
Some Comments on History Based Structures

Eric Pacuit

ILLC, University of Amsterdam
Plantage Muidergracht 24

1018 TV Amsterdam

Abstract

History based models, introduced by Parikh and Ramanujam, provide a natural
mathematical model of social interactive situations. These models offer a ”low level”
description of a social situation — describing the situation in terms of events, se-
quences of events, and the agents‘ view of these events. A multi-agent epistemic
temporal modal logic can be used to reason about these structures. A number of
other models have been proposed in the literature which can be used as a seman-
tics for such a logical language. Most notably, the interpreted systems discussed by
Fagin et al. In this paper, we will discuss the differences and similarities between
these two mathematical models. In particular, it is shown that these two semantics
are modally equivalent. We will conclude with a discussion of a number of questions
that are raised when history based models are used to reason about game-theoretic
situations.
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1 Introduction

History based models, introduced by Parikh and Ramanujam [24,25], provide
a natural model of social interactive situations relevant for the analysis of
social software. The key idea behind social software is that a systematic and
rigorous analysis of social procedures can help us understand social interactions
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and may lead to a more “efficient” society. This idea was put forward by Rohit
Parikh [18], and has recently gained the attention of a wide range of research
communities, including computer scientists, game theorists and philosophers.
Starting with [18] and more recently in [21,22,20], Parikh defines social soft-
ware by way of various illustrative examples. Essentially, there are two ways
in which a procedure can fit into the social software paradigm. First of all, a
procedure may be truly social in that several agents are required even in the
execution of the procedure. Standard examples are voting procedures, such
as plurality voting or approval voting, or fair division algorithms, such as
adjusted winner or the many cake-cutting algorithms. Secondly, even if a pro-
cedure does not require a group for its execution, it may still fit into the social
software paradigm. These are procedures set up by society and intended to be
performed by single agents within the context of a group of agents. Examples
include procedures that universities set up that students must follow in order
to drop a class or the procedures hospitals set up to ensure the necessary flow
of information from a patient to a doctor.

From the point of view of someone designing a social procedure, as soon as
beliefs and utilities can be attributed to the agent(s) executing the procedure,
the procedure should be thought of as social software. After all, when design-
ing computer software, programmers do not worry that the computer may
suddenly not “feel like” performing the next step of the algorithm. But in a
setting where agents have individual preferences, such considerations must be
taken into account. In fact, this suggests a third way in which procedures can
be analyzed within the social software paradigm - individual agents executing
procedures in isolation. For example, an agent following a recipe in order to
make peanut-butter chocolate chip cookies. However, from this point of view,
certain philosophical questions about the nature of procedures, or algorithms,
and human knowledge and beliefs become much more important. In this pa-
per, the fact that a group of agents is somehow involved in the execution of a
social procedure will play an essential role.

So far we have only explained the type of situations we have in mind and have
not yet provided an adequate definition of social software. We will now at-
tempt to rectify this situation. Social software is an interdisciplinary research
program that combines mathematical tools and techniques from game the-
ory and computer science in order to analyze and design social procedures.
Research in social software can be divided into three different but related cat-
egories: modeling social situations, developing a theory of correctness of social
procedures and designing social procedures. In this paper, we will focus only
of the first category — mathematical models of social situations. The recent
work of Marc Pauly [26] discusses issues relevant to the second category (a the-
ory of correctness of social procedures). There has been a wealth of literature
devoted to designing social procedures. In particular, fair division algorithms
and voting procedures (see [5] for more information).

2



The objective of this paper is to discuss a mathematical model of multi-agent
social interactive situations appropriate for the analysis of social software. If
one wants a careful and rigorous analysis of social procedures, one needs to
begin with a realistic model of multi-agent interaction. The search for such
models has occupied researchers in a number of different disciplines including
(but not limited to) game theory, philosophy, artificial intelligence and dis-
tributed computing. What is needed from the social software point of view are
formal models in which our intuitions about social procedures can be refined
and tested. It is important to be clear about exactly what is being proposed.
Perhaps it is too much to ask for a general theory which explains all social
interactions, i.e., a “theory of everything” for the social sciences. If at all pos-
sible, such a theory would require collaboration among a vast array of research
communities including psychologists, biologists, cognitive scientists and so on.
What is being developed is a collection of logical systems intended to be used
to formalize multi-agent interactive situations relevant for the analysis of so-
cial procedures. These frameworks are developed from different points of view
and are governed by different assumptions about the agents involved.

Suppose we fix a social interactive situation involving a (finite) set of agents
A. What aspects are relevant for the analysis of social procedures? First of
all, since the intended application of our models is to study agents executing
a procedure, it is natural to assume the existence of a global discrete clock
(whether the agents have access to this clock is another issue that will be
discussed shortly). The natural numbers N will be used to denote clock ticks.
Note that this implies that we are assuming a finite past with a possibly
infinite future. The basic ideas is that at each clock tick, or moment, some
event 2 takes place.

