Q(actual) = CdQ(theoretical)

Q(theoretical) = ∫vdA dA = Bdh

Q(theoretical) =  ∫vBdh

Q(theoretical) =  B√(2g) ∫√hdh

Q(theoretical) =  (2/3)B√(2g) h3/2

Q(actual) =  (2/3) CdB√(2g) h3/2
 

Figure 11. Derivation tree resulting from the shortest derivation for a description of a 
weir by combining the subtrees from figure 10 

 
The derivation tree in figure 11 closely follows the derivations given in Norman et al. 
(1990, p. 498) and Douglas and Matthews (1996, p. 117), where a description of a weir 
system is derived by modelling it as closely as possible on the orifice system. This 
corresponds to engineering practice where new systems are almost literally built upon or 
constructed out of similar previous systems. To give an historical example, the earliest 
known derivation of the equation for the weir system by Jean-Baptiste Bélanger (1828, 
p. 37) takes the orifice system as given and reuses it to derive the formula in figure 11. 
Bélanger reused not only Bernoulli's derivation of Torricelli's theorem (as reflected by 
the leftmost subtree in figure 10) but also the empirical coefficient of discharge (the 
rightmost subtree in figure 10) and the equation for discharge itself (the intermediate 
subtree in figure 10). Bélanger thus modelled the weir system by reusing and extending 
(parts of) a previously derived system in such a way that only minimal recourse to 
additional derivational steps was needed. 
 DOP can simulate this exemplar-based modelling by combining those derivational 
chunks that maximise derivational similarity or, equivalently, minimise derivation 
length. The three subtrees in figure 10 indeed correspond to the smallest number of 
subtrees needed to construct, via some intermediate mathematical steps, a derivation for 
the equation of the weir system. There are many other possible derivations for this 
equation (the system is massively derivationally redundant), but they all result in 
considerably longer derivations than the one given above.  
 The derivation tree in figure 11 has effectively become an exemplar itself in 
hydraulics (which in DOP means that it is added to the corpus). The derivation has been 
reused and extended to derive a so-called V-notch. The V-notch, in turn, has been 
extended to derive a so-called trapezoidal notch, which has again been further extended 
to derive a Cipolletti weir, etc. (see Chanson 2002 for an overview). Modelling in 
engineering is highly cumulative: new systems are built upon or constructed out of 
previous systems and their derivations form increasingly complex wholes. We can 
handle this complexity by taking large(st) partial derivations from (descriptions of) 
previous systems as "given" (as in DOP) and work from there. 
 Note that the DOP approach naturally allows for using corrections, normalisations, 
fudge factors and other adjustments. Morrison and Morgan (1999, p. 11) refer to such 



