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Abstract. We investigate the asymptotic properties of the logical system
for information update developped by Baltag, Moss and Solecki [2]. We build on
the idea of looking at update logics as dynamical systems. We show that every
epistemic formula either always holds or is always refuted from certain moment
on, in the course of update with factual epistemic events, i.e. events with only
propositional prerequisite formulas, or signals. We characterize in terms of a pebble
game the class of frames such that iterated update with factual epistemic events built
over them gives rise only to finite sets of reachable states. The characterization is
nontrivial, and so the ’Finite Evolution Conjecture’ (see van Benthem [4]) is refuted.
Finally, after giving some basic insights into the dissipative nature of update with
general, nonfactual epistemic events, we show the distinctive stabilizing nature of
epistemically ordered multi-S5 events - events in which agents can be ordered in
terms of how much they know.

1. Introduction
Modeling knowledge has always been motivated by matters concerning knowledge change.
Many issues that propelled interest and investigations in formal epistemic systems, such as
problems of communication in multi-agent systems, database quering, reasoning in games
or the folklore knowledge puzzles (e.g. Muddy Children), have a great deal to do with
the evolution of information or knowledge. The general challenging question is: "How are
agents’ beliefs - I will ignore the distinction between knowledge and belief in this paper -
affected by certain events with clear epistemic content?"
In the static setting probably the most widespread approach to formalizing epistemic

situations is that of modal logic and Kripke semantics. For a given set of atomic proposi-
tions and a set of agents, each pointed Kripke model - epistemic state - encodes informa-
tion about corresponding facts and agents’ knowledge about them, knowledge about this
knowledge etc, as well as facts held in common knowledge. Following original contribution
by Hintikka [18], this is the traditional way of representing agents’ factual knowledge, as
well as higher-order knowledge - knowledge about knowledge - in a compact way.
How about modeling change? When we build dynamic events explicitly into the for-

malism, we arrive at various kinds of Dynamic Epistemic Logic. Plaza [21] allowed events
mirroring public announcements to a group of agents, Gerbrandy [13], Gerbrandy and
Groeneveld [14],[15] extended it to such cases as revealing information only to a subset of
agents, sending messages by an agent to a group of agents as well as all events obtained
by the application of PDL constructors. Finally, Balag, Moss and Solecki [2] presented a
logic capturing effects of updates with events represented by the structures related to the
usual Kripke models, so called epistemic events, capable of representing quite intricate
epistemic patterns. The work in this paper will concentrate around this last, most flexible
approach.
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In the case of each formalism, the semantic part constitutes essentially a dynamical
system. Epistemic states make up the space of states over which the system "travels", or
a phase space, and each epistemic event defines a map over it. Each event happening at
any state brings us to a new state, representing the resulting epistemic situation. At this
state the same or different event may unfold, and so on.
The field of dynamical systems, investigating properties of systems subject to certain

dynamical processes - in our case: information updates - is a well established branch of
mathematics. The most standard questions that a general theory of dynamical systems
deals with concern the asymptotic behavior: how the system behaves in the (time) limit
of a dynamical process? In our case those questions would concern the limiting properties
of iterated execution of epistemic events, iterated update. For example, when the same
epistemic event is carried out iteratively, is the set of epistemic states reachable in such a
process finite? Do we reach a fixed point, or perhaps we eventually loop over a finite set
of states? How about satisfacion of formulas in the limit of such update? etc.
Incidentally, two probably best known puzzles in the epistemic literature, the Muddy

Children and the Coordinated Attack puzzles1 , concern exactly the asymptotic behavior
of appropriate dynamical update systems. In the case of the Muddy Children, the problem
is whether and when in the course of repeated collective answer to the same question each
child in a group will find out whether its forehead is dirty. In the case of the Coordinated
Attack, the puzzle arises because after arbitrary number of mutual reassurances on the
part of the two generals, they will not achieve Common Knowledge of their willingness
to attack at a certain time. Similar method is employed in the logical analysis of a game
theoretic solution concept of Iterated Deletion of Dominated Strategies by van Benthem
[5]. The set of strategies returned by this solution concept for every normal form game is
precisely the set "surviving" certain iterated epistemic update, pruning out at each stage
unreasonable strategies.
The first paper to look at the iterated update and limit behavior in the context of

various Dynamic Epistemic Logics was van Benthem [4]. It analyzed the iterated public
anouncement, which corresponds to the iterated semantic relativization of a model (see
section 2.2) and always leads to a fixed point of update, as well as signalled the problems of
iterated update with more general epistemic events. Among others, it stated the ’Finite
Evolution Conjecture’: for any pair of finite epistemic state and epistemic event, only
finitely many epistemic states can be reached in the course of iterated update.

In this paper we formalize the notion of the dynamical product update system, based
on the product update with epistemic events, as formalized in Baltag et al. [2]. The main
goal is to investigate the nature of the asymptotic behavior of epistemic update, and in
particular to give answer to the ’Finite Evolution Conjecture’.
In chapter 2 we briefly review the stadard epistemic logic, the product update logic

and state the extension of bisimulation to update models (see van Eijck, Ruan and Sadzik
[11] for more details and proofs). Then, in chapter 3, we introduce the dynamical product
update system, some basic concepts for analyzing asymptotic behavior and extend the
dynamic epistemic language with limit modalities. Finally, chapters 4 and 5 adress the
main issue of asymptotic behavior of product update, for factual (i.e. with only proposi-
tional prerequisite formulas, signals) and general epistemic events, respectively. We show
that every epistemic formula either always holds or is always refuted in the course of up-

1 for a textbook presentation see Fagin, Halper, Moses, Vardi [12]. For a DEL treatment of Muddy
Children puzzle see Gerbrandy and Groeneveld [15].
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date from certain moment on, in the course of update with a factual epistemic event. We
characterize in terms of a pebble game the class of frames such that iterated update with
factual epistemic events built over them gives rise only to finite sets of reachable states.
The characterization is nontrivial, and so we refute the ’Finite Evolution Conjecture’. Fi-
nally, after giving some basic insights into the dissipative nature of update with general,
nonfactual epistemic events, we show the distinctive stabilizing nature of epistemically
ordered multi-S5 events - events in which agents can be ordered in terms of how much
they know. Epistemic ordering is an "almost" necessary and a sufficient condition on an
S5 frame to give rise to finite evolution only. Brief conclusion with several open problems
follows.

2. Epistemic States and Epistemic Events
2.1. Epistemic logic. First lets fix the static part of our systems. Following well-
trodden path we take a Kripke structure as a formal representation of a static epistemic
situation. We do not impose any restrictions on accessibility relations at this point,
allowing for a very permissive concept of knowledge.

Definition 1. Fix once and for all a set of agents I and a countably infinite set of atomic
propositions Prop. A state model is a structure M = {SM , Ri

M |i∈I , VM}, where

• SM is a nonempty set of possible worlds, or (simple) states;

• Ri
M ⊆ S2M |i∈I are accessibility relations for each agent;

• VM : SM → Pow(Prop) assigns a set of atomic propositions to each state.

A pointed state model, or an epistemic state is a state model with a distinguished
"actual" state m ∈ SM , denoted (M,m). LetM be the set of all epistemic states.

The most standard language for epistemic logic is the polymodal language with addi-
tional group common knowledge modalities.

Definition 2. The language LEL−C will be defined recursively:

LEL−C ::= > p ¬ϕ ϕ ∧ φ [i]ϕ CJϕ ,

where p ∈Prop, i ∈ I, J ⊆ I.

We use the standard abbreviations of ⊥, ϕ ∨ φ and hiiϕ.
The satisfaction definition will tie the object language to epistemic states. For a given

model M and J ⊂ I let J−path be a sequence (m1, i1,m2, ..., ik−1,mk), k > 1, such that
ml ∈ SM and il ∈ J for l ≤ k.

Definition 3. We define the satisfaction relation holding between epistemic states and
formulas in the language LEL−C recursively:

(M,m) ² > always,
(M,m) ² p iff p ∈ VM (m),
(M,m) ² ¬ϕ iff (M,m) 2 ϕ,
(M,m) ² ϕ ∧ φ iff (M,m) ² ϕ and (M,m) ² φ,
(M,m) ² [i]ϕ iff (M,n) ² ϕ for all n s.t. (m,n) ∈ Ri

M ,
(M,m) ² CJϕ iff (M,n) ² ϕ for all n s.t. ∃J−path

(m1, ..., ik−1,mk) with m1 = m,mk = n.
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2.2. Product Update. Each epistemic state is a well defined model for a static epis-
temic situation. The following epistemic events are the models for dynamic epistemic
scenarios.

