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1 Introduction

Both logic and game theory have developed an interest in analyzing what consti-
tutes rational behaviour under uncertainty. One particular interesting encounter
between logic and game theory is the use of belief revision techniques in the
sense of [G&92] as a means of analysis of games.!

The game-theoretic analysis of rationality and the study of belief revision
have in common that they have a normative hue; they are (overly) concerned
with questions of what constitutes rational behaviour and what would be quality
measures for rationality. On the purely logical side, without taking into account
context, this is a doomed enterprise: if you believe p and p — ¢, and learn for a
fact that —¢ holds, then whether you give up p or the implication will depend
on what these statements are and what the context is.?

In this paper, we present an approach to belief revision in games that re-
nounces any claims of normativity. We shall present an account of analysis of
games in which all agents have beliefs about the preferences of the other agents
and beliefs about those beliefs, and so on. Based on what happens in the game,
they can change their beliefs, and again, these changes can be the subject of
beliefs of the agents. Our account is purely formal and does not presuppose any
theory of rationality or of belief change. As a consequence, our account is able
to properly describe also bizarre and irrational behaviour.?

* The authors would like to thank Andrés Perea (Maastricht): The syntax described
in this note is based on the one developed in [L&PagPecc].

! The following is a list of relevant papers combining epistemic logic and game theory:
[Au99], [St98], [Bo1Ba99], [Br06], [Mo+97], [dB04]. More specifically, the papers
[St98], [Boo04], and [Pe05] have pointed out the importance of belief revision in the
context of reasoning about solution concepts in games.

2 Cf. [L506] for a related discussion.

3 It is a well-known feature of artificial intelligence that what is bizarre if you think
of human agents can be perfectly fine for artificial agents. As an example, think of



In §2, we give an example story of mistaken beliefs that describes how we
imagine our formal setting to be applied. Then, in § 3, we give the formal defini-
tions of our syntax and semantics and how to use this setting to get a backwards
induction solution. In the following § 4, we then apply our semantics to the story
related in §2 and give an analysis of it. Finally, in §5 we list projects for the
future based on the framework presented in this paper.

2 A story of reasoning with false beliefs

The following is a fictitious story in the style of a TV drama. The reader can
imagine that this is the outline of a script. The reasoning processes referred to
in the story can be made visible to the audience by monologues (Walter talking
to himself in his car) or by conversations with some confidant or confidante.

Sue and Jeff have known each other for years. They studied computer
science together in the 1980s, and both started their own software compa-
nies in the 1990s. Sue is married to Walter, an artist, and Jeff is married
to Mary. In the past years, Sue and Mary have become best friends.
However, unbeknownst to Sue, her husband Walter and Mary have an
affair. Walter, being absolutely dependant on the money of his wife, has
no intention of leaving her at all, and wants to avoid that she gets to
know about this affair at all costs. He believes that the fact that Sue
and Mary are best friends acts as a safeguard for his secret: Mary must
be aware that she will lose Sue as a friend if Sue finds out, and Mary
clearly doesn’t want that. So, Walter convinced himself that Mary will
never ask him to separate from Sue or —even worse— tell Sue about the
affair.

Mary on the other hand is rather unhappy with Jeff, and really wants to
leave him. She believes that her friendship with Sue is robust enough to
survive the fact that she has an affair with Walter. In her dreams, she
imagines a nice future with Walter. She is convinced that if she presses
Walter enough, he will finally leave Sue for her. She can make up with
Sue afterwards.

One morning, she gives Walter an ultimatum: he should make up his
mind and choose between her and Sue. Walter is ultimately confused:
he must have misjudged Mary. Stuck in the traffic jam on his way to an
appointment with a potential client, his mind raced: If he chooses Mary,
then Sue would know about their affair, and Mary would lose her best
friend. What was Mary thinking? The only rational explanation that
he could come up with was that Mary wanted to be with him so badly
that she would give up her friendship with Sue for it... Obviously, Walter
couldn’t leave Sue for financial reasons. But he needed to be careful here:

computational social choice: for human beings, we would hardly call “maximize the
benefit for the strongest agent” a reasonable social procedure; in artificial situations,
this may very well be desirable.



if he said no to Mary, would she tell Sue? No, he reasoned, since then she
would lose both Sue and him which is definitely worse than just losing
him. So, he’d be safe. Smiling, he used his cell phone to call Mary and
tell her that he would not leave Sue.

