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Abstract

This paper is concerned with a possible mechanism for learning the

meanings of quantifiers in natural language. The meaning of a natural

language construction is identified with a procedure for recognizing its

extension. Therefore, acquisition of natural language quantifiers is sup-

posed to consist in collecting procedures for computing their denotations.

A method for encoding classes of finite models corresponding to given

quantifiers is shown. The class of finite models is represented by appro-

priate languages. Some facts describing dependencies between classes of

quantifiers and classes of devices are presented. In the second part of the

paper examples of syntax-learning models are shown. According to these

models new results in quantifier learning are presented. Finally, the ques-

tion of the adequacy of syntax-learning tools for describing the process of

semantic learning is stated.

1 Introduction

According to an old philosophical idea, the meaning of a natural language con-

struction can be identified with a representation of its denotation [Frege 1892].

This thought has been developed in the direction of identifying the mean-

ing of an expression with a procedure for finding its extension [Tichy 1969,

Moschovakis 1990, van Lambalgen, Hamm 2004, Szymanik 2004]. In the case

of words: the meaning of “Poland” is the procedure of checking if the object

in question satisfies conditions of being Poland. In the case of sentences: the

meaning is a procedure for finding a sentence’s logical value. The meaning of

“Alice has a cat.” is a procedure for checking if Alicia really has a cat. There-

fore, we can say that someone understands a sentence (knows its meaning), if

he knows a procedure for checking whether it is true or not.

In this paper we assume that for modelling ordinary linguistic behaviour

finite models are sufficient. We state this assumption for both theoretical and

practical reasons. First of all we claim that most natural language sentences

have natural interpretations in finite universes. The practical reason is that if

we restrict ourselves to finite models, then the objects computational semantics



is concerned with, namely procedures for finding denotations, become effective

(algorithmizable).

2 Quantifiers

Many authors have already considered semantics of quantifiers from a com-

putational point of view (see e.g. [van Benthem 1986, M. Mostowski 1998]);

there have also been a few such attempts in linguistics (see e.g. [Suppes 1982,

Cooper 1994, Bunt 2003]).

The presence and importance of quantifiers in natural language and con-

sequently in linguistic research is beyond discussion. We use quantifiers very

often in various contexts: “all”, “some”, “every other”, “half of”. . . examples

can be multiplied. Computational semantics gives us an idea of the meaning of

quantifier constructions. We know the meaning of the sentence:

1. Every other European is depressed

if we know how to check its logical value. The first solution for this sentence

would be: we just count to two on our Europeans. One – normal, two – de-

pressed, one – normal, two – depressed. . . . If this procedure is satisfied on the

whole set of Europeans, then we can say that our sentence is true. If we made a

wrong prediction somewhere and some “one” appeared to be depressed or some

“two” was normal, we can conclude that the sentence is false in our universe

of Europeans. Of course the meaning of “every other” explained above is not

very obvious and common. In most usages of this quantifier we would say that

“every other” is a more pictorial version of “exactly half” and means the same

thing. This is the case especially when we have no natural ordering on our

universe. Therefore let us now consider the second meaning of “every other”.

In order to check whether every other European is depressed, we can execute

one of following procedures:

1. Count Europeans; count depressed Europeans; if Number of Europeans =

2 × Number of depressed Europeans, then the sentence is true, otherwise

it is false.

2. Make Europeans stand in pairs: every normal European with a depressed

European; if our pair-ordering does not leave any European alone, then

the sentence is true, otherwise it is false.

Our example shows not only the trivial fact that some words or phrases

are ambiguous, but also that we can use many non-equivalent procedures to

operate “inside” one established meaning. Here arises the problem of identifying

algorithms, which partially justifies our failures in explaining the phenomenon

of synonymy (see [Moschovakis 2001, Szymanik 2004]).