Definition 4. For a given set of agents I and language L an L−update model is a
structure A = {SA, Ri

A|i∈I , pA}, where:
• SA is a nonempty finite set of (simple) events;

• Ri
A ⊆ S2A|i∈I are accessibility relations for each agent;

• pA : SA → L assigns a precondition formula to each event.
A L−(multi) pointed update model, or an L−epistemic event is an L−update model

with a set of distinguished "possibly actual" events, denoted e.g. (A,a).2 AL is the space
of all such L−epistemic events.
L−epistemic events with single distinguished simple events are models for deterministic

dynamic epistemic situations. Their interpretation is very much like the interpretation
of usual "static" Kripke structures. In particular, they are also tangled in a mesh of
epistemic admissibility relations, which reflects underlying uncertainty of the agents. The
difference between the two types of models lies in the last element, the assignment. The
dynamic simple events are not differentiated by their atomic content, atomic propositions
that are true there, as in the case of static models, but by the precondition formulas. Each
of them constitutes a condition of the simple event to be carried out - each simple event
can happen only in the epistemic states that satisfy the precondition. In other words, it
is the information, or a signal that the event gives out about the underlying epistemic
state. As the dynamic (simple) events are identified with the signals they provide, we
abstract away from their true nature, leaving many possibilities open. Most usually they
are various kinds of communicative acts. It also follows that we treat solely the events
that do not affect the facts - as e.g. openning a window - and only model widely conceived
flow of information (see comments in Baltag et al. [2] and van Bethem, van Eijck, Kooi
[7]).
Contrary to epistemic states, epistemic events are by default nondeterministc. Non-

deterministic update with an epistemic event (A,a), will return a set of epistemic states.
(we will denote it e.g. (M,m)).

Example 5. (Public Announcement) The first paper on Epistemic Update Logic - Plaza
[21] - investigated the epistemic logic extended by the operation of public announcement
of a formula to the agents. Semantically, the scenario of the announcement of formula
ϕ can be captured by the following epistemic event: (A, a) = ({SA, Ri

A|i∈I , pA}, a) =
({{a}, {(a, a)}|i∈I , {(a, ϕ)}}, a) :

Figure 1. Public Announcement episemic event
2Boldface will always mark that a symbol denotes a set.
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Public announcement is the simplest type of communicative acts. See Baltag et al. [2]
for examples of more involved Secure announcement to a set of agents, Announcements
with a suspicious outsider or Announcement with common knowledge of suspicion. Con-
sider also the following communicative scenario, which is the representation of one round
of communication from the Coordinated Attack puzzle (or Electronic Mail Game, see e.g.
Fagin, Halpern, Moses, Vardi [12] for more details):

Example 6. Two divisions of the White army, each headed by a general, occupy two hills
overlooking the valley. The valley is taken by the opposing Red army. General X of the
White army sends a messanger to general Y only in the case when he wants to attack at
dawn the next day, in order to coordinate the attack. General Y sends back a messanger
with the acknowledgement once he gets the message. General X sends a messanger along
the path a, and general Y sends back a messanger along the path b. Each path might be
occupied by the Red army, in which case the message is lost.
There are 4 (simple) events that might unfold, depending whether X wants to attack at

dawn, and which paths are occupied by the Reds: no attack at dawn, attack and first mes-
sanger intercepted, attack and first messanger goes through but second one intercepted,
attack and communication not hindered.
The following is the update model A for this scenario:

Figure 2. Acknowledged Message Passing frame

pA(a1) = ¬attack
pA(a2) =attack& path_a_taken_by_the_Reds
pA(a3) =attack&¬path_a_taken_by_the_Reds&path_b_taken_by_the_Reds
pA(a4) =attack&¬path_a_taken_by_the_Reds&¬path_b_taken_by_the_Reds
In the event a1 X does not attack at dawn and so sends no message. He can clearly

distinguish this event from any other. In a2 the message is sent, but lost on the way
to Y, who does not know whether the message was sent in the first place. In a3 Y gets
the message, but his acknowledgement is lost on the way to X, whereas in a4 the whole
process of message sending and acknowledging goes smoothly.
Call the frame on which the model is based, i.e. A={SA, Ri

A|i∈I}, an Acknowledged
Message Passing frame. We will take a closer look at the properties of update with such
frames in section 4.2.

We dynamify the object language via new kind of modalities - update modalities, in-
dexed by the epistemic events introduced above. Notice in this respect that we demanded
the update models to be finite. The intended meaning of a formula h(A, a)iϕ is that ϕ
holds after we update with (A, a).
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Definition 7. i) For any language L interpretable over epistemic states let the language
LU be defined recursively ( jointly with LU−epistemic events):

LU : := "L" h(A,a)iϕ ,

(A,a) is an LU−epistemic event.

where "L" is a recursive definition of language L.
ii) For languages L and L0 interpretable over epistemic states let the language LU(L0)

be defined recursively:

LU(L0) : := "L" h(A,a)iϕ ,

(A,a) is an L0−epistemic event.

We will also use the usual abbreviations [(A,a)]ϕ. As an example, the language
(LEL−C)U , abbreviated LUEL−C , is defined as follows:

LUEL−C : := > p ¬ϕ ϕ ∧ φ [i]ϕ CJϕ h(A,a)iϕ,
(A,a) is an LUEL−C−epistemic event.

Epistemic states describe the static "snapshot" pictures of the epistemic situations,
provide truth values for the formulas. Epistemic events denote information updating
dynamic epistemic scenarios, each simple event standing not for a complete description of
the world, but certain signal about this description. To complete the semantic formalism
we need to specify how the epistemic events operate on the epistemic states. If an event
(A,a) unfolds at a state (M,m), what is the new resulting epistemic state?
We define the operation of product update which allows us to look at the epistemic

events as update maps. It can be taken to represent the uniform way in which the agents
merge two kinds of information, stemming from static and dynamic models.

Definition 8. Suppose that L is any language interpreted over epistemic states. Product
update operation ⊗ :M×AL → Pow(M) is defined as follows:

(M,m)⊗ (A,a) := ∅ if {m} × a ∩ SW = ∅,
(W, {m} × a) otherwise,

where

• SW := {(n, b)|(M,n) |= pA(b)},

• Ri
W := {((m, b), (n, c))|(m,n) ∈ Ri

M and (b, c) ∈ Ri
A},

• VW ((n, b)) := VM (n).

We will use the mnemonic M ×A for the updated model W above.3

3For a set of epistemic states (M,m), we will let (M,m)⊗(A,a) =
[

(M,m)∈(M,m)

(M,m)⊗(A,a), which

is either (M ×A,m× a) or ∅.
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Example 9. Recall the epistemic event of public announcement in example 5. It induces
the mapping that simply relativizes epistemic state to the submodel where ϕ holds:

Figure 3. Public Announcement update

The satisfaction definition reflects the intended meaning of update modalities.

Definition 10. For any language interpreted over epistemic states L we extend the sat-
isfaction relation to formulas in the language LU with the clause:

(M,m) ² h(A,a)iϕ iff (N,n) ² ϕ, for some (N,n) in (M,m)⊗ (A,a).

Baltag et al. [2] give a complete axiomatization of the logic for LUEL−C induced by the
product update, which is copied in the appendix.

2.3. Bisimulation, Update Bisimulation and Equivalence. The identity relation
over M distinguishes models giving rise to the same modal theories (e.g. in LEL−C).
The relation of bisimulation, familiar from the modal logic, provides a more appropriate
equivalence relation:

Definition 11. For M,N ∈ M0 states m ∈ M,n ∈ N are bisimilar (”m↔n”) if the
following simulation conditions are verified:

• If m↔n, then VM (m) = VN (n);

• If m↔n and mRi
Mm0, then there is n0 in N such that nRi

Nn
0 and m0↔n0;

• Similarly in the opposite direction;

Two finite epistemic states are bisimilar iff they have the same theories in LEL−C (see
van Benthem [3], Blackburn et al. [9]). We will construe M as a space of bisimulation
equivalence classes, identifying each model with the class to which it belongs. Pointed
bisimulation between (M,m) and (N,n) is a bisimulation joining every m ∈m with some
n ∈ n, and vice versa. We will write (M,m)↔(N,n) if there exists a pointed bisimulation
between (M,m) and (N,n).
The following proposition shows that product update is well defined for the space of

epistemic states quotiented through bisimulation equivalence relation:

Proposition 12. [2] Product update ⊗ respects bisimulation: If (M,m)↔(N,n) then

either (M,m)⊗ (A,a)↔(N,n)⊗ (A,a)
or (M,m)⊗ (A,a) = (N,n)⊗ (A,a) = ∅.
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Analogously we quotient the set of epistemic events ALUEL−C (understood as the map-
pings):

Definition 13. Two epistemic events (A,a), (B,b) ∈ ALUEL−C are update equivalent
(”(A,a) ≈ (B,b)”) if ∀(M,m) ∈M

either (M,m)⊗ (A,a)↔(M,m)⊗ (B,b)
or (M,m)⊗ (A,a) = (M,m)⊗ (B,b) = ∅.