When she hung up the phone, Mary was fuming with anger. Apparently,
Walter wanted to stay with Sue. “Well, if that’s what he wants, then I
am not interested in him anymore. I should cut my losses, and at least
be honest to my best friend,” she reasoned, and acted accordingly.

And Mary was right in her judgement of Sue. The two women discussed
the matter, and when Walter returned from his appointment in the af-
ternoon, his paintings were standing on the front lawn of their house and
the lock of the front door had been changed. Walter gazed emptily at
his paintings searching for a logician to help him to figure out what had
happened.

We should stress that human beings have no problems in analysing an episode
like this — with ease, they can make judgements like “Walter is wrong about his
judgement of Sue and Mary; after the ultimatum, there was no chance of staying
together with Sue anymore, but he could have saved his relationship with Mary
hadn’t he misjudged his wife”.

For computational situations, we would like to be able to do the same within
some formal system. Being able to formally access the reasoning structure of
episodes like this is crucial for the analysis of games with mistaken beliefs.

3 Formalization

In the following, we shall describe a formalization of reasoning about mistaken
beliefs and belief change that goes back to a more elaborate version presented
in [L6PagPeoc].

Let I be the finite set of players. A tree T is a finite set of nodes together with
an edge relation (in which any two nodes are connected by exactly one path).
Let rooty denote the root of the tree and tn(7") denote the set of terminal nodes
of T. We write t € T if t is a node in the tree T. If t € T, let succr(t) denote
the set of immediate T-successors of T'.

An extensive game form is a tuple (I, T, u) where I is a set of players, T'
is a tree and p is a moving function. That is,

w:T\tn(T) — I,

where, intuitively, if u(7") = ¢ then it is i’s move at node t. We call total orders
= on tn(7T) preferences or preference relations. If (I, T, ) is an extensive
game form, and {>;;i € I} is an assignment of preference relations to the
players (if t1 =; t2, we say “player ¢ prefers the node ¢; over node ¢»”), then we
call

<I7T7M7{t17261}>



an extensive game. This model of a game is completely standard and discus-
sions can be found in any game theory text (for example, cf. [OsRu94]).

From now on, we fix an extensive game form & = (I,T,u). Let P be a
countable set of preference symbols. We typically denote elements of P by
J and interpret them with preferences. For i € I and J€ P, the string [¢, J] is
called an atomic formula whose intended interpretation is “player ¢ has the
preference denoted by 3”. The set of atomic formulae is denoted by At. A set
D C At is called a description if for each i € I, there is a unique preference
symbol 1 such that [¢, J] € D. As we want to add belief and belief change to our
language, we add modal operators ¢ for every t € T and ¢ € I. The intended
meaning (¢ is “if the game reached node ¢, then player ¢ believes 7.

The state language £ is now the closure of At under the operators [Ii.
A set of formulae S is called a state if for each finite sequence of operators
{Oo,...,0,) (including the empty sequence) there is a unique description D
such that for each ¢ € At,

@ € D if and only if Og---Oyp € S.

We denote the set of all states with S. Given a state S, ani € [ and at € T,
let St ={p; Olp € S} (“agents i’s beliefs at ¢ in state S”). Obviously, if S is a
state, then S! is a state.

An interpretation J is any function assigning preferences to elements of
P.4 A game model based on & is a tuple (&, S,J) where J is an interpretation
and S € S is the initial state. The initial state and the interpretation contain
information about the true preferences of players at the beginning of the game:
player 4 has preference J(3J) if and only if [,J] € S.

Given a game model (&, .5, 7), we can now fully analyze the game and predict
its outcome (assuming that the players follow the backwards induction solution).

We need some preliminary definitions: For a finite tree T, we shall call a
function £ : IxT\{rootr} — tn(T) alabelling, and a function ¢ : IxT — tn(T)
a full labelling. We want to associate to each state S a labelling g such that
intuitively, the following holds: “if S is the true state, then player i believes that
if the game reaches node t, then it will end in ¢g(i,t)”.

