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Abstract. In this paper we take up the study of Henkin quantifiers
with boolean variables [4] also known as partially ordered connectives
[19]. We consider first-order formulae prefixed by partially ordered con-
nectives, denoted D, on finite structures. We characterize D as a frag-
ment of second-order existential logic Σ1

1♥ whose formulae do not allow
for existential variables being argument of predicate variables. We show
that Σ1

1♥ harbors a strict hierarchy induced by the arity of predicate
variables and that it is not closed under complementation, by means of
a game-theoretical argument. Admitting for at most one existential vari-
able to appear as the argument of a predicate variable already yields a
logic coinciding with full Σ1

1 , thus we show.
Keywords. Henkin quantifiers, partially ordered connectives, NP vs.
coNP, finite model theory

1 Introduction

Fagin’s Theorem [9], stating that NP = Σ1
1 , reveals the intimate connection

between finite model theory and complexity theory. As a methodological conse-
quence it appears that questions and results regarding a complexity class may
bear relevance for logic and vice versa. For instance, the complexity theorist’s
headache caused by the NP = coNP-problem can now be shared by the logician
working on the Σ1

1 = Π1
1 -problem.3 Indeed, logicians took up the challenge and

nowadays separating logics related to complexity classes is one of their main
occupations. By and large they go about by mapping out fragments of various
relevant logics. A point in case is Fagin’s [10] study of the monadic fragments of
Σ1

1 and Π1
1 , showing that they do not coincide.

The results in [10] did arouse a lot of interest in monadic languages [2, 3,
20], but somewhat disappointingly, we are still waiting for methods to separate
? Corresponding author
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3 Solving the NP = coNP-problem is worth a headache indeed: if NP 6= coNP then

P 6= NP.



binary, existential, second-order logic from 3-ary, existential, second-order logic,
see [5], or even from binary, universal, second-order logic.

In the present paper we concern ourselves with the finite model theory of lan-
guages with Henkin quantifiers with restricted quantifiers also known as partially
ordered connectives. Henkin quantifiers Hn

kxy are objects of the form


∀x11 . . . ∀x1k ∃y1

...
. . .

...
...

∀xn1 . . . ∀xnk ∃yn


 (1)

that prefix first-order formulae φ. Here and henceforth, a series of variables
as in x11, . . . , xnk is abbreviated by x. On suitable structures A, the formula
Hn

kxy φ(x,y) is defined to be true iff there are functions f1, . . . , fn such that

A |= ∀x φ(x, f1(x1), . . . , fn(xn)), (2)

where xi = xi1, . . . , xik. It is a milestone result in the theory of Henkin quan-
tification that the logic obtained by applying objects as in (1) to first-order for-
mulae, denoted H, coincides with Σ1

1 , cf. [8, 21]. Referring to Fagin’s Theorem,
Blass and Gurevich [4, Theorem 1] draw the conclusion that H = Σ1

1 = NP. In
the same publication the authors study what constraints can be imposed on the
existentially quantified variables in a Henkin quantifier, such as y in (1), with-
out the quantifier losing its power to express NP-complete problems. It turns
out that Henkin quantifiers of the form

(∀x11 . . . ∀x1k ∃α1

∀x21 . . . ∀x2k ∃α2

)
(3)

cannot express NP-complete problems, unless NL = NP. The variables α1 and α2

appearing in (3) are boolean variables that range over a fixed domain {0, 1}, say.
In this sense ∃αi is a ‘restricted’ quantifier, hence the name ‘Henkin quantifier
with restricted quantifiers’.

The model theory for Henkin quantifiers with restricted variables was taken
up in [19], be it under the name of ‘partially ordered connectives’ and written
in the following format:



∀x11 . . . ∀x1k

∨
i1

...
. . .

...
...