Filling in the role that bisimulation filled in in the case of epistemic states and their
giving rise to the same modal theories, we will state a characterization of update equiva-
lence for ALUEL−C in terms of update bisimulation, a relation between the domains of the
respective epistemic events. See the paper by van Eijck et al. [11] for more details and
proofs.
For given update models A and B let QA,B be the minimal set of formulas that

includes all formulas from the range of pA and pB that is closed under subformulas, single
negations and the application of the following rule:

CJϕ ∈ QA,B ⇒
^

j∈J
[j]CJϕ ∈ QA,B.

A type from QA,B is a maximal satisfiable subset of formulas. TA,B will denote the
set of all such types, and for a given type t, bt will be a formula that is a conjunction of
all its elements.

Definition 14. Let A and B be two update models. Let R ⊆ (SA×SB)× TA,B be such
(indexed) relation that if ((a, b), t) ∈ R then:

• pA(a) ∈ t iff pB(b) ∈ t;

• For every a0 and t0 such that aRi
Aa

0, pA(a0) ∈ t0 and bt∧ hiibt0 satisfiable, there exists
b0 such that ((a0, b0), t0) ∈ R;

• For every b0 and t0 such that bRi
Bb

0,pB(b0) ∈ t0 and bt ∧ hiibt0 satisfiable, there exists
a0 such that ((a0, b0), t0) ∈ R.

For two subsets a ⊆ SA, b ⊆ SB we say that they are update bisimilar (denoted
”a⇔b”) if there exists a relation R fulfilling the above conditions, such that ∀a ∈ a,t ∈
TA,B.pA(a) ∈ t we have ((a, b), t) ∈ R for some b ∈ b, and similarly vice versa. Epistemic
events (A,a) and (B,b) are update bisimilar (”(A,a)⇔(B,b)”) if a and b are.

Theorem 15. [11] For any two epistemic events (A,a), (B,b) ∈ ALUEL−C we have:

(A,a) ≈ (B,b) iff (A,a)⇔(B,b).

For the special kinds of update models the definition of update bisimulation simplifies
significantly. For any finite P ⊆Prop finite, define the language LV al,P = {

V
p∈S p ∧V

p∈P\S ¬p|S ∈ P}. Define also a larger language Lfact as the propositional language
based on Prop.
For any update model A and a0 ∈ SA, a ⊆ SA we will write a0Ri

Aa when ∀a ∈
a(a0Ri

Aa).
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Definition 16. Let A and B be two Lfact−update models. Let ⇒f be a binary relation
between simple events and sets of simple events in those update models such that the
following conditions hold:

• If a⇒fb then pA(a) ²
_

b∈b
pB(b).

• If a⇒fb, b ∈ b and aRi
Aa

0 such that pA(a0) is satisfiable, then ∃b0 ⊆ SB such that
bRi

Bb
0 and a0⇒fb

0.

• If a⇒fb, b ∈ b and bRi
Ab

0 such that pA(b0) is satisfiable, then ∃a0 ∈ SA such that
aRi

Aa
0 and b0⇒fa

0.

For two subsets a ⊆ SA, b ⊆ SB let a⇔fb iff ∀a ∈ a.pA(a) satisfiable we have a⇒fb
0

for some b0 ⊆ b, and similarly vice versa. For epistemic events (A,a) and (B,b) let
(A,a)⇔f (B,b) iff a⇔fb are.

Proposition 17. [11] i) For any two epistemic events (A,a), (B,b) ∈ ALV al,P we have:

(A,a)⇔(B,b) iff (A,a)↔(B,b).

ii) For any two epistemic events (A,a), (B,b) ∈ ALfact we have:

(A,a)⇔(B,b) iff (A,a)⇔f (B,b).

3. Dynamical Product Update System
3.1. Dynamical System. We continue to regard M as the space of ↔-equivalence
classes, and similarly, making use of the preceding section, ALUEL−C as a space of ⇔-
equivalence classes, identifying a model with the class of models ↔- or ⇔-equivalent to
it, respectively. Same applies to all relevant subspaces.4

Definition 18. (LUEL−C−)Dynamical Product Update System is a pair (M, (ALUEL−C , ◦)),
where the phase spaceM is a space of all epistemic states for I and Prop, and (ALUEL−C , ◦)
is a semigroup of LUEL−C−epistemic events. The operation ◦ of action composition, is
defined as follows:

◦ : ALUEL−C ×ALUEL−C → ALUEL−C ,
(A,a) ◦ (B,b) : = (C, c),

where

• SC := SA × SB,

• Ri
C := {((a, b), (a0, b0))|(a, a0) ∈ Ri

A and (b, b
0) ∈ Ri

B},

• pC((a, b)) := pA(a) ∧ h(A, a)i pB(b).
Finally, each LUEL−C−epistemic event (A,a) is identified with the mapping (A,a) :
M→Pow(M),

(A,a)((M,m)) := (M,m)⊗ (A,a).
4 In the dynamical systems literature the additional structure over the phase space comes typically in

the form of topology over the phase space M. Our treatment is actually equivalent, when we take the
topology to be generated by the basis of sets of bisimilar epistemic states. See also section 4.1.
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Lemma 19. [2] For any epistemic events (A,a), (B,b) ∈ ALUEL−C and (M,m) ∈M we
have:

(M,m)⊗ ((A,a) ◦ (B,b)) = ((M,m)⊗ (A,a))⊗ (B,b).

In the composition, we create the epistemic events that consist of sequences of two
simple events (happening one after another). The precondition formula of a simple event
(a, b) says "pA(a) is true and after update with (A, a) pB(b) is true". We easily prove the
following lemma:

Lemma 20. ALV al,P ,ALfact and ALUEL−C are closed under composition. Moreover,
ALV al,P = ALUV al,P and ALfact = ALUfact .

Proof. It follows through a simple inductive argument and employment of the
relevant clauses from the axiom system (see appendix, compare also def. 18):

h(A, a)i p ⇔ pA(a) ∧ p
h(A, a)i ¬ϕ ⇔ pA(a) ∧ ¬ h(A, a)iϕ

h(A, a)iϕ ∧ χ ⇔ h(A, a)iϕ ∧ h(A, a)iχ

We will also use the following abbreviations:

(A,a)◦0 : = (V oid, v) := ({v}, {(v, v)}|i∈I , {(v,>)}}, v),
(A,a)◦t : = (At,at) := (A,a) ◦ ((A,a) ◦ ((A,a) ◦ ... ◦ (A,a))...)t times , t ≥ 1.

3.2. Asymptotic Behavior. In this subsection we introduce some basic concepts
and notation concerning the asymptotic behavior of (M, (ALUEL−C , ◦)), borrowing from
the dynamical system literature (see e.g. Hasselblatt and Katok [17]).
For a given epistemic event (A,a) let Ω(A,a) ⊂ ALUEL−C be the semigroup {(A,a)◦

t |t ≥
0} (together with the composition operation ‘◦’). For a set of epistemic states (M,m)
define its (A,a) -orbit, Ω(A,a)((M,m)), as the set of sets of models {(M,m)⊗(A,a)◦t |t ≥
0}5, and define the set \

T≥0

]
t≥T
(M,m)⊗ (A,a)◦t

of its (A,a)-limit points, ω(A,a)((M,m))6. Say that (M,m) is (A,a)-recurrent, if (M,m) ∈
ω(A,a)((M,m)). The (A,a)-stationary semigroup of (M,m) isG(A,a)((M,m)) := {(B,b) ∈
Ω(A,a)|(M,m)⊗ (B,b)↔(M,m)}. And lastly, the (A,a)-period p of (M,m) is such that
(A,a)◦p is the positive generator of G(A,a)((M,m)).
Using this new jargon we can ask more detailed questions about the asymptotic behav-

ior. For an epistemic state (M,m) and epistemic event (A,a), is the orbit Ω(A,a)((M,m))
finite, meaning that starting at (M,m), updating with (A,a) can lead only to finitely
many "nondeterministic" epistemic states (sets of epistemic states)? If so, what is the

5Obit Ω(A,a)((M,m)) corresponds (roughly) to TREE(M,A) in van Benthem [4].
6U stands for disjoint union, and so each limit point is a set of epistemic states.
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smallest t such that (M,m)⊗ (A,a)◦t is in the set of limit points? What is its period, is
it a fixed point? We will say that an orbit Ω(A,a)((M,m)) (p-)stabilizes (at stage t) iff it
is finite, t is the one described above and p is the period of its recurrent points.
In particular, van Benthem (e.g. [4]) stated the following

Conjecture 21 [Finite Evolution Conjecture]. For any finite epistemic state (M,m) and
LEL−C−epistemic event (A,a), the orbit Ω(A,a)((M,m)) stabilizes.