13 

adjustments as "additional 'outside' elements" but in the exemplar-based approach they 
have the same status as other equations in a derivation tree. As long as "additional 
'outside' elements" can be stated in terms of mathematical equations they can be 
integrated by a derivation tree, and be reused to solve new problems by maximising 
derivational similarity. We only need to slightly extend our definition of DOP given at 
the end of section 2, where leaf nodes in a derivation tree referred to either general laws 
or antecedent conditions. In the new DOP model, the leaf nodes may also be empirical 
rules or any other equations that are not deduced from higher-level laws. We may lump 
these three kinds of knowledge (laws, antecedent conditions and empirical rules) 
together as knowledge that is not derived from higher-level knowledge. The definitions 
of derivational similarity and shortest derivation remain the same. 
 But how far does DOP stretch for technological devices and real-world systems? 
Can we also represent more complex systems by means of derivation trees? DOP hinges 
on the fact that all "theory-external" knowledge must be represented by equations. But 
what if such knowledge involves an intermediate model, as in the case with Prandtl's 
boundary layer model discussed by Heidelberger (2006)? Morrison (2006) rightly notes 
that the boundary layer model is autonomous in that it was not created by some 
approximation of the Navier-Stokes equations. Yet, as Heidelberger shows, Prandtl's 
model does represent a mathematical structure which approximates the Navier-Stokes 
equations, which means that it can be represented by a derivation tree. Such a derivation 
tree does of course not represent the creative act of inventing the boundary-layer model, 
but once it has been invented it can be reused as an exemplar by DOP to derive a range 
of new engineering problems. 
 Note that DOP does not demand that every phenomenon or system be linked to 
universal laws. A phenomenon may be derived from a phenomenological model only, 
without any derivational relation to high-level theory. This is the case in, for example, 
quantum-chromodynamics (QCD), where phenomenological models such as the MIT-
bag model are used to describe certain features of quarks (see Hartmann 1999). Such 
phenomenological models do serve as exemplars, and they were even taken themselves 
from exemplars in other fields, albeit there is no deductive relation with theory. This 
kind of situation also occurs in disciplines where universal laws are difficult to come by 
or where they are not present at all, such as in biology, economics and linguistics (see 
next section). As long as there is a model or regularity representing the phenomenon, we 
can construct a derivation tree for it. In our new definition of DOP there is no need to 
link a phenomenon to general laws, except if the phenomenon can be derived from 
them. In the "worst" case a derivation tree consists only of the empirical regularity 
describing the phenomenon. 
 
5.  DOP in other disciplines: an excursion into language technology 
What counts for fluid mechanics and hydraulics also counts for many other disciplines: 
real-world phenomena are derived not from general laws, but from (largest possible) 
parts of derivations of previous phenomena. As an example from the other end of the 
technological spectrum, I will give a brief excursion into language technology. 
 While language theory is permeated by the idea that a language is aptly 
described by a formal grammar, i.e. a finite and succinct set of rules which can derive an 
infinite set of well-formed utterances, language technology does not work that way. As 
soon as natural language processing systems need to deal with a non-trivial fragment of 
a language, say English, formal grammars turn out to be severely inadequate. Grammars 
either undergenerate, which means that they provide no derivation for otherwise well-
formed utterances, or they overgenerate, which means that they provide too many 
derivations for well-formed utterances (cf. Manning and Schütze 1999). "All grammars 
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leak", is the well-known dictum of Edward Sapir (Sapir 1921, p. 38). In fact, there are 
so many idiosyncratic and idiomatic phenomena in natural language that only an 
approach which takes into account a stock of previously produced sentences can 
accurately model a language. After unsuccessful attempts to apply formal grammars to 
automatic linguistic analysis, a different paradigm has been developed since the 1980s 
in language technology: new sentences are derived not by using a concise set of rules, 
but by using a large corpus of previously derived sentences together with a matching 
algorithm (see Manning and Schütze 1999 for an historical overview).2

Before going into the details of this matching algorithm for linguistic analysis, 
let me first explain what derivations of sentences look like. It is by now widely 
acknowledged that sentence derivations can be represented by tree structures, similar to 
the derivation trees in physics in the previous sections. The first linguistic tree structure 
was (most likely) proposed by Wilhelm Wundt in his Logik (Wundt 1880). But it was 
Noam Chomsky who made the notion of syntactic phrase-structure tree more widely 
accepted (Chomsky 1957). Although richer structures have also been proposed in the 
meantime, there is ample agreement that tree structures form the backbone of sentence-
analyses, sometimes enriched with phonological, morphological and semantic 
representations (see Sag et al. 2003; Bresnan 2000; Goldberg 1995). In this section, I 
will focus on syntactic representations only. 
 So what does a syntactic phrase-structure tree look like? Figure 12 gives two tree 
structures for respectively the sentences She wanted the dress on the rack and She saw 
the dog with the telescope.