This leads us to our second basic assumption. Typically, no agent will have all
the information about a situation. For one thing agents are computationally
limited and can only process a bounded amount of information. Thus if a
social situation can only be described using more bits of information than an
agent can process, then that agent can only maintain a portion of the total
information describing the situation. Also, the observational power of an agent
is limited. For example, suppose that the exact size of a piece of wood is the

2 We should be careful about the word ‘event’. Indeed there is a large philosophical
literature that attempts to make the notion of an event precise. However, for this
paper we take the notion of event as primitive. The relevant fact about an event
that we need is that if an event takes place at time t, then the fact that the event
took place can be observed by the relvant agents at the moment t. This should be
compared with the notion of an event from probability theory. If we assume that
at each clock tick a coin is flipped exactly once, then “the coin landed heads” is a
possible event. However, “the coin landed head more than tails” would not be an
event, since it cannot be observed at any one moment. As we will see, the second
statement will be considered a property of histories, or sequences of events.
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only relevant piece of information about some situation. While an agent may
have enough memory to remember this single piece of information, measuring
devices are subject to error. Furthermore, some agents may not see, or be
aware of, many of the events that take place. Therefore it is fair to assume
that two different agents may have different views, or interpretations, of the
same situation.

Starting with Hintikka’s seminal book, Knowledge and Beliefs [15], there has
been a lot of research devoted to the use of modal logic to formalize this un-
certainty faced by a group of agents in a social situation. These formal models
are intended to capture both uncertainty about ground facts and uncertainty
about other agents’ uncertainty. Formal models of knowledge and beliefs have
been employed by a wide range of communities, including computer scientists
([8,34]), economists ([3,4,1]) and philosophers ([10]). Arguably the most suc-
cessful of these frameworks are Kripke structures. Kripke structures provide a
simple and well-behaved semantics for multi-agent modal logic. Despite their
simplicity, there has been much discussion about whether Kripke structures
are appropriate formal models of social situations. Much of the discussion cen-
ters around the so-called logical omniscience problem. See [19] and [8] chapter
9 for more information. From the social software point of view, the major
drawback to using Kripke structures is the fact that they represent a static
view of a situation. In fact, as soon as one tries representing the dynamic
nature of many social situations, one of the major benefits of using Kripke
structures - their simplicity - is lost.

This paper presents a mathematical model in which the uncertainty of agents
about a social situation can be represented. The next section presents the
formal details of the basic model. Section 3 shows how this basic framework
can be extended to provide a model for multi-agent epistemic temporal logics.
Section 4 contains the main technical result of this paper. Finally, we conclude
with an extended discussion of future work.

2 History Based Structures

The history based structures described in this section have been used by a
number of different communities (perhaps with additional assumptions) to
reason about multi-agent interactive situations. The framework described in
this chapter is based on that of Parikh and Ramanajam [24,25].

Let E be a fixed set of events. As discussed in the previous section, it is
natural to assume that different agents are aware of different events. To that
end, assume for each agent i ∈ A, a set Ei ⊆ E of events “seen” by agent i.
We need some notation: Given any set X (of events), X∗ is the set of finite
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strings over X and Xω the set of infinite strings over X. A global history
is any sequence, or string, of events, i.e., an element of E∗ ∪ Eω. Let h, h′, . . .
range over E∗ and H,H ′, . . . range over E∗ ∪ Eω. A local history for agent
i is any element h ∈ E∗

i . Notice that local histories are always assumed to be
finite.

Given two histories H ′ and H, write H � H ′ to mean H is a finite prefix of
H ′. Let hH denote the concatenation of finite history h with possibly infinite
history H. If H is infinite or length greater than or equal to t ∈ N, let Ht

denote the finite prefix of H of length t. For a history H, let len(H) denote
the length of H (i.e., the number of events in H). For any set of histories H,
we denote the set of all histories (from H) of length k by Hk. Finally, define
FinPre(H) = {h | h ∈ E∗, h � H, and H ∈ H}. So FinPre(H) is the set of
finite prefixes of elements of H.

A set H ⊆ E∗∪Eω is called a protocol provided H is closed under the FinPre
function, i.e., FinPre(H) ⊆ H. Intuitively, the protocol is the set of possible
histories that could arise in a particular social situation. Notice that for a
protocol H, the set of finite histories in H is equal to FinPre(H). Following
[24,25], no structure is placed on the set H. I.e., the protocol can be any set
of histories closed under finite prefixes. Notice that this differs from standard
usage of the term protocol which is taken to mean a procedure executed by a
group of agents. Certainly any procedure will generate a set of histories, but
not every set of histories will be generated by some procedure. For example 3 ,
suppose we consider a protocols that satisfy a fairness property. That is every
history that contains a request event (say er) always contains an answer (say
ea) in some finite amount of time. It is not hard to see that if we take a protocol
generated by a procedure to be the set of all possible generated histories, then
H = {H | H = H1erH2eaH3 where H1 and H2 are finite histories} cannot be
generated by any procedure. For if a procedure can generate all histories of
the form H1erH2eaH3 where the length of H2 can be any finite number, then
the procedure can also procedure a string of the form H1erH2 where H2 does
not contain ea.