We will refute the conjecture in section 4.2.
We might also be interested in more uniform properties of updating with (A,a), and

ask if the semigroup Ω(A,a) is finite, and so {{(A,a) ◦t |s ≥ t}, ◦} isomorphic to Zp, for
some p and t, implying that acting of (A,a) on any epistemic state will produce finite
orbits only. What is the smallest such t? what is p? Similarly as above, the semigroup
Ω(A,a) or an epistemic event (A,a) (p-)stabilizes (at stage t), iff Ω(A,a) is finite, p and t
are as above.
We can ask those questions on the yet higher level of generality, and the answers

that we will try to provide here will be mainly of such nature. Perhaps the stabilization
properties are better characterized on the level of frames than particular models. For
a given epistemic frame A, A = {SA, Ri

A ⊆ S2A|i∈I}, what are the properties of the
epistemic events based on it: do they give rise to finite semigroups i.e. finite orbits when
applied to any state model? What if we constrain epistemic events to be factual? Frame
A (p-) stabilizes (at stage t) iff for every epistemic event over it, i.e. with domain and
accessibility relations as in A, and every (M,m), Ω(A,a)((M,m)) stabilizes, where p and
t are the suprema of those indices over all such Ω(A,a)((M,m)). Finally, frame A (p-
) stabilizesf (at stage t) if the definition above is applied only to the Lfact−epistemic
events.

3.3. Limit modalities. Accordingly, we extend the dynamic language with the ap-
propriate limit modalities.

Definition 22. For any language LU let the language LU→ be the extension of LU
through a recursive application of limit modalities

LU→ : := "LU" hh(A,a)→iiϕ h[(A,a)→]iϕ ,

(A,a) is an LU→−epistemic event.

Similarly, for any LU(L0) define the language LU(L0)→. The definition of satisfiability is
extended as follows:

(M,m) |= hh(A,a)→ii > ϕ ⇔def ∀T∃t ≥ T.(M,m) |= h(A,a)◦tiϕ,
(M,m) |= h[(A,a)→]iϕ ⇔def ∀T∃t ≥ T.(M,m) |= [(A,a)◦t]ϕ,

For example, the formula hh(A,a)→iiϕ means: "in the course of iterated nondetermin-
istic update with (A,a) the formula ϕ is infinitely often satisfied at some of the possible
resulting epistemic states". The abbreviations for the duals are standard, with the nega-
tion reverting both nested modalities. We have:

(M,m) |= [[(A,a)→]]ϕ iff ∃T∀t ≥ T.(M,m) |= [(A,a)◦t]ϕ,
(M,m) |= [h(A,a)→i]ϕ iff ∃T∀t ≥ T.(M,m) |= h(A,a)◦tiϕ.
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Notice that the formulas:

[h(A,a)→i]ϕ→ hh(A,a)→iiϕ,
[[(A,a)→]]ϕ→ h[(A,a)→]iϕ,

are valid overM.

4. Factual Epistemic Events
4.1. Finite evolution of truth value. Our first result illustrates important distin-
guishing features of factual update (update with Lfact−epistemic events). First of all,
irrespectively of the problem of finiteness of the orbit, any formula in LU(Lfact)EL−C eventually
either always holds or is always refuted in the course of update. No other, “looping”
recurrency is possible, with, e.g., some formula holding after every second update. We
can say that every formula has a definite asymptotic truth value, for a given epistemic
state and updating nondeterministic Lfact−epistemic event. Moreover, for every formula
in LU(Lfact)EL−C , and so possibly formula including Common Knowledge modalities, the num-
ber of updates after which its truth value is fixed forever is a simple function of the size
of updating (nondeterministic) epistemic event and the complexity of the formula, with
Common Knowledge and a regular knowledge modalities treated on a par. (The results
can be interpreted as showing that it is not a gradual build-up of depth of mutual knowl-
edge about some fact that leads to Common Knowledge - see Fagin et al. [12]). Factual
update is conservative in this sense.
This “smooth” evolution of information is largely due to the property of Lfact−epistemic

events that in a sequenced model (A,a)◦n preconditions of (sequenced) simple events don’t
depend on the order or number of repetitions of single simple events.

Lemma 23. For any Lfact−update model A, for any (a1, ..., at) ∈ SAt we have

pAs((a1, ..., at−1, at)) =
^

ai∈{a1,...,at}
pA(ai)

Proof. See the proof of lemma 20.
Given two Lfact−update models A and B and two simple events a ∈ A, b ∈ B, a is

C’-update similar to b (“a⇒C0b”) if the following conditions are verified:

1. If a⇒C0b then pA(a) ² pB(b);

2. If a⇒C0b and aRi
Aa

0, then there is b0 ∈ SB such that bRi
Bb

0 and a0⇒C0b0;

3. If a⇒C0b and bRi
Bb

0, then there is a0 ∈ SA such that aRi
Aa

0 and b0⇒C0a0;

4. If a⇒C0b, (a, i1, a2, ..., ik−1, ak) is a J-path inA, then there exists a J-path (b, i1, ..., ik−1, bk)
in B such that ∀l=2,...,k pA(a

l) ² pB(b
l) and ak⇒C0bk;

5. Similarly for a path in B starting with b.

Two sets of simple events are related by C’-update bisimulation (“a⇔C0b”) if each
simple event with a satisfiable prerequisite formula in either of them is C’-update similar
to a simple event in the other. Two epistemic events are C’-update bisimilar if their sets of
distinguished simple events are. The definitions are extended to C’n-update (bi)similarity
("a⇒C0nb", “a⇔C0nb”), in which case we verify only n steps in the definition above.
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For a formula in LU(Lfact)EL−C define its depthC in the following manner:

depthC(p) := 0, for p ∈Prop,
depthC(¬ϕ) := depthC(ϕ),
depthC(ϕ ∧ ψ) := max{depthC(ϕ),depthC(ψ)},
depthC(< (A,a) > ϕ) := depthC(ϕ),
depthC(< i > ϕ) =depthC(CJϕ) := depthC(ϕ) + 1,

Lemma 24. For Lfact−epistemic events (A,a) and (B,b), any (M,m) ∈ M, ϕ ∈
LU(Lfact)EL−C with depthC(ϕ) ≤ n:7

(A,a)⇔C0n(B,b) implies

(M,m) ² h(A,a)iϕ iff (M,m) ² h(B,b)iϕ.

Proof. The proof goes inductively over the complexity of ϕ. In evaluating the
formula, the first coordinates of matching states in the producted models are the same.
In the case of induction step, when ϕ is of the form h(C, c)iψ, we exploit the fact that
(M,m) ² h(A,a)i h(C, c)iψ iff (M,m) ² h(A,a) ◦ (C, c)iψ, and also (A,a)⇔C0n(B,b)
implies (A,a) ◦ (C, c)⇔C0n(B,b) ◦ (C, c) in the case when all epistemic events are in
ALfact .
Clearly, if (As, SsA)⇔C0(n)(A

t, StA), and the defining C’(n)-update simulation is such
that from (a1, ..., as)⇒C0(n)(a

0
1, ..., a

0
t) follows {a01, ..., a0t} ⊆ {a1, ..., as}, then for every

a ⊆ SA (A
s,as)⇔C0(n)(A

t,at). Same holds for update bisimulation.

Lemma 25. Let A be an Lfact−update model, |SA | = r. Then:

1. If for any (a1, ..., as) ∈ SAs , (a01, ..., a
0
t) ∈ SAt we have {a01, ..., a0t} ⊆ {a1, ..., as}, then

(a1, ..., as)⇒C00(a
0
1, ..., a

0
t).