If a tree T has a labelling ¢y for every state U and S is a fixed state, then we
can define the S-true run recursively as follows: let >; be the true preference
of player i, i.e., [(,3] € S with J(3d) =>;. Then tlﬁ,]s := rootr; for a given

4 Note that our semantics is still very abstract in that it is not taking into account
any commonsense properties of belief or rationality. For instance, our definition
of state allows that [,3] € S, but OP*7[4,3] ¢ S, i.c., player i has preferences
that he doesn’t believe he has, or Ofp € S, but O:Ofp ¢ S, i.e., a violation of
positive introspection, or I:l'f[j, J], for some position ¢ inconsistent with j having
the preference J(J), i.e., an irrational belief revision at t. All of these properties
conceivably might be useful in some applications, and can easily be excluded by
additional axioms if they are not.



t{q’f’]s that is not a terminal node, we let i := /,L(t[qlf,]s), and consider {ls(i,t); t €

succ(tgf’]s)}. There is a unique t € succ(t[q]f’]s) associated to the >=;-maximal
element of that set. Let t[ﬁgl] := t. Since T is finite, there will be some k£ such

that tgf]s is a terminal node. Then (t[qg,]s, ...,t[qlf,]s) is the true run of the game in

state S.
Similarly, if a tree T has a labelling ¢;; for every state U and S is a fixed state,
then we can define the S-subjective run for player j recursively as follows:

let =%, be 3(3) for the unique 3 such that [¢,3J] € S% Then t[qg,]j,s = rootr;
for a given t[T’i]j’ s that is not a terminal node, we let i := u(t[qlf,]ﬁ 5), and consider

{ES; (i,t);t € succ(t[Tk:]j’S)}. As before, let t[q]f;g be the unique t € succ(t[j’f’]jﬁs)

k]
t.4.8 -maximal element of the mentioned set. If k is least

JY’L
such that t[qlf’]j, g is a terminal node, then (t[qg,]j’ g ...,t[qé,]j’ ) is the subjective run

according to player j of the game in state S.°

associated to the >

In our recursive (backwards induction) definitions of the labellings, for every
terminal node ¢t € tn(7T") and arbitrary S € S and i € I, we let {5(i, t) := .

To complete the recursion, we take a tree T' with succ(rooty) = {to,...,tn }
We denote by T, the subtree of T' with rooty, = t, (for n < N), and assume
that for every state U, there is a full labelling {7, on T},. Fix S € S and define a
full labelling 5 on T as follows: Clearly, the full labellings £% combine to give a
labelling on T'; let us call this labelling £5. We need to define £5(j, rootr) to make
this into a full labelling. For fixed j € I, let (t[jg,]j’ g ...,tgf,]j, 5) be the subjective
run according to player j of the game in state S. Then

ls(j, rootr) := t[ﬁ]j,s.

Given that S is the true state at the beginning of the game and that £g
is defined recursively as above, we can now analyze the game by means of the
S-true run: this will be the actual sequence of events in the game.

4 Analysis of the story

In our story about Walter, Mary and Sue, there are three relevant players
{W,M, S}. The game tree is given in Figure 1. We use the notation 3 to
indicate that a relationship is intact and M to indicate that it is ended, and list
the terminal nodes by the status of the relationships in the order Sue-Walter,
Mary-Walter and Mary-Sue; for instance, W11 stands for “Walter left Sue,
is together with Mary, and Sue hates Mary”.

5 Note that the S-subjective run for player j is not necessarily the S°*7 -true run, as
player j’s beliefs about the preferences might change from the ones he has in node

rootr.
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Fig. 1. The game tree for the story about Walter, Mary and Sue.

The only preferences relevant for our game analysis are the following five
preferences tW7 EM7 ES7 EW*7 tS*7 and tM*:
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The true preferences of Walter, Mary and Sue are »w, =m, and »g, respec-
tively. The following are the relevant beliefs and belief changes that we put into
the initial state S:

Walter’s initial beliefs: Owe'” [M, =m], Owe 7 [S, =s+], Oty “ O 7 [S, =s4]

Walter’s beliefs at t: D%OV[M, =M, D%’V[S, =ss], D%’VDf\}[[S, =5+
Mary’s beliefs: O[S, =s], O™ (W, =wl, Df\‘}I[S, =s]

The first row gives Walter’s beliefs at rootr: he is right about Mary’s pref-
erences, but wrong about his own wife’s preferences. He believes that Mary’s
shares his wrong belief about Sue. The second row gives Walter’s beliefs at ¢o:
Here Walter revises his beliefs about Mary’s preferences (for the detailed de-
scription, see below). Instead of changing his incorrect belief of Sue, he revises



his belief about Mary to =np« (which is wrong). The third row shows Mary’s
incorrect beliefs about Walter and her correct beliefs about Sue.