Definition 1 Given a set of events E and a finite set of agents A, a history
based multi-agent structure based on E is a tuple 〈H, E1, . . . , En〉, where
H ⊆ E∗ ∪ Eω is a protocol and Ei ⊆ E for each i ∈ A.

Single agent history based structures have been successfully used by computer
scientists to reason about computational procedures and reactive systems. The
main idea is that given a computational procedure, which can be represented
by a finite state transition system, a history represents a possible sequence
of states that can be generated as the program executes. This has led to

3 I thank Rohit Parikh for pointing out this example.
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the development of modal logics which can be used to reason about these
structures. For example, the language of LTL, linear temporal logic, includes
formulas of the form ©φ, which is intended to mean that φ holds at the next
moment. Notice that this assumes that there is a unique next event to take
place, hence the name linear temporal logic. The next section contains the
formal details about LTL. Other languages such as CTL, CTL∗, ATL and
ATL∗ can be used to reason about situations where there may not be a unique
next event. The reader is referred to [33,11] for information on temporal logic
and [7] for its uses in computer science.

From the social software point of view, multi-agent history based structures
provide means by which we can describe and study many important aspects
of social interactions. The main idea is that each i ∈ A is only “aware” of
the events e ∈ Ei. A global history H represents a sequence of events that
have taken place and each agent i may or may not be aware of the entire
sequence H. This will be made more formal below. There are two things that
are important to realize about multi-agent history based structures at this
point. The first is that if an agent is aware of event e, this does not necessarily
mean that the agent performed an action which caused the event to take place.
In general, there may be a subset Ai ⊆ Ei of events, called actions, that an
agent can cause. This is discussed in the Conslusion. The second thing which is
important to realize at this point is that a history based multi-agent structure
is a very low-level description of a social situation. It is similar to describing a
computation using machine code. Thus, it should not be surprising that many
features of social situations relevant for the analysis of social procedures can
be captured by these models. Whether these aspects of social situations can
be captured with elegant formalisms amenable to human and/or computer
analysis is another issue all together.

3 Logics of Knowledge and Time

In this section, we show how history based structures defined in the previous
section can be used to generate models for temporal epistemic logics. As dis-
cussed above, given a particular finite global history H and an agent i, i will
only “see” the events in H that are from Ei. In other words, from agent i’s
point of view at any time t, the initial segment Ht of H looks as if it is some
sequence in E∗

i . Formally, we define a local view function λi for each agent i,
where λi(H) ∈ E∗

i is agent i’s view of history H.

Definition 2 Let H be a protocol. For each i ∈ A call any function λi :
FinPre(H) → E∗

i a local view function of agent i.
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Note that in the above definition, λi is any function from finite strings of
events to the set of i’s local histories. However, we may want to place some
conditions on the local view functions that we consider. The first condition
assumes that an agent’s local clock is “consistent” with the global clock.

• For all H ∈ H if t ≤ m, then λi(Ht) � λi(Hm)

This is a very natural assumption and for this paper we will assume that all
local view functions satisfy this condition. A second condition that we may
want to place on the local view functions is that λi(H) is embeddable 4 in H.
Informally, this means that the agents are not wrong about the events that
they witness. Finally, note that the domain of the local view functions are the
finite strings of H. This is in line with the assumption that at any moment
only a finite number of events have already taken place. This assumption can
be dropped and the definitions can be modified to allow agents the ability
to remember an infinite number of events, but since our intended application
is the analysis of social procedures and procedures typically have a starting
point, we will stay with this more realistic assumption.

Let H and H ′ be two global histories in some protocol H. We write H ∼i H
′

if according to agent i, H is ‘equivalent’ to H ′. Formally, this equivalence
relation is defined in terms of the local view functions:

Definition 3 Let H be a protocol. Given finite global histories, H,H ′ ∈ H,
we say that H and H ′ are equivalent for agent i, written H ∼i H

′, iff λi(H) =
λi(H

′).

It is easy to see that for each i ∈ A, ∼i is an equivalence relation. Thus by
using local view functions to represent agent uncertainty, we are assuming an
S5n logic of knowledge 5 . Alternatively, if weaker multi-modal logics such as
S4n or KD45n are 6 used to formalize the agents’ knowledge or beliefs, then
instead of starting with local view functions and deriving the relation ∼i, one
can assume a relation ∼i on H with the appropriate properties. Adding local
view functions to a history based multi-agent structures gives us a history

4 A string w is embeddable in v if each character from w appears in v in the same
order. For a formal definition of embeddable refer to [23]. For example, the string
abc is embeddable in aabbaaca, but abc is not embeddable in bbaac.
5 The definition of the logical system S5n will be given below.
6 The modal logic S4n contains Modus Ponens, an axiomatization of propositional
calculus, the rule of necessitation (from φ infer Kiφ), and the following axiom
schemes: Ki(φ→ ψ) → (Kiφ→ Kiψ), Kiφ→ φ and Kiφ→ KiKiφ.
The modal logic KD45n contains Modus Ponens, an axiomatization of proposi-
tional calculus, the rule of necessitation (from φ infer Kiφ), and the following
axiom schemes: Ki(φ → ψ) → (Kiφ → Kiψ), Ki⊥ → ⊥, Kiφ → KiKiφ and
¬Kiφ→ Ki¬Kiφ. More information can be found in [6].