2. If (a1, ..., at) ∈ SAt and (a01, ..., a
0
t) ∈ SAt is its permutation, then (a1, ..., at)⇔C0(a01, ..., a

0
t).

3. If (a1, ..., at+1) ∈ SAt+1 and (a01, ..., a
0
t) ∈ SAt are two sequenced events, first of which

has at least rn + 1, n ≥ 0 , repetitions of the same single event in its coordinates,
the second one has rn repetitions of this event and agrees on the number of all the
other repetitions, then (a1, ..., at+1)⇔C0n(a

0
1, ..., a

0
t).

Proof. 1. Follows from lemma 23.
2. From the definition of composing epistemic events follows immediately that if (a1, ..., at)
is a permutation of (a01, ..., a

0
t) and (a1, ..., at)R

i
At(b1, ..., bt), then there is (b

0
1, ..., b

0
t) with

(a01, ..., a
0
t)R

i
At(b

0
1, ..., b

0
t) and (b

0
1, ..., b

0
t) is the same permutation of (b1, ..., bt). Application

of part 1 proves that first condition of C’-update bisimulation is fulfilled and finishes the
proof.
3. The case when n = 0 follows from part 1. Suppose n > 0. Let (a1, ..., at+1) and
(a1, ..., at) be as in the premise, and assume for now that

(a1, ..., at+1) = (a1, ..., at−rn , a
∗, ..., a∗|rn + 1 repetitions),

and
(a01, ..., a

0
t) = (a1, ..., at−rn , a

∗, ..., a∗|rn rep.).

7 It should be clear that full characterization would require introducing point-set relations as well as
constraints on consistency of path-derived formulas, as in update simulation.
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We have that {a1, ..., at+1} = {a01, ..., a0t}, and so due to part 1 pAt+1((a1, ..., at+1)) ²
pAt((a

0
1, ..., a

0
t)), and vice versa.

As for the zigzag clauses of C’n-update simulation, we will prove only path conditions
(4 and 5), which contains the proof of direct successor conditions (2 and 3). Take first a
path ((a1, ..., at+1), i1, (a21, ..., a

2
t+1), i2, ..., ik−1, (a

k
1 , ..., a

k
t+1)) in At+1. (ak1 , ..., a

k
t+1) must

have rn−1 +1 repetitions among its last rn +1 coordinates — assume for now that it is of
the form

(ak1 , ..., a
k
t−rn−1 , a

k∗, ..., ak∗|rn−1 + 1 rep.).
The path in At will be:

((a1, ..., at−rn−1 , a
∗, ..., a∗|rn−1 rep.), i1, (a21, ..., a2t ), i2, ...

..., ik−1, (a
k
1 , ..., a

k
t−rn−1 , a

k∗, ..., ak∗|rn−1 rep.)),

the path from At+1 with the last coordinate cut off. The fact that this is indeed a path,
i.e. ∀l < k ((al1, ..., a

l
t)R

il
A(a

l+1
1 , ..., al+1t )), follows from those conditions on the path in

At+1. The conditions ∀l=1,...,k pA((a
l
1, ..., a

l
t+1)) ² pB((a

l
1, ..., a

l
t)) follow from ∀l=1,...,k

{al1, ..., alt+1} ⊇ {al1, ..., alt}. The last states of the two paths are C’(n-1)-update bisimilar
due to the induction assumption.
In the zag clause proceed analogously: for a path in At,

((a01, ..., a
0
t), i1, (a

02
1 , ..., a

02
t ), i2, ..., ik−1, (a

0k
1 , ..., a

0k
t )),

where, as before, we shall assume that (a01, ..., a
0
t) = (a01, ..., a

0
t−rn , a

∗, ..., a∗|rn rep.),
(a0k1 , ..., a

0k
t ) = (a

0k
1 , ..., a

0k
t−rn−1 , a

k∗, ..., ak∗|rn−1 rep.), let the path in At+1 be just

((a01, .., a
0
t, a

0
t), i1, (a

0
1
2, ..., a0t

2, a0t
2), i2, ..

..., ik−1, (a
0k
1 , .., a

0k
t , a

0k
t ).

Finally observe that the assumptions on the position of the repetitions in the sequences
were done only for the notational convenience and without loss of generality, due to part
2.
The following two propositions reap the results of the preceding lemma, concluding

this subsection.

Proposition 26. If (A,a) is a Lfact−epistemic event, |SA | = r, then:

1. (Arn+1+x,ar
n+1+x)⇔C0n(A

rn+1+y,ar
n+1+y), x, y ≥ 0.

2. For any finite (M,m) inM if Ω(A,a)((M,m)) stabilizes, then it 1-stabilizes.

3. If (A,a) stabilizes, then it 1-stabilizes.

Proof. 1. It is enough to prove the claim for y = x+ 1, x ≥ 0. The result follows
trivially from lemma 25 and remark directly before it, since in the sequence of length
rn+1 + 1 consisting of at most r different elements there must be at least one element
repeated rn + 1 times.
2. Follows easily from part 1 and lemma 24: any finite epistemic state can be distin-

guished by a single formula ϕ ∈ LEL−C from a finite set of finite epistemic states, none
of which is bisimilar to it (see e.g. Blackburn et al. [9]).
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3. Suppose (A,a) p-stabilizes. For any two Lfact−epistemic events (B,b) and (C, c)
that are not update bisimilar, we have (M,m)⊗ (B,b)=(M,m)⊗ (C, c) for certain finite
(M,m) with SM = {all valuations over propositional letters appearing in precondition
formulas of B and C}, total relations and canonical valuation (see van Eijck et al. [11]).
Therefore part 2 guarantees that p = 1.

Proposition 27. If (A,a) is a Lfact−epistemic event, |SA| = r, ϕ a formula in LU(Lfact)EL−C ,
then formulas:

hh(A,a)→iiϕ ↔
­
(A,a)◦t

®
ϕ,

hh(A,a)→iiϕ ↔ [h(A,a)→i]ϕ,

and similarly

h[(A,a)→]iϕ ↔ [(A,a)◦t]ϕ,
h[(A,a)→]iϕ ↔ [[(A,a)→]]ϕ,

where t ≥ rdepthC(ϕ)+1, are valid overM.

Proof. Follows immediately from 1 in proposition 26 and lemma 24.

Remark 28. All the results from this section are easily extended via appropriate induc-

tive argument from LU(Lfact)EL−C to LU(L
U
fact)

EL−C and LU(L
U
fact)→

EL−C (in regard to the former - see
lemma 20).

Corollary 29. LU(L
U
fact)→

EL−C is equally expressive as LEL−C .

4.2. Finite evolution of epistemic states. Now we would like to see if for factual
epistemic events stronger result holds, namely if every orbit is finite. We will analyze the
problem of stabilizationf of frames. Nonstabilization of a frame A will result in an infinite
orbit Ω(A,a)((M,m)), where (A,a) is built over A and whose prerequisite function assigns
different atomic proposition to different event, and (M,m) is the canonical model men-
tioned in the proof of proposition 26, which is finite and has particularly noncomplicated
structure: Ri

M = S2M , for every i ∈ I.
The following crucial lemma reduces the question of stabilizationf of frames to the

question of winning strategies in certain pebble game.

Lemma 30. Fix an arbitrary finite frame A. The frame A stabilizesf at some stage s<t,
t > 1, iff Constructor has a winning strategy in the following game:
There are t blue and t-1 red stones. Spoiler starts the game by choosing one of

the colors and distributes all the stones in this color over the nodes of the frame A.
Constructor must distribute the stones in the other color over the nodes that are already
covered by Spoiler’s stones. Then, in every round Spoiler chooses a color, one of the
relations RiA, i=1,...,I, and moves the stones in this color to different nodes along the
arrows corresponding to this relation, one arrow for each stone at a time. Constructor
moves in each round after Spoiler, moving the stones in the other color along the arrows
of the chosen relation.
Spoiler wins if after some round the color chosen most recently by Constructor covers

at least one node that is not covered by any stone in the color chosen most recently by
Spoiler, or if at some point Constructor can’t make a response move (if some of his stones
are in a blind node). He looses if at some round he himself cannot make a move or
Constructor can defend himself arbitrarily long.
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Proof. If Constructor has a winning strategy : Take any factual update model A
based on the frame A. We will show that for (A,SA)◦t = (At, StA) and (A,SA)◦t−1 =
(At−1, St−1A ) we have StA⇔St−1A , with update simulation joining sequenced states such
that (a1, ..., at/t−1)⇒(a01, ..., a0t−1/t) implies {a01, ..., a0t−1/t} ⊆ {a1, ..., at/t−1} (see the re-
mark before lemma 25).
Take (a1, ..., at) ∈ StA . The winning strategy for Constructor in the pebble game

defined above for the frame A provides us with a description of how to create the update
simulation zigzag in the following way. First associate with each of the t coordinates of a
simple event in StA a single blue stone, and similarly for the coordinates of events in S

t−1
A

and red stones. Event (a1, ..., at) marks the distribution of blue stones over the nodes
of frame A in which each blue stone “lies” on associated coordinate node. The winning
strategy for Constructor prescribes him to distribute t-1 red stones over the nodes in some
specific way. This distribution of red stones uniquely marks a simple event (a01, ..., a