∀xn1 . . . ∀xnk

∨
in


 , (4)

denoted Dn
kxi. The usage of the symbol

∨
reflects the fact that the variables

ij range over a fixed domain of {0, 1}. Sandu and Väänänen [19, Proposition 2]
show that any first-order formula φ prefixed by the partially ordered connective
D2

1xi can be translated into H2
1xy φ′, for some first-order φ′. Furthermore, they

provide an Ehrenfeucht-Fräıssé game for partially ordered connectives and use it
to give non-definability results. Note that there are first-order formulae φ, that
can express NP-complete problems, when prefixed with the partially ordered



connective D3
1xi, in virtue of Blass and Gurevich’s result; 3-colorability of graphs

is a point in case.
Other publications on Henkin quantifiers and partially ordered connectives

in relation with complexity theory include [13, 14, 16–18].
In this paper we characterize the logic D – the result of applying (4) to first-

order formulae for arbitrary k, n – as a fragment of Σ1
1 . The relevant fragment

of Σ1
1 only allows for variables occurring as arguments of predicate variables

that are universally quantified. As this constraint is rather natural it may be
of interest to the descriptive complexity community to observe that (a) D can
express a property that can be expressed in k + 1-ary, existential, second-order
logic that cannot be expressed in k-ary, existential, second-order logic and that
(b) D is not closed under complementation, as it can express 2-Colorability
but not its complement. On the fly we prove that the Henkin quantifier H2

1x is
not definable in D and that D is strictly contained in NP.

In Section 2, we introduce the necessary apparatus to get going. In Section
3, we characterize D as a fragment of Σ1

1 . Using this characterization we show
result (a). In Section 4, we give an Ehrenfeucht-Fräıssé game for D and use it
to show that D is not closed under complementation, cf. (b). In Section 5 we
show that if we extend Σ1

1♥ so as to allow for at most one existential variable to
occur as argument of predicate variables, the resulting logic coincides with full
Σ1

1 .

2 Preliminaries

A vocabulary τ is a finite set of relation symbols, rigidly including the equality
symbol. Vocabularies do not contain constant of function symbols. Results can
easily be extended to vocabularies with constant symbols, though. A finite τ -
structure A = 〈A, 〈RA〉R∈τ 〉 consists of a finite set A, referred to as the universe
of A, and interpretations of the relation symbols in τ on A. Here and henceforth,
every structure is finite and for this reason we omit mentioning this. The equality
symbol is interpreted as the identity relation. If τ only contains one binary
relation symbol, other than the equality symbol, then any τ -structure is called a
directed graph (digraph). If G = 〈G, RG〉 is a digraph and RG is symmetric, then
G is a graph. A class relevant to this paper is n-Colorability holding of those
finite graphs whose chromatic number is ≤ n. Conversely, let n-Colorability
denote the complement of n-Colorability with respect to the class of finite
graphs.

Define an implicit matrix τ -formula γ as a function of type {0, 1}k → FO(τ),
where k is an integer k and FO(τ) is first-order logic over τ . Let Dk(τ) be the
logic with formulae of the form Dn

kxi γ(i)(x), for arbitrary n. The notion of
bound and free variable is canonically extended from first-order logic so as to
apply to the variables i as well. A sentence is a formula without free variables.
We shall usually omit explicit indication of as many variables from the formulae
as possible without losing on readability. In this manner we may write Dn

kγ
instead of Dn

kxi γ(i)(x). Put D(τ) =
⋃

k Dk(τ).



Let A be a τ -structure and let Γ = Dn
kxi γ(i)(x) ∈ D. Then, Γ is true on A

iff there exist functions f1, . . . , fn : Ak → {0, 1} such that

A |= ∀x γ(f1(x1), . . . , fn(xn))(x). (5)

Let Σ1
n,k(τ) be the fragment of Σ1

n(τ) whose predicate variables have arity
≤ k. Particular interest will be with the fragments Σ1

1,k(τ), that are called k-ary,
existential, second-order logic. If k equals 1 or 2, we arrive at monadic and binary,
existential, second-order logic: Σ1

1,1(τ) = MΣ1
1(τ) and Σ1

1,2(τ) = BΣ1
1(τ). For

the semantics of first and second-order logic, we refer the reader to [6].
If Φ and Ψ are τ -sentences for which the satisfaction relation |= is properly

defined and for every τ -structure we have that A |= Φ iff A |= Ψ , then we say
that they are equivalent.