7



based multi-agent frame.

Definition 4 Given a history based multi-agent structure for a set of agents
A, FH = 〈H, E1, . . . , En〉 based on E, a history based frame based on
FH is a tuple FK = 〈H, E1, . . . , En, λ1, . . . , λn〉, where each λi is a local view
function.

Additional assumptions about the agents’ local view functions allows us to
model agents with different capabilities. Two assumptions which have been
discussed in the literature are perfect recall and its dual no learning. Intu-
itively, an agent is said to have perfect recall if it remembers every event that
it sees. Informally, this implies that as time increases, the set of histories that
an agent considers possible stays the same or decreases. We will only consider
the assumption of perfect recall 7 . In [12], perfect recall is defined as follows:

Definition 5 Let FK be a multi-agent history based knowledge frame. Agent
i is said to have perfect recall provided for each finite H,H ′, H ′′ ∈ H, if
λi(H) = λi(H

′) and H ′′ � H, then there is a global history H ′′′ ∈ H such that
H ′′′ � H ′ and λi(H

′′) = λi(H
′′′).

Suppose H is a protocol. Let H ∈ H and define Hi,t = {H ′ | ∃m ∈ N, Ht ∼i

H ′
m}. Then it is easy to see that agent i has perfect recall iff for all t ∈ N and

H ∈ H, Hi,t+1 ⊆ Hi,t. For example, consider the following recursive definition
of a local view function for agent i. Let λi(e) = e if e ∈ Ei and the empty
string otherwise. For each He ∈ H,

λi(He) =

λi(H)e e ∈ Ei

λi(H) otherwise

Then it is easy to see that this function satisfies the property in Definition
5. Notice that when an agent has perfect recall, then the agent’s local view
function is derivable from the set Ei. That is, we can assume that λi is defined
as above. Let Fpr

K denote a history based knowledge frame in which each agent
has perfect recall and Fpr

K the class of history based knowledge frames with
perfect recall.

Finally, a few comments about whether agents have access to the global clock.
We say that a history based knowledge frame FK is synchronous if all agents
have access to the global clock. Formally, FK is synchronous iff for each i ∈ A
and for each H,H ′ ∈ H, if λi(Ht) = λi(H

′
u), then t = u. This property can

be achieved by assuming there exists a special event c ∈ E with c ∈ Ei for

7 The intuitive interpretation of no learning is that as time increases the set of
histories that an agent considers possible stays the same or increases. The interested
reader is referred to [12] for more information.
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each i ∈ A. This event represents a clock tick. In synchronous history based
models with perfect recall, the local view function maps each event seen by
agent i in some finite history H to itself, and all other events to the clock tick
c. We write F sync

K if FK is synchronous and Fsync
K for the class of synchronous

history based knowledge frames. We say that FK is asynchronous if FK is
not synchronous. Another assumption which has been considered is a unique
initial state. A history based knowledge frame has a unique initial state if
each global history begins with the same event. Formally, a protocol has a
unique initial state if there is an event e ∈ E such that for each H ∈ H, the
first event in H is e.

Properties of history based knowledge frames can be described by a multi-
modal logic. Let At be a countable set of propositional variables. A formula of
multi-agent knowledge and time (denoted LKT

n (At) or LKT
n if At is given) has

the following syntactic form

φ := p | ¬φ | φ ∧ φ | Kiφ | © φ |φ Uφ

where p ∈ At and i ∈ A. Let ∨,→, Li be defined as usual, ⊥ denote p∧¬p and
> denote ¬>. Kiφ is intended to mean that i “knows φ′′. ©φ is intended to
mean “φ is true after the next event” and φ Uψ is intended to mean that “φ is
true until ψ becomes true”. Other temporal operators can be defined as usual.
For example, Fφ which is intended to mean that “φ will be true sometime in
the future” is definable using the U operator: define Fφ to be > U φ. Then “φ
is true at every moment in the future”, denoted Gφ, is defined to be ¬F¬φ.

Definition 6 Suppose that A is a set of agents and

FK = 〈H, E1, . . . , En, λ1, . . . , λn〉

is a history based frame. A history based model of knowledge and
time based on FK is a tuple MH = 〈H, E1, . . . , En, λ1, . . . , λn, V 〉, where
V : FinPre(H) → 2At is a valuation function.

For simplicity we begin by defining truth in models based on synchronous
history based frames. Formulas are interpreted at pair H, t where H ∈ H is
an infinite global history and t ∈ N. That is, for H ∈ H, H, t |= φ is intended
to mean that in history H at time t, φ is true. Truth is defined recursively on
the structure of a formula φ. Let MH = 〈H, E1, . . . , En, λ1, . . . , λn, V 〉 be a
history based model, H an infinite global history and t ∈ N.