0
t−1)

in St−1A : each coordinate has as its value a node of A on which the corresponding stone
lies. We claim that (a1, ..., at)⇒(a01, ..., a0t−1).
Each choice by Spoiler to prolong the zigzag in the update simulation can be in-

terpreted, similarly as above, as a choice of a color, relation, and moving the stones
in this color along the arrows over the frame A. The Constructor’s winning strategy
in the frame game always provides him with a countermove, which will be translated,
as above, into the continuation of the update simulation zigzag in the other model
(by a single sequenced simple event, i.e. a singleton set). All we have to do is to
check if the condition 1 of the definition of update simulation is fulfilled. Suppose
that in the last round Spoiler moved the red stones to a constellation associated with
the event (a∗1, ..., a

∗
t−1) and Constructor responded with a setting of blue stones associ-

ated with an event (a◦1, ..., a
◦
t ). From the rules of the game we know that {a◦1, ..., a◦t } ⊆

{a∗1, ..., a∗t−1}, and so pAt−1((a
∗
1, ..., a

∗
t−1)) ² pAt((a

◦
1, ..., a

◦
t )) (lemma 23). Altogether we

get (a1, ..., at)⇒(a01, ..., a0t−1), with {a01, ..., a0t−1} ⊆ {a1, ..., at}.
Exactly the same argument proves that for every (a1, ..., at−1) in St−1A we can find an

update similar (a01, ..., a
0
t) in StA such that {a01, ..., a0t} ⊆ {a1, ..., at−1}. This finishes the

proof of the first part of the lemma.

If Constructor has no winning strategy: Notice that in this game if Constructor has no
winning strategy, then Spoiler has one. (E.g. we can modify the game in such a way that
if at the beginning of any turn the position of the stones is the same as at the beginning of
any previous turn, then the Constructor wins. Clearly, the solution, in terms of possession
of winning strategies, would be the same, since if Spoiler has a winning strategy in the
original game, he also has one in which in no possible path of the play the position of
the stones is repeated. Application of Zermelo’s theorem proves the claim, since the new
game is a finite (due to finiteness of frame A) game of perfect information.)
As in the first part of the proof, associate the stones in both colors with coordinates

of the states in producted models. Suppose w.l.o.g. that Spoiler’s winning strategy
prescribes to put the blue stones at the beginning of the game at nodes associated, as in
previous part of the proof, with a state (a1, ..., at). Consider an Lfact−epistemic event
({A, pA}, SA), where pA simply assigns to each scenario in SA a different proposition
letter. We will show that for every a0 ⊆ St−1A it is not the case that (a1, ..., at)⇒a0, which
proves that A does not stabilizef at stage s<t, since ({A, pA}, SA) doesn’t.
Due to our choice of pA, for any b in St−1A and any b1, ..., bn in StA, if pAt−1(b) ²W

i=1,...,n pAt(b
i), then pAt−1(b) ² pAt(b

k) for some k ∈ {1, ..., n}, and similarly for the
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reversed order of St−1A and StA. It follows that if (a1, ..., at)⇒a0 then we can take a0 as
well as all the sets of simple events chosen further in the update simulation zigzag to be
singletons.
Suppose that, to the contrary, (a1, ..., at)⇒(a01, ..., a0t−1) for some (a01, ..., a0t−1) ∈ St−1A .

If the clause 1 of the definition of update simulation is to be satisfied, then {a1, ..., at} ⊇
{a01, ..., a0t−1}, and similarly for all the events reached later by the zigzag. Translated into
the language of the pebble game as in the first part of the proof, all this would mean that
Spoiler’s strategy is not a winning strategy, contradicting our assumption.

Example 31. Consider any Lfact−epistemic event (A,a) based on a frame A, such that
for every i, Ri

A = S2A. We show that (A,a) stabilizesf at stage 1 by specifying a winning
strategy for Constructor in the corresponding pebble game (fig. 4).
The strategy is very simple. In every round, whatever nodes Spoiler covers by his (one

red or two blue) stones, Constructor moves all (one or two) stones in the other color to one
of those nodes. Such move by Constructor is always possible due to totality of relations
Ri
A in the frame A. The first steps of the pebble game (or update simulation) could look

as follows (the abbreviations Co. and Sp. mark in which models Spoiler chooses and
Constructor is forced to choose successors):

Figure 4. Pebble game/update simulation (left) and frame A (right)

The argument in the above example can be easily extended to a frame where all the
relations are the same and build an arbitrary partition of the set SA. As examples 34 and
35 make clear, the argument breaks down if we allow non-factual precondition formulas
or the general, overlapping partitions.

Proposition 32. Any transitive frame A with only one relation stabilizesf .

Proof. [Sketch ] We describe a winning strategy in the pebble game for Constructor
in the corresponding pebble game. We outline the successive claims of the arguments and
leave its verifications to the reader.
First, since frame A is transitive, we can assume that it is a finite disjoint union of

finite transitive trees, whose nodes are either irreflexive states, or clusters of states that
are related to exactly the same states and to each other. This is so, because we can
unravel the frame in a standard way, and show that every unravelled Lfact−epistemic
event built on the original frame is update bisimilar to a corresponding model, where the
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precondition function assigns the same formulas to the copies of the same state, built on
the unraveled frame.
Suppose the frame A has n tree-branches. We show that it stabilizesf at stage n. The

idea is roughly that since Constructor can freely move his stones down along each branch,
it is enough if he “guards” with his single stone the lowermost node covered by Spoilers
stones in every branch. The fact that nodes can be taken to be whole clusters causes no
problems, as example 31 showed.
More precisely, bindex by {1, 2, . . . } each of the nodes (irreflexive state or a whole

cluster) according to the number of different tree-branches that it is part of. For any
distribution of stones chosen by Spoiler/Constructor we inductively s/cindex by {1, 2,
. . . } the nodes of the frame as follows:

• start with the lowermost nodes in every branch with at least one of the Spoiler/
Constructor’s stones on any of its states. The s/cindex is min{bindex, number of
Spoiler/ Constructor’s stones on this node’s states};

• on every node higher on the branch the s/cindex is min{bindex-(sum of s/cindex val-
ues of all immediate successor nodes of the current node), number of Spoiler/Constructor’s
stones on this node’s states};

Easy argument shows that the s/cnumber_of_paths_covered, defined as the sum of
s/cindex values over the whole frame, is bounded by n at the start of the pebble game,
and is nonincreasing throughout the game.
Similarly, the number of stones required to obtain any given, say, sindexing of the frame

(in the most economical way) is proved to be equal to the snumber_of_the_paths_covered,
and Constructor’s stones can be put only on the nodes covered by Spoiler’s stones. At
the start of the game Constructor puts his stones only on the states already covered by
the Spoiler in such a way, that cindexing ≡ sindexing. From the definition of s/cindexing
we derive that throughout the game Constructor can counter Spoiler’s moves in such a
way that cindexing ≡ sindexing, and his stones lie only on the states already covered by
Spoiler’s stones.
Consider probably the simplest example of a frame that does not stabilizef . It shows

that the ’Finite Evolution Conjectue’ does not hold.

Example 33. Let the the frame A = {SA, RA}, be defined as follows (fig. 5):
SA = {a1, a2, a3, a4},
RA = {(a1, a1), (a1, a2), (a2, a3), (a3, a4), (a4, a4)}.