S

NP

she

VP

VP

 V NP

PP

 P NP

 S

NP VP

 V

wanted

NP

NP PP

NP P

she

the dress

the rackon

the dog thesaw with telescope

Figure 12. Two sentences with their phrase-structure trees 
 
A phrase-structure tree describes how parts of a sentence combine into constituents and 
how these constituents combine into a representation for the whole sentence. The 
constituents in a phrase-structure tree are labelled with syntactic categories such as NP 
for noun phrase, PP for prepositional phrase, VP for verb phrase and S for the whole 
sentence. To keep the example simple, we have left out some low-level labels for Noun 
and Article. The two trees in figure 12 are structurally different in that in the first 
sentence the prepositional phrase on the rack forms a noun phrase with the dress,
whereas in the second sentence the prepositional phrase with the telescope forms a verb 
phrase with saw the dog.

2 Even if the notion of "grammar" is still used by many systems it is not succinct but consists of (tens of) 
thousands of rules that are derived from actual language corpora (see e.g. Knuuttila and Voutilainen 
2003). 
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 Although phrase-structure trees are not labelled with equations, they are 
compositionally built up as in physics derivation trees: each category is defined in terms 
of its underlying subcategories (and if we enrich each syntactic label with its logical-
semantic interpretation, we would again obtain derivation trees with equations -- see 
Bod 1998). Note that phrase-structure trees are represented upside down: the root is at 
the top instead of at the bottom. This is pure convention. 
 How can these sentences be used to derive new sentences, i.e. what does a 
"matching algorithm" for language look like? There is no single (or unique) way to do 
this. One straightforward but not very successful method is to read off the "grammar 
rules" that are implicit in the trees, such as S => NP VP, VP => V NP, NP => NP PP, 
NP => the dress, etc. in figure 12 (Charniak 1996).3 Another, more successful method is 
by reading off for every single word a subtree including that word (Chiang 2000). Yet 
another and still more successful method is by first enriching each syntactic label with 
its so-called "headword" and by next reading off the rules from the trees (Collins 1997). 
We know the relative success of these methods as they have been evaluated on the same 
benchmark, the so-called Penn Treebank corpus consisting of 50,000+ manually 
analysed sentences (Marcus et al. 1993). We will not go into further details of these 
different methods (but see Bod et al. 2003a, 2003b). 
 While these methods may seem rather disparate, they are based on the same 
underlying idea: new sentences are derived by parts of previously derived sentences. 
The distinctive feature of each method is their definition of what are to be considered 
the relevant parts. Yet it is also possible to generalise over these different methods by 
taking all partial trees as "relevant" parts. Interestingly, this generalised model is 
captured by the DOP approach. If we put restrictions on the partial trees, all 
aforementioned other models can be instantiated by DOP (see Charniak 1997). 
 The example in figure 13 illustrates how DOP is used for natural language 
processing. If we take the sentences in figure 12 as our (unrealistically small) corpus, we 
can derive the new sentence She saw the dress with the telescope by extracting two 
subtrees from the trees in figure 12 and by combining them by means of label 
substitution.

NP

the dress

° = S

NP

she

VP

VP

 V NP

PP

 P NP

the thesaw with telescopedress

 S

NP

she

VP

VP

 V NP

PP

 P NP

thesaw with telescope

Figure 13. Deriving a new sentence by combining subtrees from figure 12 
 
Note the similarity of label substitution with term substitution in the previous sections. 
Analogous to term substitution, the label substitution of two trees, again written as t ° u,
yields a tree where u is substituted on the leftmost syntactic leaf node of t. As in the 
DOP model for physics, the linguistic DOP model constructs new trees by combining 
 
3 A grammar rule like S => NP VP says that a sentence (S) consists of a noun phrase (NP) followed by a 
verb phrase (VP). 
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subtrees from prior trees. The analogy may be even stronger for hydraulics: just as 
engineers build new systems almost literally out of previous systems, language users 
construct new sentences almost literally out of previous sentences. Like in engineering, 
this can result in increasingly complex wholes (for example, by iteratively combining 
subtrees from the corpus in figure 12, we can construct sentences of arbitrary length, 
such as She saw the dress on the rack with the telescope and She saw the dress with the 
dog on the rack with the telescope, etc. -- see Bod 2006). 
 However, the most important commonality between the two disciplines is 
probably the way derivational redundancy is resolved. Turning back to figure 13, the 
new sentence She saw the dress with the telescope is interpreted analogous to the corpus 
sentence She saw the dog with the telescope: both sentences receive roughly the same 
phrase structure. But we can also derive an alternative phrase structure for this new 
sentence, namely by combining three (rather than two) subtrees from figure 12, as 
shown in figure 14. 