Of course, technically, .S is not sufficiently specified with these data to com-
pute the analysis of the game. We shall need statements about the Mary’s beliefs
of Walter’s beliefs of Mary’s beliefs. In the example, we assume that all beliefs
other than the mentioned beliefs are trivial (i.e., players believe that the other
players are correctly informed about what they believe to be the state of affairs).

Let us give the analysis with our formalization from § 3 in words together with
the subsequent computation of the nodes t[qlf,]s. We start at the root t[qg]s := rootr.
In rooty, Walter analyzes the tree from the point of view of what he believes
are Mary’s and Sue’s beliefs. Based on the subjective states Sty (for t € T'), he
can give the values of {g(W,t) for all t € T by backward induction. We give
the values of the function t — (s(W,t) in Figure 2; we can read off the S-
subjective run according to Walter by following the label of root7 to a terminal
node: t[qg,]w,s = rooty and tg{’]w,s = TEHE

Note that this tree already incorporates the belief revision that happens
in ¢ty (even though it has no immediate effect): the values of the labelling at
to and all nodes below it depend on S{,‘{,, not on S{,"‘?tT. Some of the formal
properties of the function ¢ — £5(W,t) correspond to parts of the story: the fact
that £s(W, W) corresponds to the sentence “Walter convinced himself that
Mary will never ask him to separate from Sue”, the fact that £s(W,t1) = gs0 23
corresponds to “... or —even worse— tell Sue about the affair.”
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Fig. 2. Walter’s subjective labelling: t — £5(W, ).

Of course, Walter’s subjective labelling at rootr is irrelevant for the game,
as Mary has the first move. Mary’s subjective labelling in rootr is given in
Figure 3; again, we can read off Mary’s (wrong) prediction of the outcome of the



game by following the label at the root to a terminal node, i.e., t[}’}M’ g = rootr,

t[%’]M, s = to, t[;,]M’S = {9, and t[;f,]M’S = WAL This is clearly represented in
the storyline in “[Mary] is convinced that if she presses Walter enough, he will
finally leave Sue for her. She can make up with Sue afterwards.”

In order to get the true first move, we have to compare the values of £5(M, o) =

W XX and ls(M, W) =383t in Mary’s true preference =ng. Since WX 3X =M

, Mary will play ASK, and we get t%]s = to.
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Fig. 3. Mary’s subjective labelling: ¢ — €5(M, t).

The crucial element of the story is Walter’s incorrect belief revision in tg.
Instead if revising his false beliefs about Sue, he revises his beliefs about Mary.
In order to get our second true move, we consider the node ¢y in the labelling in
Figure 2. We can read off Walter’s prediction about what will happen if he plays
YES or NO by following the labels of ¢; and ¢2 to a terminal node. In Walter’s
true preference =w, we compare {s(W,t;) = XML and ls(W,t2) = RSS2

He chooses to play NO, and we get t[;,]s =t.

Now it is Mary’s turn again. We consider ¢; in the labelling given in Figure
3 and compare £s(M, t3) = B3 X and KS(M,ifMﬁ) — XML via =M to get
Mary’s next move TELL and t[q?i,]s = 3.

Finally, Sue just follows her true preference >g and we get t[qé,]s = Moot

With this formal analysis, we can make sense of counterfactual claims about
the story. Let us give two examples for this:

Firstly, “If in ty, Walter would have realized that he has misjudged his wife,
he could have been better off”. Let us assume that Walter revises his beliefs



correctly to D%’V[S, =s] and D%’V[M, =m], then he would have got the labelling
given in Figure 4. In this situation, Walter would still have believed at rootr that

is the true outcome, but then at ty would have (correctly) realized that
he has the choice between 35X and M3t , triggering the move YES which
leads to the outcome Mﬁ‘?ﬁ preferred by both Walter and Mary over the actual
outcome.
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Fig. 4. First example of counterfactual reasoning: The alternative labelling for Walter
with a correct belief revision.