Figure 5. Non-stabilizingf frame

We will prove that Spoiler has a winning strategy for any t in the pebble game over
it, and therefore that the frame A does not stabilizef . Spoiler puts all the t blue stones
on node a1; to stay in the game Constructor has to do the same with the t-1 red stones.
The game proceeds as follows: Spoiler chooses blue stones until there is no red stone left
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on node a1. In the rounds 1+3i, 2+3i and 3+3i, he moves one blue stone from node a1 to
node a2, then from a2 to a3 and a3 to a4 respectively, leaving all the other stones at the
reflexive nodes a1 and a4. In each 1+3i’th round Constructor also has to detach at least
one red stone from node a1 and move it to node a2: if he doesn’t, then in the next round
Spoiler chooses red stones, moves them in any fashion, and Constructor looses, stuck with
blue stone at node a2, which he can move only to node a3, not covered by any red stone.
At latest at the beginning of round 2+3(t-2) we arrive at the situation, in which there is
a blue and no red stones at node a1. In this case Spoiler chooses red stones and moves
them in any admissible way. Constructor is stuck with a blue stone at node a1, which he
can move to nodes a1 or a2 only, neither of which will stay covered by a red stone at the
end of the round. It means that this strategy in fact guarantees victory for Spoiler.

Similar argument as in the last example shows that the frame A = {{1, 2, 3, 4, 5}, RA},
where RA is the symmetric and reflexive closure of “immediate successor” (in natural
numbers) relation also does not stabilizef . On the other hand, transitivity still falls short
of characterizing stabilizingf frames (witness a frame with one state and empty relations).
In general, it remains to be shown whether any formula in a basic modal language, or
rather some familiar extended version of it, can characterize stabilizationf .
So far we dealt only with the case of a single agent, whereas the applications of product

update lie mainly in the area of systems of multiple, interacting agents, in modeling various
kinds of information exchange. Furthermore, the example of the non-stabilizingf frame is
rather exotic. As it turns out, in the setting of multi-agent update logics, we can maintain
the most conservative assumptions of S5-knowledge, and still end up with non-stabilizingf
frames.

Example 34. Consider the Acknowledged Message-Passing frame A (figure 2). In order
to prove non-stabilizationf of A, we must provide, for every t, a winning strategy for
Spoiler in the corresponding pebble game. The strategy is very similar to the strategy in
example 33: Spoiler puts all blue stones on node a1 and then successively “exhausts” this
pile by passing single stones across to node a4. We leave the details to the reader.

Our formalism does not allow the precondition formulas that refer to events that have
been carried out, as e.g. the success of the most recent message delivery (a4 above).
Accordingly, we are not able to model the full Coordinated Attack scenario, where the
generals - precisely - condition sending messages on the success of the most recent message
delivery. This result shows that it is not the conditioning on the past events that is
responsible for the nonstabilization in the Coordinated Attack.
More generally, it is not difficult to show that any S5 frame on which the formula ϕ:

hii [j]p ∧ hii [j]¬p ∧ [i](q ∧ hji ¬q)

is satisfiable (e.g. at a2 or a3 in our frame above), will not stabilizef and that actually in
the case of two-agent update logic, the satisfiability of the above formula fully determines
the class of stabilizingf frames within the class of S5 frames. In the case of update logics
with more than two agents, there are other formulas, not implying ϕ, whose satisfiability
also guarantees non-stabilizationf . Witness the following one:

[i]p ∧ ¬[i]q ∧ [j]q ∧ ¬[j]p ∧ [k](p ∧ q).
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It’s satisfiability corresponds to an “overlap” of the partition cells pin, p
j
m of agents i

and j (first four conjuncts), i.e. the condition that two partitions cannot be ordered in
terms of coarseness, modulo the auxiliary condition on some third agent’s partition (fifth
conjunct).

5. General Epistemic events
We have found a convenient way of analyzing stabilizationf of frames in a way of a certain
pebble game. However, the constraint of the update models being factual leaves outside
the analysis the bulk of epistemic events, where simple events may signal epistemic content
of static model. The update model for the epistemic dynamics in the Muddy Children
puzzle provides an example.
In general, the stabilization of epistemic events is almost impossible. The modal

depth of precondition formulas can grow indefinitely in the course of composing, and so
"destabilizes" the semigroup. Accordingly, no frame with at least one reflexive state for
any relation stabilizes. Witness the following example.

Example 35. Consider the LEL−C−epistemic event (A, a) based on the frame A consist-
ing of a single reflexive point a, with pA(a) = hii>. In this case (A, a)◦n is the model
based on the frame A as well, with the prerequisite formula:

pAn((a, ...a)) =
^

k=1,...,n

hiik >.

It follows that neither the epistemic event (A, a) nor frame A stabilize.
Let the epistemic state (M, spy) be defined through:

SM := {N ∪ spy}, where N is the set of all natural numbers,
Ri
M :≡ nRi

Mm iff (n,m ∈ N , n = m+ 1) ∨ (n = spy),
pM :≡ (M,m)|=p iff m = 2s for some s ∈ N.

We have (M,spy)|= hh(A, a)→iiϕn, n>0, for the pairwise inconsistent formulas ϕn,
n > 1:

ϕn = hii ([i]n⊥∧ p) ∧ [i]
V
k<n([i]

k⊥ → ¬p).

The example shows that neither proposition 27 nor the first part of prop. 26 can be
generalized to the LEL−C−epistemic events. In order to see that the second point of
propositon 26 is also particular to Lfact−epistemic events look at the following

Example 36. Consider an S5 LEL−C−epistemic event (A, a1) and an epistemic state
(M,m) (the accessibility relations are represented by partitions):

SA := {a1, a2},
P i
A := {{a1}, {a2}},

P j
A := {{a1, a2}},

pA(a1) := hii ¬q,
pA(a2) := q ∧ [j] hii ¬q.

,

SM := {x, y},
P i
M := {{x, y}},

P j
M := {{x}, {y}},

VM (x) := ∅,
VM (y) := q.

Verify that the models (M,m)⊗ (A, a1)◦t are bisimilar to (M,m) for t odd, and for t
even bisimilar to (MxA, (x, a1)):



Exploring the Iterated Update Universe 21

Figure 6. "Looping" product update

We don’t know what is in general the status of the last part of proposition 26, i.e.
whether there are p-stabilizing LEL−C−epistemic events, with p > 1.
We also cannot hope to generalize corollary 29 (satisfaction problem for LUEL−C is

clearly decidable - see also Pratt [22] and van Benthem, van Eijck, Kooi [7]):

Proposition 37. Satisfaction problem for LU→EL−C is Σ11 hard.

Proof. We refer to Millner, Moss [19], where the instences of the recurring tiling
problem are encoded in the language with Kleene star operator over (special case of)
epistemic events. Fix a recurring domino system D = (Dominoes,H, V, d0), where
Dominoes is a finite set, d0 ∈ Dominoes and H,V ⊆ Dominoes ×Dominoes. For any
D, Prop⊇ Dominoes and I = {i} define:

A : = {{a}, {a, a}, {(a, hii>)}},
stalk : = [h(A, a)→i] hii>,

χd : = d ∧ [i]⊥,
ϕD : = stalk ∧ C(stalk → (hii stalk ∧ ¬C¬(stalk ∧ hiiχd0))) ∧

[h(A, a)→i]C(stalk → (hii (
W
d χd) ∧

∧(¬
W
¬H(d,d0) hiiχd ∧ hii hiiχd0) ∧ (¬

W
¬V (d,d0) hiiχd ∧ hii h(A, a)iχd0)).

The proof that formula ϕD ∈ LU→EL−C is satisfiable iff there exists a proper tiling
of N×N by D follows the proof of theorem 5 in Millner, Moss [19].8 Finally, Harel [16]
showed that deciding whether a recurring domio system has a proper tiling is Σ11−complete.

8A proper tiling of N× N by D is a function t : N× N→Dominoes such that for all m,n ∈ N :
1) H(t(n,m), t(n+ 1,m)).
2) V (t(n,m), t(n,m+ 1)).
3) t(n, 0) = d0 for infinitely many n.
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Example 35 shows that we need to give up infinite state models as the arguments for
update, if we want to talk about stabilization. We will say that a frame A (p-) stabilizesfin

(at stage t) iff for every epistemic event over it and every epistemic state (M,m) with
finite domain, Ω(A,a) ((M,m)) stabilizes, with p and t being the suprema of corresponding
indices over all such orbits.
The last examples in the previous section provided evidence that even quite simple

multi S5 frames can lack stabilizationf , and therefore also stabilizationfin property9.
The culprit was the "overlapping" of partition members for different relations. More
formally, we will say that a frame A is epistemically ordered, when for some total ordering
Ri1
A ≤e R

i2
A ≤e ... ≤e R

i|I|
A of the relations of A it validates the formula:

ϕ≤e :=
^

s=2,...,|I|
[is]p→ [is−1]p

It should be clear that if A is a multi S5, then A is epistemically ordered iff there exists
a total ordering ≤e of the set of partitions of A such that if P i

A ≤e P
j
A then P

i
A is finer than

P j
A. Epistemical ordering is not only (almost) necessary but also a sufficient condition for
stabilizationfin of frames in the case of S5 models.