(1) H, t |= p iff p ∈ V (Ht)
(2) H, t |= φ ∧ ψ iff H, t |= φ and H, t |= ψ
(3) H, t |= ©φ iff H, t+ 1 |= φ
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(4) H, t |= φ Uψ iff there exists m ≥ t such that H,m |= ψ and for all l such
that t ≤ l < m, H, l |= φ

(5) H, t |= Kiφ iff for all H ′ ∈ H such that Ht ∼i H
′
t, H ′, t |= φ.

We have two remarks about the above definitions. The first is that in the above
definition of truth of the Ki modality (item 5. above), it is assumed that the
agents all share a global clock. Thus only histories of the same length need to
be considered. This assumption is made in order to simplify the presentation.
If the agents do not share a global clock, then item 5. should be replaced with
the following definition:

5′. H, t |= Kiφ iff for all m ≥ 0, for all H ′ ∈ H such that Ht ∼i H
′
m,

H ′,m |= φ

The second remark concerns the definition of the U operator. It is well known
that if we replace 4. with the more general 4′. below, then we can define ©φ
as ⊥Uφ.

4′. H, t |= φ Uψ iff there exists m > t such that H,m |= ψ and for all l such
that t < l < m, H, l |= φ

However, we have opted to stick with the less general definition of U (4.) to
ease exposition.

Given a history based knowledge modelMH , we say φ is valid inMH , denoted
MH |= φ, if for each H ∈ H and t ∈ N, H, t |= φ. We say φ is valid in a history
based knowledge frame FK , written FK |= φ, if φ is valid in every model based
on FK .

Notice that we are only interpreting formulas at infinite global histories. This is
because the definition of truth of ©φ may not make sense if the global history
is finite. That is if len(H) = k, then how should we interpret H, k |= ©φ? It
is easy to see that specifying that ©φ is always true (or always false) conflicts
with axiom T2 below.

A sound and complete axiomatization for knowledge and time under various
assumptions can be found in [12], using a slightly different framework. The
precise connection between the two frameworks will be discussed below. We
first report the relevant results from [12]. For reasoning about knowledge alone
at a fixed moment in time, the following axiom system is well known to be
sound and complete with respect to the class of all history based frames (see
[8] for a proof).
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PC. All tautologies of propositional logic

K2. Ki(φ→ ψ) → (Kiφ→ Kiψ)

K3. Kiφ→ φ

K4. Kiφ→ KiKiφ

K5. ¬Kiφ→ Ki¬Kiφ

MP. From φ and φ→ ψ infer ψ

N. From φ infer Kiφ

Call this axiom system S5n. The following axiom system is from [12] is used
to reason about (linear) time.

T1. ©φ ∧©(φ→ ψ) →©ψ

T2. ©(¬φ) ↔ ¬© φ

T3. φ Uψ ↔ ψ ∨ (φ ∧©(φ Uψ))

RT1. From φ infer ©φ

RT2. From φ′ → ¬ψ ∧©φ′ infer φ′ → ¬(φ Uψ)

A few remarks about the rule RT2. This rule is equivalent to the following
simpler two rules:

RT21. From φ1 → ψ1 and φ2 → ψ2 infer (φ1Uψ2) → (φ2Uψ2)

RT22. From ©φ→ φ infer Fφ→ φ

To see that RT2 follows from these rules, suppose that we have derived φ′ →
¬ψ and φ′ → ©φ′. Then, using standard propositional reasoning and T2 we
can infer ©¬φ′ → ¬φ′. Hence using RT22 we can infer F¬φ′ → ¬φ′, i.e.,
(>U¬φ′) → ¬φ′. Now notice that for any formula φ, we can derive φ → >
and using propositional reasoning we can infer ψ → ¬φ′. Thus using RT21,
we can infer (φUψ) → (>U¬φ′); and so using propositional reasoning we can
conclude ¬(φUψ). Showing RT21 and RT22 follow form RT2 is straightforward
exercise in Hilbert style derivations and so will be omitted.

Call the axiom system that contains the rules and axiom schemes from S5n

and the rules and axiom schemes above S5U
n . Again it is well-known that S5U

n

is sound and complete with respect to the class of all history based knowledge
frames. It becomes much more interesting when axiom schemes connecting the
knowledge and time modalities are added. The two axiom schemes from [12]
that will be of interest are:
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KT1. Ki © φ→©Kiφ

KT2. Kiφ1 ∧©(Kiφ2 ∧ ¬Kiφ3) → Li((Kiφ1) U [(Kiφ2) U¬φ3])

These axiom schemes characterize systems in which all agents are assumed
to have perfect recall. Axiom KT1 is easily seen to be valid in synchronous
history based knowledge frames with perfect recall. For if agent i knows (at
the current moment) that φ will be true at the next moment, then since i has
perfect recall, i cannot lose this knowledge. Therefore, at the next moment
agent i will know φ. Using similar reasoning, the formula KiGφ → GKiφ –
if i knows φ is true at the current moment and that it will always be true,
then it will always be the case that agent i knows φ – is easily seen to be
valid. Interestingly, van der Meyden showed that adding only this axiom to
S5U

n is not complete for frames with perfect recall [29]. In [12], a series of
completeness proofs are offered under a variety of assumptions (perfect recall,
no learning, synchronous, unique initial state). In particular, they show that
the more complicated axiom KT2 is what is needed to characterize frames in
which the agents are assumed to have perfect recall, i.e., the axiom system
S5U

n +KT2 is sound and complete with respect to frames with perfect recall.
For a proof of these results (with respect to the semantics in [12]) refer to [12].

