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1 Neuroimaging data

Research presented in this journal by McMillan et al. (2005) is the first

attempt to investigate the neural basis of natural language quantifiers (see

also McMillan et al. (2006) for evidence on quantifier comprehension in pa-

tients with focal neurodegenerative disease and Clark and Grossman (2006)

for more general discussion). It was devoted to study brain activity during

comprehension of sentences with generalized quantifiers. Using BOLD fMRI

the authors examined the pattern of neuroanatomical recruitment while sub-

jects were judging the truth-value of statements containing natural language

quantifiers. According to the authors their results verify a particular com-
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putational model of natural language quantifier comprehension posited by

several linguists and logicians (e. g. see van Benthem, 1986). We challenge

this statement by evoking the computational difference between first-order

quantifiers and divisibility quantifiers (e. g. see Mostowski, 1998). More-

over, we suggest other studies on quantifier comprehension, which can throw

more light on the role of working memory in processing quantifiers.

1.1 First-order and higher-order quantifiers

The authors were considering the following two standard types of quantifiers:

first-order and higher-order quantifiers. First-order quantifiers are those

definable in first-order predicate calculus which is the logic containing only

quantifiers ∃ and ∀ binding individual variables. In the research the following

first-order quantifiers were used: “all”, “some”, and “at least 3”. Higher-

order quantifiers are those not definable in first-order logic. The subjects

taking part in the experiment were presented with the following higher-order

quantifiers: “less than half of”, ”an even number of”, ”an odd number of”.

The expressibility of higher-order quantifiers is much greater than the

expressibility of first-order quantifiers. For instance, we cannot speak about

infinite sets in first-order logic, but this is possible using higher-order quan-

tifiers. This difference in expressive power corresponds to the difference in

the computational resources required to check truth-value of a sentence with

those quantifiers.

In particular, to recognize first-order quantifiers we only need com-

putability models which do not use any form of working memory. Intuitively,

to check whether sentence (1) is true we do not have to remember anything.

(1) Every sentence in this paper is correct.

It suffices to read the sentences from this article one by one. If we find an

incorrect one then we know that statement (1) is false. Otherwise, if we read

the entire paper without finding any incorrect sentence, then statement (1)

is true. We can proceed in a similar way for other first-order quantifiers.

Formally, it was proved by Johan van Benthem (1986) that first-order quan-

tifiers can be computed by such simple devices as finite automata.
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However, for recognizing some higher-order quantifiers, like “less than

half” or “most”, we need computability models making use of working mem-

ory. Intuitively, to check whether sentence (2) is true we must identify the

number of correct sentences and hold it in working memory to compare with

the number of incorrect sentences.

(2) Most of the sentences in this paper are correct.

Mathematically speaking, such algorithm can be realized by a push-down

automaton.

From this perspective the authors hypothesize that all quantifiers re-

cruit the right inferior parietal cortex which is associated with numerosity.

Taking distinction on complexity of first-order and higher-order quantifiers

for granted they also predict that only higher-order quantifiers recruit the

prefrontal cortex which is associated with executive resources, like working

memory. In other words, they believe that the computational complexity

differences between first-order and higher-order quantifiers are also reflected

in brain anatomy during processing quantifier sentences (McMillan et al.,

2005, p. 1730). This hypothesis was confirmed.

In the next section I will discuss these results and show that the distinc-

tion between first-order and higher-order quantifiers is not sufficient if one

wants to investigate the role of working memory in quantifier comprehension.

2 Discussion

In my view the authors interpretation of their results is not convincing. Also,

their experimental design may not provide the best means of differentiating

between the neural bases of the various kinds of quantifiers. The main

point of criticism is that the distinction between first-order and higher-order

quantifiers does not coincide with the computational resources required to

compute the meaning of quantifiers. There is a proper subclass of higher-

order quantifiers, namely divisibility quantifiers, which corresponds – with

respect to working memory – to exactly the same computational model as

first-order quantifiers. Let us have a closer look into the paper of McMillan

et al. (2005).
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2.1 Quantifiers and working memory

The authors suggest that their study honours a distinction in complexity

between classes of first-order and higher-order quantifiers. They also claim

that:

higher-order quantifiers can only be simulated by a more complex

computing device – a push-down automaton – which is equipped

with a simple working memory device. (McMillan et al., 2005,

p. 1730)

Unfortunately, this is not completely true. Most of the quantifiers qual-

ified in the research as higher-order quantifiers can be recognized by finite

automata. Both “an even number” and “an odd number” are quantifiers rec-

ognizable by two-state finite automata with transition from the first state

to the second and vice versa. In the case of the automaton corresponding

to “even” the initial state is also the accepting state. In the automaton for

“odd” the other state is the accepting one. Intuitively, to check whether sen-

tence (3) is true you do not need to count the number of incorrect sentences

and then compare it with that of the set of even integers.

(3) An even number of the sentences in this paper is incorrect.

You need only remember parity. For example when you find an incorrect

sentence you write “1” at the blackboard, if you find another one you erase

“1” and put “0” again, then if you see another incorrect sentence you put

“1” in place of “0”, and so on. At every moment you have only one digit at

the blackboard no matter how long is the paper.