Proposition 38. Let (A,a) be any LU→EL−C−epistemic event over an epistemically or-
dered multi S5 frame. For any finite state model (M,m) the orbit Ω(A,a) ((M,m)) stabi-
lizes.

Remark 39. As example 36 shows, those orbits not necessarily 1-stabilize.

Proof. Fix a model (M,m) with domain SM , |SM | = n, and ≤e, a total ordering
of agents: i1 <e i2 <e ... <e i|I|. We will consider sets En,k that are defined inductively:

En,0 := Pow(SM ) = {e01, e02, ..., e02n},
En,k := Pow(En,k−1) = {ek1 , ek2 , ..., ek2|En,k−1|} , k ∈ {1, ..., |I|}.
For any LU→EL−C−epistemic event (A,a) based on epistemically ordered multi S5 frame

ordered by ≤e assign to its every simple event a an index (e0(a), ..., e|I|(a)) ∈ En,0 × ...×
En,|I| in the following, inductive way:

e0(a) : = {m ∈ SM |(M,m) |= pA(a)},
ek(a) : = {ek−1(a0)|aRik

A a
0}.

Assign to the whole model the set of such indices of its distinguished states. Notice
that there are only finitely many such sets of indices. Therefore in order to prove the
proposition it is enough to prove the following two claims:

Claim (i) If two LU→EL−C−epistemic events (A,a) and (A0,a0) based on epistemically
ordered S5 frames with the same ordering ≤e are associated with the same sets of indices,
then (M,m)⊗ (A,a)↔(M,m)⊗ (A0,a0).

Claim (ii) The set of LU→EL−C−epistemic events based on epistemically ordered S5
frames with ordering ≤e is closed with respect to composition.

9Observe that the canonical model mentioned in the proof of proposition 26 is finite.
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Proof Claim (i) The bisimulation joins the states that have the same first, state co-
ordinates and whose second, event coordinates share the same indices. Agreement on
the atomic formulas is trivial given that both states exist in the corresponding producted
models. This in turn is achieved by the fact that the action coordinates of both states
share indices, and so share the first coordinate of the indices, which encode the sets of
states in SM that satisfy its prerequisites.
The proof of the zigzag clauses is a simple consequence of the way we defined the indices
(e0(a), ..., e|I|(a)). ¤Claim (i)
Proof Claim (ii) Let (A,a) and (A0,a0) be two LU→EL−C−epistemic events based on epis-

temically ordered S5 frames with ordering ≤e and consider the LU→EL−C−epistemic event
(A,a)◦(A0,a0). Suppose that k ≤e j. We need to show that the frame {SA◦A0 , Ri

A◦A0 |i∈I}
validates the formula

[j]p→ [k]p,

and that its relations are reflexive, symmetric and transitive. The first part boils down
to showing that for all (a, b), (a0, b0) ∈ SA◦A0 , (a, a0)Rk

A◦A0(b, b0) implies (a, a0)Rj
A◦A0(b, b0),

which follows from the validity of [j]p→ [k]p on frames A and A’ :

(a, a0)Rk
A◦A0(b, b0)⇔ (a)Rk

A(b) and (a
0)Rk

A0(b0)⇒ (a)Rj
A(b) and (a

0)Rj
A0(b

0)⇔ (a, a0)Rj
A◦A0(b, b

0).

Reflexivity, symmetry and transitivity of the relations are proven similarly. ¤Claim (ii)

Remark 40. Analogous proof shows that for the special cases of KD45 frames corre-
sponding to Secure Announcement to a Set of Agents and Announcement with a Suspi-
cious Outsider, and therefore for all the types of communicative events in Baltag et al.
[2] the claim in the proposition 38 holds.10

6. Conclusion and Further Questions

The paper builds on the idea of looking at the update logics as dynamical systems. The
particular logic we took under scrutiny was the product update logic presented by Baltag,
Moss and Solecki [2], logic suited for dealing with various dynamic epistemic events and
history-independent processes, mainly of the communicative type.
In the course of the paper we proved the particular conservative properties of up-

date with Lfact−epistemic events, and also presented a characterization in terms of win-
ning strategies in a certain pebble game of the frames giving rise only to stabilizing
Lfact−epistemic events. Finally, after providing some basic insights into the dissipative
nature of general updates we proved the exceptional role of epistemically ordered S5
frames.
There are plenty of further open questions immediately related to the issues raised in

the paper:

• Characterize the stabilizingfin frames, i.e. frames giving rise only to epistemic
events effecting finite evolution of finite epistemic states. This would be a result
corresponding to the pebble game characterization we provided for the case when

10The proof uses the analogous method as that of proposition 38, in that we find, for a given epistemic
event (and size of epistemic state), appropriate finite sets of structures, and then prove two claims as in
the theorem. For example, in the case of Secure Announcement to a Set B of Agents, it is, roughly, the
set of structures each of which is a set of structures with one state s reflexive for all types of relations,
and other elements reflexive for agents in B and related to s for the other agents.
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the epistemic events were constrained to be factual (and arguments not necessarily
finite). It is possible that the two classes coincide, proving the evolution of prerequi-
site formulas immaterial for stabilization, with the determining role of the evolution
of producted frame.

• Characterize 1-stabilizingfin (LUEL−C−)epistemic events - i.e. (LUEL−C−)epistemic
events for which the uncanny behavior as in the example 36 is excluded. Notice that
for Lfact−epistemic events only this fixed-point type stabilization is possible.

• Decidability and complexity issues: e.g. is the problem of stabilizationf of a frame,
i.e the problem whether for a given frame and some t ∈ N Constructor has a winning
strategy in the pebble game in lemma 30, decidable?

Another question concerns the extensions of the dynamic language that would allow to
model more involved dynamic epistemic situations (see the Coordinated Attack examples
6, 34 and the comments after the latter). In particular, allowing for prerequisite formulas
in the richer language we might be able to investigate systems allowig for "non-Markovian"
updates, which depend not only on the current state, but also history: past states, perhaps
past evens (see also Yap [24]).
The dynamical systems literature furnishes a whole spectrum of typical questions,

most of which have a lot of appeal in the setting of information update logic, e.g.:

• For an epistemic state (M,m) characterize its stabilizer, i.e. those epistemic events
that update (M,m) to itself.

The questions and problems of this guise could also be raised in the settings of different
update logics. Perhaps the dynamical, asymptotic properties can provide interesting
structural characterizations of such systems.

7. Appendix
Sound and Complete Axiomatization of Product Update Logic (Baltag et al. [2]):

Basic Axioms
All sentential validities
([(A, a)] -normality) ` [(A, a)](ϕ→ ψ)→ ([(A, a)]ϕ→ [(A, a)]ψ)
([j]-normality) ` [j](ϕ→ ψ)→ ([j]ϕ→ [j]ψ)
(CJ -normality) ` CJ(ϕ→ ψ)→ (CJϕ→ CJψ)

Update Axioms
(Atomic Permanence) ` [(A, a)]p↔ (pA(a)→ p)
(Partial functionality) ` [(A, a)]¬ϕ↔ (pA(a)→ ¬[(A, a)]ϕ)
(Action Knowledge) ` [(A, a)][j]ϕ↔ (pA(a)→

V
aRjAb

[j][(A, b)]ϕ

Mix Axiom ` CJϕ→ ϕ ∧ / j∈J [j]CJϕ

Modal Rules
(Modus Ponens) From ` ϕ and ` ϕ→ ψ infer ` ψ
([(A, a)]-necessitation) From ` ϕ infer ` [(A, a)]ψ
([j]-necessitation) From ` ϕ infer ` [j]ψ
(CJ -necessitation) From ` ϕ infer ` [CJ ]ψ
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Action Rule
Let for all b s.t.a→∗J b χb be sentences, and:

1. ` χb → [(A, b)]ψ

2. If for j ∈ J we have b→j c , then ` (χb ∧ pA(b))→ [j]χc

From those assumptions infer ` χa → [(A, a)]CJψ

It is immediate that in order to deal with the multipointed events we just need to add
a reduction axiom (see def. 10):

` [(A,a)]ϕ↔
V
a∈a[(A, a)]ϕ.

See also van Benthem et al. [7] for a different type of axiomatization, using the language
that can express relativizations in the common knowledge formulas.
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