Let L(τ) be a logical language for which |= is properly defined and let C
be a class of (finite) τ -structures. Then C is characterized by Φ ∈ L(τ) if for
every τ -structure A it is the case that A ∈ C iff A |= Φ. If some of its formulae
characterize the class C, then L(τ) is said to characterize C as well.

Let L(τ) and L′(τ) be logical languages. Then, we write L(τ) ≤ L′(τ) to
denote that for every formula Φ ∈ L(τ) there is an equivalent Ψ ∈ L′(τ). We
write L(τ) = L′(τ), if L(τ) ≤ L′(τ) and L(τ) ≥ L′(τ). If L(τ) ≤ L′(τ) and there
is one class characterizable in L′(τ) that is not characterizable in L(τ), we write
L(τ) < L′(τ).

By means of a game-theoretical argument we show that D cannot character-
ize the class of structures with a universe of even cardinality, Even. The latter
class, however, is definable by a Henkin quantifier (with unrestricted variables).

Proposition 1. There exists a first-order formula φ, such that H2
1 φ character-

izes Even.

Proof. Recall that a finite structure A has a universe A with even cardinality
iff there exists a function f : A → A such that for every a ∈ A, f(f(a)) =
a and f(a) 6= a. The latter condition is expressed by the following formula:
H2

1x1x2y1y2 φ(x1, x2, y1, y2), where φ(x1, x2, y1, y2)=(x1 = x2 → y1 = y2)∧(y1 =
x2 → y2 = x1) ∧ (x1 6= y1). 2

3 A characterization of Dk

In this section we give a characterization of Dk(τ) as a fragment of Σ1
1,k(τ). First

we lay down a translation result. To this end, let Γ = Dn
k γ be a Dk(τ)-formula,

where

Γ = Dn
k γ =



∀x11 . . . ∀x1n

∨
i1

...
. . .

...
...

∀xk1 . . . ∀xkn

∨
ik


 γ . (6)



Define the translation of Γ into Σ1
1,k(τ), written T (Γ ), as follows

∃X1 . . . ∃Xn∀x




X1(x1) ∧ . . . ∧ Xn(xn) → γ(1, . . . , 1)(x)
...

¬X1(x1) ∧ . . . ∧ ¬Xn(xn) → γ(0, . . . , 0)(x)


 , (7)

where the Xi are k-ary predicate variables. The square brackets enclosing the
implications should be read as their conjunction and reflects the matrix-style
of presenting γ. The block of implications is referred to as γ’s explication. The
translation hinges on the insight that every function f : Ak → {0, 1} can be
mimicked by the set X = {a ∈ Ak | f(a) = 1}.

Proposition 2. For every sentence Γ ∈ Dk(τ), Γ and T (Γ ) are equivalent.

We proceed by giving a characterization of Dk as a fragment of Σ1
1,k.

Definition 1. Let Φ be a second-order τ -formula. Call Φ sober if for every
predicate variable X in Φ it is the case that (i) X is free in Φ and (ii) X(x)
occurring in Φ implies that all variables in x are free in Φ. Let Σ1

1,k♥(τ) be the
fragment of Σ1

1,k(τ), containing all formulae of the form

∃X1 . . . ∃Xm∀x1 . . . ∀xn Φ , (8)

where Φ is sober. Put Σ1
1♥(τ) =

⋃
k Σ1

1,k♥(τ).

So any sober formula is a second-order formula, but only in virtue of the
fact that it contains predicate variables. If Φ is a sober formula occurring in a
Σ1

1,k♥(τ)-formula as in (8), then no variable argument to a predicate variable is
existentially quantified. In Section 5 we see that the slightest extension in this
respects results in a logic that enjoys the expressive power of full NP.

As an example, consider the Σ1
1♥-formula ∃X1∃X2∃X3∀x1∀x2 (Φ∧Φ′) that

characterizes 3-Colorability, where (Φ ∧ Φ′) is a sober formula:

Φ =


 ∨

i∈{1,2,3}
Xi(x1)


 ∧


 ∧

i∈{1,2,3}

∧

j∈{1,2,3}−{i}
¬(Xi(x1) ∧Xj(x1))


 (9)

Φ′ =


 ∧

i∈{1,2,3}
(Xi(x1) ∧Xi(x2) → ¬R(x1, x2))


 . (10)

Theorem 1. Dk(τ) = Σ1
1,k♥(τ). Hence, D(τ) = Σ1

1♥(τ).