As a second example, consider “Mary’s false beliefs about Walter’s prefer-
ences were irrelevant for the outcome”. Suppose that D;\‘;I“T [W, =w]. In that
case, Mary would have had the subjective labelling as described in Figure 5.
Even though her prediction of the outcome changes drastically, her first move
remains ASK, and thus the game will take exactly the same path.

5 Conclusion and Future Work

With the formal analysis of §§3 and 4, we fulfilled the goal mentioned at the
end of § 2: we have a formal system that allows to mimic the intuitive reasoning
of human beings about the game situation. However, the definition of a formal
system provides only the very first step. A lot of open questions and problems
remain.

Game-theoretic problems. Our analysis presupposes backward induction.
This was not a problem in the given example, a game tree of depth 5. Of course,
it is well-known that backwards induction is not a realistic assumption of human
reasoning in interactive situations in general. It would be interesting to allow the
players to choose other than the backwards induction strategies and add new



bdEeS

AS'{ n\o T
SN

bz ESs geseres
bduzed bzezed
D / \ ’ H '\4 \ ’
}1 nn DOI\& / ) DOY\Q
bz Wt bzer M

11/\4 D\() T
JUN

bt biduzss

Fig. 5. Second example of counterfactual reasoning: The alternative labelling for Mary
at rootr under the assumption of Oy [W, =w].

atomic formulae [, X] interpreted as “player i follows the strategy denoted by
X7, In such a setting, we could investigate the analogue of Aumann’s classic
theorem [Au95] that common knowledge of rationality implies the backward
induction solution. For this, we would have to give up the purely formal approach
of §3 and give definitions of rationality. First steps towards this goal are done
in [LoPagPecc].

Complexity problems. Our formal system is anything but parsimonious:
if (I, T, p) is an extensive game in which the tree has depth d, n terminal nodes
and m non-terminal nodes, then there are n! preferences, and thus |I| - n! many
descriptions.

Only beliefs of the first d degrees are relevant for the analysis, so in order to
count the states, we have to consider operator sequences of length < d. Hence
there are at most

d
: (m-|I))*+ —1

m- Iy | -|I| - nl=-—"————"|I|-n!
> tm- 107 ) I =1
relevant states. No matter what you consider as input, this is a gigantic number
hardly feasible for computations.

The example in §4 gives a first clue as to what should be done here. In order
to give a meaningful analysis of the story from § 2, we only needed six preferences
(instead of 6! = 720) and essentially nine elements of the state were enough to
determine all relevant labellings.

In order to become useful, we would need to development techniques to sys-
tematically reduce the number of relevant entries in order to analyse a given
situation.



Applications in logic. Discussions about beliefs in an interactive situation
can quickly lead to a question about the existence® of a so-called universal belief
space, i.e., a space in which all possible beliefs are represented. Brandenburger
and Keisler have discovered a fascinating paradox that suggests that it is not
always possible to assume such a space exists [BrKe06]. Since we do not have
negation in our language, Theorem 8.2 of [BrKe06] suggests that our framework
is immune to the Brandenburger-Keisler paradox. Thus we hope that the under-
lying logic discussed in this paper may provide an answer to a question posed
in [BrKe06]: find a logic £ such that complete belief models exists for £ (i.e., a
complete model with respect to sets definable in £) and the logic can be used
to provide epistemic foundations of well-known solution concepts (such as the
backward induction solution).

Other applications. We believe that a workable system using our formal
analysis could have applications in applied artificial intelligence. First of all, it
could allow artificial agents to mimic human behaviour in counterfactual rea-
soning about a given situation with actions and epistemic information that in-
fluences the actions.

As a second application, we could imagine reverse engineering of story lines
(for instance, for computer games). The formal model may help humans to design
a story line that is not too straightforward and involves an element of surprise,
but at the same time is still understandable by the audience. The latter condition
will require some complexity measure of the revisions involved and is closely
connected to the mentioned complexity problems.
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