At this point the reader may have noticed that we have omitted discussion of a
topic widely discussed in the epistemic logic literature — common knowledge.
In part, this is due to an early result of Halpern and Vardi [13] who show
that the complexity of reasoning about the validity problem of languages with
common knowledge in frames with perfect recall is Π1

1 complete. Hence, no
recursive axiomatization is possible when common knowledge is added to our
language. The result is true regardless of whether agents have access to the
global clock. Only if we drop all assumptions on the reasoning abilities of
the agents do we get the possibility of a finite axiomatization (or make the
drastic assumptions of no learning, perfect recall, synchronous and a unique
initial state). In fact, when more than one agent is involved, then reasoning
about the validity problem of the axiom systems discussed in this chapter is
in nonelementary time (consult [13] for proofs of this and related results).

Another point worth mentioning is that the language LKT
n is not expressive

enough to capture the synchronous property (nor the unique initial state prop-
erty). The completeness proof for S5U

n holds regardless of whether the history
based knowledge frames are assumed to be synchronous. These properties can
be captured in languages with past-time operators. Completeness results for
such systems have recently been established in [9]. Other interesting proper-
ties of history based frames cannot be captured in our language, such as that
φ is true at the next moment in all possible extensions of the current history.
In [30], van der Meyden and Wong prove a series of completeness results for
logics of knowledge with branching time operators.
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4 Histories or Runs?

The section discusses the similarities and differences between the Parikh and
Ramanajam framework described in this chapter and the Halpern et al. [13,8,12]
interpreted systems.

We begin by formally defining interpreted systems. The reader is referred to
[8] and [12] for more details. Let L be a set of local states. A system for n
agents is a set R of runs, where a run r ∈ R is a function r : N → Ln+1

r(t) has the form 〈le, l1, . . . , ln〉, where le is the state of the environment, li
for i = 1, . . . , n is the local state of each agent. A point, or global state, is
an element (r, t) ∈ R × N. An interpreted system I = (R, π), where R
is a system and π : (R × N) × At → {true, false}, that is π(r, t) is a truth
assignment, where At is the set of atomic propositions. The uncertainty of the
agents is defined as follows: agent i cannot distinguish two points if it is in the
same state in both: (r, t) ∼i (r′, t′) iff r(t)i = r′(t′)i. Formulas are interpreted
at pairs (r, t) where r ∈ R and t ∈ N, i.e., r, t |= φ is intended to mean that in
run r at time t φ is true. The formal definition of truth is very similar the the
definition above, and so we will only give the definition of the modal operators
(see [12] for more details). Let I = (R, π) be an interpreted system, r ∈ R
and t ∈ N. Then

(1) r, t |= Kiφ iff r′, t′ |= φ for all (r′, t′) such that (r, t) ∼i (r′, t′)
(2) r, t |= ©φ iff r, t+ 1 |= φ
(3) r, t |= φUψ iff there is some t′ ≥ t such that r, t′ |= ψ, and for all l with

t ≤ l < t′, we have r, l |= φ

At first glance, the difference between an interpreted system and a history
based model seems to be purely linguistic. A run is a function that specifies
the local state of each agent (including the environment), but can just as easily
be understood as a sequence of events, where each event is a tuple of local
states. For Parikh and Ramanajam, an event is a primitive object, whereas
for Halpern et al. events are tuples of local states. We make this observation
more formal below.

We first discuss the translation from history based models to interpreted sys-
tems. Let FK = 〈H, E1, . . . , En, λ1, . . . , λn〉 be a history based knowledge
frame based on E and MH = 〈H, E1, . . . , En, λ1, . . . , λn, V 〉 a model based
on FK . We define an interpreted system ι(MH) = (RH, π) as follows.

Let L =
⋃

i∈A{λi(Ht) | H ∈ H, t ∈ N}. Let e denote the environment
agent and assume that for each finite history H ∈ H, λe(H) = H. That
is, the environment agent is aware of every event (this is only for conve-
nience). For each infinite H ∈ H define a run rH : N → Ln+1 as follows:
rH(t) = 〈λe(Ht), λ1(Ht), . . . , λn(Ht)〉. Then the following observation is a
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straightforward application of the definition.

Lemma 7 For each infinite history H,H ′ ∈ H, for each t,m ∈ N, Ht ∼i H
′
m

iff (rH , t) ∼i (rH′ ,m).

Proof Straightforward. 2

Finally, interpret the valuation function in the obvious way. That is, for each
p ∈ At, define π(rH , t)(p) = true provided p ∈ V (Ht).