Proof. The from-left-to-right direction is accounted for by the translation T (·).
The converse direction is more involved, hinging on the proof of the claim that
every sober formula is equivalent to the explication of an implicit matrix formula.
2



The characterization of D in second-order terms may speed up the finding
of interesting properties it enjoys, for second-order logic happens to be more
intensively studied than partially ordered connectives. Finding formulae with
partially ordered connectives expressing a particular property on structures can
be hard labor. Now that we have characterized Dk, we can safely conclude that
any property expressible in Σ1

1,k♥(τ) is expressible in Dk(τ) as well. A concrete
– and relevant! – example of this mode of research can be found in the upcoming
result.

Theorem 2. Let k ≥ 2 be an integer and let τk be a vocabulary with at least
one k-ary relation symbol and <. Then, Dk−1(τk) < Dk(τk).

Proof. Ajtai [1] proved the following result: Let k ≥ 2 and let τk = {P, <} where
P is a k-ary relation symbol and < is the linear order symbol.4 Then, the class
Ck of τk-structures A such that PA has even cardinality is not characterizable
in Σ1

1,k−1(τk), but it is characterizable in Σ1
1,k(τk).5

To separate Dk from Dk−1, we show that Ck is expressible by a formula in
Dk(τk). This is a sufficient argument for our end, since Σ1

1,k−1♥(τk) is a fragment
of Σ1

1,k−1(τk) by Theorem 1 and for this reason cannot express Ck.
Intuitively, the Σ1

1,k♥({P,<})-formula Υk that characterizes Ck over τk-
structures lifts the linear order < to a linear order ψk of k-tuples. With respect
to this lifted linear order Υk expresses that there exists a subset of k-tuples of
objects from the domain Q such that

1. Q is a subset of PA

2. the ψk-minimal k-tuple that is in PA is also in Q and the ψk-maximal k-tuple
that is in PA is not in Q

3. if two k-tuples are in PA and there is no k-tuple in between them (in the
ordering constituted by ψk) that is in PA, then exactly one of the k-tuples
is in Q.

We omit further details. 2

4 Ehrenfeucht-Fräıssé game for D

Ehrenfeucht-Fräıssé games or model comparison games are usually employed to
prove that some property is not definable in a certain logic. These games were
first introduced for first-order logic in [7, 11].

Let the quantifier rank of a first-order formula be its maximum number
of nested quantifiers. Let m be an integer. If A, B are τ -structures, xA =

4 That is, on a τk-structure A, the extension of < is a linear order on A.
5 The result uses hypergraphs, that is, structures interpreting relation symbols of un-

bound arity. As a consequence, the result does not imply that Σ1
1,2(τ) is strictly

weaker than Σ1
1,3(τ), where τ a vocabulary that contains only unary and binary

predicates, cf. [5].



〈xA
1 , . . . , xA

r 〉 ∈ Ar, and xB = 〈xB
1 , . . . , xB

r 〉 ∈ Br, then the m-round Ehrenfeucht-
Fräıssé game on the structures A and B, denoted by

EFFO
m (〈A, xA〉, 〈B,xB〉) ,

is an m-round game proceeding as follows: There are two players, Spoiler and
Duplicator. During the ith round, Spoiler first chooses a structure A (or B) and
an element called ci (or di) from the domain of the chosen structure. Duplicator
replies by choosing an element di (or ci) from the domain of the other structure
B (or A). Duplicator wins the play 〈〈c1, d1〉, . . . , 〈cm, dm〉〉, if the relation

{〈xA
i , xB

i 〉 | 1 ≤ i ≤ r} ∪ {〈ci, di〉 | 1 ≤ i ≤ m} (11)

is a ‘partial isomorphism’ between A and B; otherwise, Spoiler wins the play. If
against any sequence of moves by Spoiler, Duplicator is able to make her moves
so as to win the resulting play, we say that Duplicator has a winning strategy in
EFFO

m (〈A, xA〉, 〈B, xB〉). The notion of winning strategy for Spoiler is defined
analogously. By the Gale-Stewart Theorem [12], the Ehrenfeucht-Fraissé games
are determined; that is, precisely one of the players has a winning strategy. The
effectiveness of these games is established in the following seminal result.