In what follows we give a short description of relevant mathematical

results. Quantifiers definable in first-order logic, FO, can be recognized

by acyclic finite automata, which are a proper subclass of the class of all

finite automata (van Benthem, 1986). Less known result due to Marcin

Mostowski (1998) says that exactly the quantifiers definable in divisibility

logic, FO(Dn), (i.e. first-order logic enriched by all quantifiers “divisible

by n”, for n ≥ 2) are recognized by finite automata (FA) . For instance,

quantifier D2 can be use to express the natural language quantifier “an even

number of”.
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Quantifiers of type (1) not definable in FO(Dn) but expressible in the

arithmetic of addition, Pr (Presburger Arithmetic), are recognized by push-

down automata, PDA, (van Benthem, 1986). Push-down automata are com-

putability models making essential use of working memory in the form of

so–called stack.

Obviously, semantics of many natural language quantifier expressions can

not be modeled by such simple devices as PDA. Just think about sentence

(4) which meaning cannot be computed by any PDA what easily follows

from Pumping Lemma for context-free languages.

(4) An equal number of logicians, philosophers, and linguists climbed El-

brus.

There are even much more complex expressions in natural language. For

example, consider quantifiers definable in the existential fragment of second-

order logic, Σ1
1, like those in sentences (5) and (6).

(5) Some relative of each villager and some relative of each townsman hate

each other.

(6) Most of villagers and most of townsmen hate each other.

It was shown by Mostowski and Wojtyniak (2004) and Sevenster (2006)

that both sentences are NP-complete, i. e. computable by nondeterministic

Turing Machine, TM, in polynomial time. What is important is summed up

in table 1 (for a general discusson on semantical bounds for natural language

expressibility see also Mostowski and Szymanik (2005)).

definability example recognized by

FO “all cars”, “some students”, “at least 3 balls” acyclic FA

FO(Dn) “an even number of balls” FA

Pr “most lawyers”, “less than half of the students” PDA

Σ1
1 “most of . . . and most of . . . ” TM

Table 1: Quantifiers and complexity of corresponding algorithms.

You could see that our main point of criticism is justified. It is not

the case that first-order and higher-order quantifiers differ with respect to
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working memory requirement. Therefore, the explanation of brain activa-

tion patterns proposed by the authors is based on the wrong assumption.

A simple automata-theoretic perspective is not enough to describe the pro-

cessing of natural language quantifiers. Some additional arguments need to

be found for interpreting the results. In what follows I will propose a few

ways of empirical exploration into the subject.

3 Improving experiment

3.1 First-order and divisibility quantifiers

We should compare brain activation with respect to the three classes of

quantifiers: recognizable by acyclic FA (first-order), FA (divisibility), and

PDA. I do not know whether the authors compare these classes. If they did,

then it would be important to analyze it. The authors did not report any

data on these differences.

Particularly, we predict differences between first-order and divisibility

quantifiers. Comprehension of divisibility quantifiers – but not first-order

quantifiers – should depend on the executive resources (dorsolateral pre-

frontal cortex). It would correspond then to the difference between acyclic

finite automata and finite automata.

We expect that only quantifiers not definable in divisibility logic will

activate working memory (inferior frontal cortex).

3.2 Aristotelean and cardinal quantifiers

It would be also interesting to compare Aristotelean quantifiers, like “all”,

“every”, “some”, “no”, “not all”, with cardinal quantifiers, e. g. “at least

3”, “at most 7”, “between 8 and 11”. They are all definable in first-order

logic, but elementary representation of cardinal quantifiers can be ill-suited

for psychological purposes. Consider for example how “at least 3 balls” is

translated into first-order logic:

∃x∃y∃z(x 6= y ∧ y 6= z ∧ ball(x) ∧ ball(y) ∧ ball(z)).

Since we cannot talk about sets in elementary logic, then – as you can

deduce from above example – the complexity of first-order translation of
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cardinality quantifiers is proportional to the rank of the cardinal that needs

to be represented.

In the reported study, only one cardinal quantifier of relatively small rank

was taken into consideration, namely “at least 3”. It might be the case that

with respect to mental processing complexity of cardinal quantifiers is more

similar to that of higher-order quantifiers than to Aristotelean. However, to

observe this we should use cardinal quantifiers of higher rank, for instance

“at least 7”. Obviously, this issue is strongly connected with the phenomena

of subitizing as opposed to counting.

3.3 Quantifiers and ordering

Finally, there are many possible ways of verifying the role of working memory

in natural language quantifier processing. One way is as follows. In the

reported research, subjects were presented sentences with visual arrays and

have to decide whether a sentence is true at it. Elements at arrays were

randomly generated. However, ordering of elements can be treated as an

additional independent variable to investigate the role of working memory.

For example, consider the following sentence:

(7) Most As are B.

Although checking the truth-value of sentence (7) over an arbitrary universe

needs use of a kind of working memory, if the elements of a universe are

ordered in pairs (a, b) such that a ∈ A, b ∈ B, then we can easily check it

without using working memory. It suffices to go through the universe and

check whether there exists an element a not paired with any b. This can be

done by a finite automaton. It would be interesting to carefully compare the

pattern of neuroanatomic recruitment while subjects are judging the truth-

value of statements, like sentence (7), over ordered and arbitrary universes.

We predict that when dealing with ordered universe the working memory

will not be activate, but it will if the elements are placed in arbitrary way.
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4 Conclusion

We discussed the research by McMillan et al. (2005) on neural basis of

quantifiers comprehension. We have shown that logical distinction on first-

order and higher-order quantifiers used by the authors is not sufficient for

investigating the role of working memory in quantifier processing. The main

point of our criticism is that this distinction does not coincide with the

need of using working memory for computing denotation of quantifiers. We

finished the paper by giving few suggestions on improved experiment.
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