Theorem 8 LetMH = 〈H, E1, . . . , En, λ1, . . . , λn, V 〉 be a history based model
and φ ∈ LKT

n an arbitrary formula. Then for each H ∈ H and t ∈ N

H, t |= φ iff rH , t |= φ

Proof Let MH = 〈H, E1, . . . , En, λ1, . . . , λn, V 〉 be a history based model of
knowledge and time, φ ∈ LKT

n , H ∈ H and t ∈ N. We will show H, t |= φ iff
rH , t |= φ. The proof is by induction on φ. The base case is true by definition.
The boolean cases are obvious which leaves the modal cases.

• Suppose that H, t |= Kiφ, then for each m ≥ 0 and H ′ ∈ H with Ht ∼i H
′
m,

H ′,m |= φ. We must show that rH , t |= Kiφ. Let rH′ ∈ RH be any arbitrary
run such that (rH , t) ∼i (rH′ ,m). By the above observation,Ht ∼i H

′
m. Since

H, t |= Kiφ, H ′,m |= φ. Hence by the induction hypothesis, rH′ ,m |= φ.
Therefore, rH , t |= Kiφ. The other direction is analogous.

• H, t |= ©φ iff H, t + 1 |= φ iff (induction hypothesis) rH , t + 1 |= φ iff
rH , t |= ©φ.

• H, t |= φ Uψ iff ∃t′ > t such that H, t′ |= ψ and for each m with t < m < t′,
H,m |= φ iff (induction hypothesis) ∃t′ > t such that rH , t

′ |= ψ and for
each m with t < m < t′, rH ,m |= φ iff rH , t |= φ Uψ. 2

This lemma shows that the soundness results from [12] can be applied to
history based frames. For example, suppose that φ is a theorem of S5U

n +KT1
but FK 6|= φ. Then there is a model MH based on FK in which there is a
global history H and moment t ∈ N such that H, t 6|= φ. But then using the
above lemma in the interpreted system ι(MH), rH , t 6|= φ which contradicts
the soundness proof for interpreted systems.

What about the completeness results? I.e., do the completeness results from
[12] apply to history based frames? The answer is yes if we can show that for
each interpreted system, there is a modally equivalent 8 history based frame.

Let (R, π) be an interpreted system with local states L. Given a run r ∈ R
we show how to construct a history Hr. First let Ei = L for each agent i (or
Ei = Li if the agents do not share local states). Then let E = ∪iEi ∪Ln+1. So

8 That is, the two structures satisfy the same modal formulas.
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the events are the local states and the global states. For each r ∈ R, let Hr =
r(0)r(1)r(2) · · · . Let H′ = (∪iEi)

∗ ∪{Hr | r ∈ R} and HR = H′ ∪FinPre(H′).
Notice that in HR the only infinite histories are histories of the form Hr

for some r ∈ R. Thus these are the only histories in which we interpret our
formulas. We need only define the agents local view function. Since the domain
of the local view function is the set of all finite prefixes of a protocol, we have
two cases the consider. The first is if H ∈ E∗

i for some i ∈ A. Then simply
define λi(H) = H (as this situation will not arise when interpreting formulas,
the actual value of λi(H) does not matter). If H is Hr for some r ∈ H and
t ∈ N, then define λi(H

r
t ) = (last(Hr

t ))i, where given a finite history H, last(H)
is the last event of H. Thus λi(H

r
t ) is the ith component of the last event of

Hr
t . Then the following observation is obvious.

Lemma 9 Let R be any set of runs, then for each r, r′ ∈ R and t,m ∈ N,
r(t)i = r′(m)i iff Hr

t ∼i H
r′
m.

Proof Straightforward. 2

Finally, we define a valuation function V : FinPre(H) → 2At as follows. If
H ∈ Ei for some i ∈ A, then V (H) = ∅. If H is Hr for some r ∈ R, then
let p ∈ V (Hr

t ) iff π(r, t)(p) = true. The proof of the following theorem which
shows that our translation works as intended is similar to the above theorem
and so is ommitted.

Theorem 10 Let (R, π) be an interpreted system. Then for each r ∈ R and
each φ ∈ LKT

n

r, t |= φ iff Hr, t |= φ

The only case that may cause some trouble is when φ is of the form Kiψ. In
this case, the results follows immediately once one notices that formulas are
only interpreted at infinite histories, i.e., histories of the form Hr for some
r ∈ R. Thus if Hr, t |= Kiψ. Then if Hr ∼i H

′, H ′ must be of the form Hr′

for some r′ ∈ R (these are the only possible infinite histories). And the proof
of the lemma follows immediately.

The above lemma shows that the completeness proofs from [12] carry over to
history based frames. However, the above construction seems like somewhat of
a cheat. In particular, notice that the local view functions are not embeddable
in a infinite global history Hr. A better solution would be for a given inter-
preted system (R, π) to find a set of events E and protocol H based on E and
embeddable local view functions such that the history based model based on
this frame is modally equivalent to (R, π). However, answering this question is
is analogous to constructing a program written in a high level language (such
as C) from some machine code. In fact, the real question we are asking is
where does a particular interpreted system come from? For more on this topic
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the reader is referred to [8] Chapter 5.