Theorem 3 ([7, 11]). For every integer m, the following are equivalent:

– 〈A, xA〉 and 〈B, xB〉 satisfy the same first-order formulae (possibly with free
variables from x) of quantifier rank ≤ m

– Duplicator has a winning strategy in EFFO
m (〈A, xA〉, 〈B, xB〉).

Readers unfamiliar with these games may find it helpful to consult [6] and [10,
15] for a similar games for MΣ1

1 .
The notion of quantifier rank is extended to implicit matrix formulae as

follows: qr(γ) = max{qr(γ(i)) | i ∈ {0, 1}k}, for γ of type {0, 1}k → FO.
The model comparison game for D has two phases: a watercoloring phase

and a first-order phase. Let A and B be τ -structures and let m be an integer.
Then, the m-round, watercolor Dn

k -Ehrenfeucht-Fräıssé game on the structures
A and B, denoted as

EFDn
k

m (A,B)

is an m + 1-round game proceeding as follows: First we have the watercoloring
phase. Spoiler picks up for every 1 ≤ i ≤ n a subset Xi from Ak. Duplicator picks
up a subset Bi of Bk, for every 1 ≤ i ≤ n. Next, Spoiler chooses a tuple xB

i ∈ Bk,
for every 1 ≤ i ≤ n, and Duplicator replies by choosing a tuple xA

i ∈ Ak. If for
every 1 ≤ i ≤ n the selected tuples satisfy xA

i ∈ Ai iff xB
i ∈ Bi, then the

game proceeds to the first-order phase as EFFO
m (〈A, xA〉, 〈B,xB〉); otherwise,

Duplicator loses right away.

Interesting to note that in the first-order Ehrenfeucht-Fräıssé game that is
started up after the watercolor phase, the actual colorings are immaterial. The
watercolors fade away quickly, so to say.



Proposition 3. Let A and B be τ -structures, and let k, n be integers. Let Γ =
Dn

k γ be any Dk-sentence with qr(γ) ≤ m. Then, the first assertion implies the
second:

– Duplicator has a winning strategy in EFDn
k

m (A,B)
– A |= Γ implies B |= Γ .

Hence, if the first assertion holds for arbitrary k, n, then the second assertion
holds for every Γ ∈ D, where qr(Γ ) ≤ m.

Proof. The game is a simple adaption of the one presented in [19]. 2

Fagin [10] showed that the monadic fragments of Σ1
1 and Π1

1 do not coincide,
as the latter harbors Connected but the former does not. Therefore, MΣ1

1 6=
MΠ1

1 and we say that Σ1
1 is not closed under complementation.

Using the model comparison games for D we show that D is not closed under
complementation either. This result may be interesting because D = Σ1

1♥ is a
fragment of Σ1

1 that is not bounded by the arity of the predicate variables and has
a non-empty intersection with k-ary, existential, second-order logic, for arbitrary
k, see Theorem 2. Clearly, these properties are not enjoyed by MΣ1

1 .
For any two τ -structures A and B with non-intersecting universes, let A

.∪ B

denote the τ -structure with universe A∪B and RA
.∪B = RA∪RB, for any R ∈ τ .

Theorem 4. 2-Colorability cannot be expressed in D. Hence, D is not closed
under complementation.

Proof. For the sake of contradiction, suppose 2-Colorability were character-
izable in D. Then, there would be a particular formula in D that characterizes
2-Colorability, say Γ . This formula Γ would be have a partially ordered con-
nective with dimensions k, n prefixing a implicit matrix τ -formula of quantifier
rank m. Now let us consider two structures A and B such that (i) A is not
2-colorable and B is 2-colorable and (ii) Duplicator has a winning strategy in
EFDn

k
m (A, B). Since Γ is supposed to characterize 2-Colorability, we derive

from (i) that A |= Γ and B 6|= Γ . But from (ii) and A |= Γ it follows by Proposi-
tion 3, that B |= Γ . Contradiction. Hence, no formula Γ exists in D, expressing
2-Colorability.