S

NP VP

V NP

NP PP

she

the dress

 V

saw

PP

 P NP

thewith telescope

= S

NP VP

V NP

NP PP

she

the dress

saw

 P NP

thewith telescope

° °

 

Figure 14. A different derivation for She saw the dress with the telescope 

Thus the sentence She saw the dress with the telescope can be derived in (at least) two 
different ways: either analogous to the first tree in figure 12 or analogous to the second 
tree in figure 12. That is, the sentence is "structurally ambiguous" or "derivationally 
redundant", and the two different structures represent two different meanings for the 
sentence (due to the different prepositional phrase attachments). Which tree should be 
chosen? Experiments with human language users show that people have a strong 
preference for understanding the sentence as conveyed by the syntactic structure in 
figure 13. The reason for this seems to be that, as in physics, the structure in figure 13 is 
more derivationally similar to previously perceived sentence-structures (although our 
small corpus in figure 12 is of course not representative). Humans tend to understand a 
new sentence by modelling it as closely as possible on previously understood sentences. 
This can be accomplished by maximising derivational similarity -- or equivalently, by 
minimising derivation length -- with respect to previously derived sentences.4 For our 
example sentence She saw the dress with the telescope, the shortest derivation (which 
maximises derivational similarity) is represented by figure 13: only two subtrees from 
the corpus are needed to construct this tree, while at least three corpus-subtrees are 
needed to construct the tree in figure 14. 
 Of course, the corpus in figure 12 is much too small for simulating actual 
language processing. More realistic experiments use corpora of tens of thousands of 
 
4 Most models also take into account the frequency of occurrence of derivational chunks in the corpus 
(see Manning and Schütze 1999), but I will not go into this here. 
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(manually constructed) phrase-structure trees (cf. Bod et al. 2003b). Yet it is noteworthy 
that the use of largest possible derivational chunks is important not only for solving 
derivational redundancy, but also for covering idiomatic expressions and multi-word 
units such as "to take advantage of”, “more pricks than kicks” and “everything you 
always wanted to know about X but were afraid to ask”. Natural language is replete with 
idiosyncratic and idiomatic expressions, which can only be taken into account by units 
larger than single grammar rules or lexical entries. 
 Note that DOP allows in principle for corpora of any sort of trees -- be they 
physical, linguistic, musical or of any other kind (see Bod 2002a, 2002b). As long as we 
can construct a corpus of exemplary derivations for a certain discipline, we can create a 
DOP model for it and use it to derive new phenomena without making recourse to an 
axiomatic system of rules. Sure enough, the exemplary derivations in the corpus do 
include general laws or rules, such as F = ma in physics or S => NP VP in linguistics, 
but they also include very particularist information ranging from empirical coefficients 
in hydraulics to idiomatic expressions in natural language that do not follow from these 
laws or rules. The world may be full of nomothetic elements like laws. But it is also full 
of idiographic elements such as empirical coefficients. DOP does justice to both. 
 
6.  Conclusion 
I have argued for a general model of "applying science", known as DOP or EBE. 
According to this model, we explain new phenomena by recombining largest possible 
fragments or chunks from a corpus of previously derived phenomena. Examples from 
hydraulics and natural language processing suggest an underlying methodology across 
different disciplines. As long as we can construct a corpus of exemplary derivations for 
a certain discipline, we can create a DOP model for it and use it to derive descriptions of 
new phenomena. 
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