This section shows that the answer to the question posed in the title of this
section is that it does not really matter which semantics one chooses from
the point of view of soundness and completeness of axiom systems. So, is
the difference between the two semantics only linguistic? Technically, perhaps
the answer is yes. However, there is a difference from the modeler’s point of
view. From a social software point of view, the situations we are interested
in typically include a group of agents following the rules of some procedure.
Each agent (including nature) may cause certain events to take place. From
this we can derive what the agents’ know about the situation. That is, we
need only determine which events the agent is aware of in order to define
the local view functions. In an interpreted system, an event is anything that
causes a change in the internal state of the agents. However, we typically do
not have access to such information when modeling situations relevant for the
analysis of social software. So the difference lies in the intended application in
the models. For interpreted systems, the intended application is an analysis
of distributed computational procedures whereas for history based structures
the intended application is social interactive situations. For example, in [25],
Parikh and Ramanajam argue that this framework very naturally formalizes
many social situations by providing a semantics of messages in which notions
such as Gricean implicature can be represented.

5 Conclusion and Future Work

This paper discusses a formal framework intended to be used to represent
social interactive situations relevant for the analysis of social procedures. We
view a social interactive situation as consisting of a collection of sequences of
“events” (called histories), where the exact interpretation of an event depends
on the application. Intuitively, each global history (infinite sequence of events)
is a possible way the situation could have evolved. At any moment t ∈ N there
is a finite history and a possibly infinite future. In general, some of the events
may be caused by an agent, i.e., an agent can perform a particular action,
and others may be caused by nature (which can be viewed as a special type of
agent). See [17] for more information about using this framework for studying
social software.

We have shown that the history based models of Parikh and Ramanujam
are modally equivalent (with respect to the language LKT

n ) to the interpreted
systems of Fagin et al. The proof is technically straightforward; however it does
contain some insights. Namely, it shows a real difference from the modeler’s
point of view between these two semantics. The history based structures of
Parikh and Ramanujam are appropriate for formalizing many of the issues

16



relevant for the analysis of social software. We now move on to a discussion of
a future research direction.

In the game theory literature, extensive game forms are used to model the
decision problems encountered by agents in strategic situations [16]. These
structures have much in common with history based structures. In fact, as will
be shown below, with some additional assumption, a history based structure
can be turned into an extensive game form.

Let 〈H, E1, . . . , En〉 be a history based structure based on a set of events E. In
a general game-theoretic situation the events are “caused” by the agents. As
such, we assume for each agent a set Ai ⊆ Ei of actions i can perform. Notice
that we are blurring the distinction between the action that agent i chooses
to cause event e and the event e itself.

In this section we will assume that the agents are aware of all possible events,
i.e., for each i ∈ A, Ei = E. This assumption is called perfect information
is the game theory literature. Actually, the assumption of perfect informa-
tion says something slightly stronger, namely that each agent knows which
actions have taken place. Essentially, this means that we are we are working
with synchronous history based frames with local view functions that satisfy
perfect recall. Thus to make this assumption of perfect information formal,
we must bring in the machinery from Section 3. Reasoning about extensive
games from this is point of view is explored in a recent paper of Bonanno [2]
(cf. [28]). In order not to overburden the reader with notation at this point, we
will not make any attempt to bring in the local view functions from Section
3 and assume that we are working under the assumption of perfect informa-
tion. Therefore, in this section, we will denote a history based structure as
〈H, A1, . . . , An〉 and assume Ei = E for all i where E is the set of all possible
events.

A few structural assumptions about the protocol H are needed. The first
assumption amounts to saying that at any moment only one agent can perform
an action. Given a global history H (possibly infinite) and time t ∈ N, let
F(Ht) = {H ′ ∈ H | Ht � H ′}, i.e., F(Ht) is the set of all global histories from
H that extend Ht. Also, suppose that for each finite global history H, last(H)
denotes the last event of H.

Definition 11 A protocol is said to satisfy the single agent property if for
each H ∈ H and each t ∈ N, there is a unique i ∈ A such that for each
H ′ ∈ F(Ht), last(H ′

t+1) ∈ Ai.

Notice that this implies that at every moment there always is an agent who
performs some action. If necessary, we can assume that nature is an agent
which can always perform a special action c interpreted as a clock tick. One
more technical assumption is needed in order to deal with infinite histories.
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Definition 12 A protocol H is said to be closed provided for each infinite
history H, if for each t ∈ N, Ht � H and Ht ∈ H, then H ∈ H. I.e., H is
closed upwards under the � relation.

These additional structural assumptions about the protocol H is all that is
needed to define an extensive game form.

Definition 13 A history based game form is a structure

FG = 〈H, A1, . . . , An〉

where H is a protocol that is closed and satisfies the single agent property.

We say a history based game form is finite if H is finite and is finite-horizon
if each H ∈ H is finite. For this point of view, it is very natural to use these
structures to interpret a suitable modal language. Indeed there is a long list
of researchers in both game theory and logic who have noticed this fact (see
[14,31,32,2,28,27] for recent contributions). The focus of future research will
be to extend a history based game form with local view functions for each
agent. We can then extend the results of [14] by bringing in epistemic modal
operators for each agent.
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