It remains to be shown that for arbitrary m, k, n, there exist graphs A and
B meeting (i) and (ii). To this end, fix integers m, k, n and consider the graphs
C and D, where

C = {c1, . . . , cN}
RC = the symmetric closure of {〈ci, ci+1〉 | 1 ≤ i ≤ N − 1} ∪ {〈cN , c1〉}
D = {d1, . . . , dN+1}

RD = the symmetric closure of {〈di, di+1〉 | 1 ≤ i ≤ N} ∪ {〈dN+1, d1〉}
and N = 2m+k·n. So C and D are cycles of even and odd length, respectively. A
cycle is 2-colorable iff it is of even length, hence D is not 2-colorable whereas C
is. Obviously, the structure C

.∪ D is not 2-colorable either.



Let us proceed to showing that Duplicator has a winning strategy in EFDn
k

m (C
.∪

D, C). Suppose Spoiler selects the set Xi ⊆ (C ∪D)k, for every 1 ≤ i ≤ n. Let
Duplicator respond with Xi restricted to C solely, that is, Yi = Xi∩C2, for every
1 ≤ i ≤ n. Suppose Spoiler selects the tuple xC

i ∈ Ck, for every 1 ≤ i ≤ n. Let
Duplicator respond by simply copying these tuples on (C ∪D)k, that is, setting
xC

.∪D
i = xC

i . The game advances to the first-order phase, since obviously bi ∈ Xi

iff bi ∈ Yi. A standard argument suffices to see that Duplicator has a winning
strategy in

EFFO
m (〈C .∪ D, xC

.∪D
1 , . . . , xC

.∪D
n 〉, 〈C, xC

1 , . . . , xC
n〉) ,

compare [6, pg. 23].
In the Introduction we recalled that Blass and Gurevich showed that D can

characterize the class of 3-colorable graphs. In the same way it is capable of
characterizing 2-Colorability. We just showed that the complement of this
class is not expressible in D. Therefore, D is not closed under complementation.
2

Since C’s universe has even cardinality but D’s has not, we conclude that
also the class Even is not characterizable in D. By contrast, in Proposition 1
we showed that this class is characterizable by a formula of the form H2

1 φ. So
already the simplest Henkin quantifier, not definable in first-order logic, cannot
be defined in D. Since Even is obviously characterizable in binary Σ1

1 , D < Σ1
1 .

5 Revisiting Σ1
1♥

We mapped out some finite model theory for D and observed that it is closed
under complementation but not bounded by an arity constraint. We saw that D
comprises a fragment of Σ1

1 whose formulae do not allow for a single existential
variable being an argument of a predicate variable. Amusingly, this boundary is
rather sharp: already the slightest extension yields a logic coinciding with Σ1

1 .
Let us write Σ1

1♣ for the fragment of Σ1
1 that has formulae of the form

∃X1 . . . ∃XmQ1x1 . . . Qnxn Φ (12)

where Φ is sober as before and for at most one i ∈ {1, . . . , n}, we have that
Qi = ∃; all other quantifiers are universal quantifiers. Using a result of Krynicki’s
[16] it is not so hard to see that Σ1

1♣ = NP on finite structures. Krynicki showed,
namely, that first-order logic prefixed by the quantifier below (with unbound k)
coincides with full Σ1

1 : (∀x11 . . . ∀x1k

∨
i

∀x21 . . . ∀x2k ∃y
)

. (13)

The semantics of (13) are readily defined in view of the semantics of (1) and (4),
involving one function variable of type Ak → {0, 1} and one function variable
of type Ak → A. The former function variable can be mimicked by a k-ary
predicate variable as in the translation T (·). The latter k-ary function variable
can be mimicked by a k + 1-ary predicate variable along the obvious path, be it
at the cost of introducing one existential quantifier.
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