In order to use these ideas and to apply them to finite models, we should

think about quantifiers as classes of finite models satisfying some special con-
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ditions.1 We make here the not very controversial restriction to monadic quan-

tifiers. This subclass we consider sufficient for linguistic considerations. Let us

define quantifier as follows:

Definition 1 Let K be a class, closed under isomorphism, of finite models of

the form (U,R1, . . . , Rn), where U 6= ∅ and Ri ⊆ U , for i = 1, . . . , n. K is an

interpretation of monadic quantifier QK. For every model M and valuation ā

on M :

M |= QKx(ϕ1(x), . . . , ϕn(x))[ā] ⇐⇒ (|M |, ϕM,x,ā
1

, . . . , ϕM,x,ā
n ) ∈ K,

where |M | is universe of model M , and ϕM,x,ā is a set indicated by ϕ in M with

respect to variable x by the valuation ā. Quantifier QK of type

(1, 1, . . . , 1)
︸ ︷︷ ︸

n

binds one first-order variable in n formulae.

Let us give an example of a quantifier defined in the way described above:

Existential quantifier (∃) For all M :

M |= ∃xϕ(x)[ā] ⇐⇒ card(ϕM,x,ā) ≥ 1 ⇐⇒ (|M |, ϕM,x,ā) ∈ KE

The class of models KE which determines the interpretation of the exis-

tential quantifier we define as follows:

KE = {(|M |, R) : R ⊆ |M | ∧ R 6= ∅}

We have identified quantifiers with classes of appropriate finite models. This

step allows us to encode models as words with certain features. Classes of

models will be encoded as sets of words (languages). This encoding can be done

by means of the concept of constituents (see [M. Mostowski 1998]).

Definition 2 The class KQ of finite models of the form (M,R1, . . . , Rn) can be

represented by the set of nonempty words LQ over the alphabet A = {a1, . . . , a2n}

such that: α ∈ LQ if and only if there is (U,R1, . . . , Rn) ∈ KQ and a linear

ordering U = {b1, . . . , bk} such that lh(α) = k and the i-th character of α is aj

exactly when bi ∈ S1 ∩ · · · ∩ Sn, where:

Sl =

{

Rl if the integer part of j

2l is odd,

U −Rl otherwise.

Such defined intersections S1 ∩ · · · ∩Sn are called constituents of the proper

model. Characters a1, . . . , a2n are names for these constituents. Our definition

says that the i-th character of α is aj exactly when element bi belongs to the j-th

1For a detailed review of results on monadic quantifiers in computational semantics, see

[M. Mostowski 1998].
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constituent. In other words, α uniquely encodes the model by giving information

on the constituent to which every element belongs. We illustrate the idea for

n = 2. We considerM = (U,R1, R2), where U = {b1, b2, b3, b4, b5}. Our model is

represented by the word αM = a1a2a4a3a3 over the alphabet A = {a1, a2, a3, a4}

which says that element b1 ∈ S1 = U − (R1∪R2), b2 ∈ S2 = R1 −R2, b3 ∈ S4 =

R1 ∩ R2, and b4, b5 ∈ S3 = R2 −R1.

Let us think of classes of monadic quantifiers as languages obtained by means

of this encoding. We can now define what it means that some class of monadic

quantifiers is recognized by some class of devices.

Definition 3 Let D be a class of recognizing devices, and Ω be a class of

monadic quantifiers. We say that D accepts Ω if and only if for every monadic

quantifier Q:

(Q ∈ Ω ⇐⇒ there is some device A ∈ D such that A accepts LQ).

Using this definition, we can now recall the following results describing de-

pendences between classes of quantifiers and classes of devices:

Theorem 1 [van Benthem 1984] Quantifier Q is first-order definable ⇐⇒ LQ

is accepted by some acyclic finite automaton.

Theorem 2 [M. Mostowski 1998] Monadic quantifier Q is definable in the di-

visibility logic FO(Dω) ⇐⇒ LQ is accepted by some finite automaton.

Theorem 3 [van Benthem 1986] Quantifier Q of type (1) is semilinear (ele-

mentary definable in the structure (ω,+)) ⇐⇒ LQ is accepted by a push-down

automaton.

Additionally we can state that there are many natural language quantifiers

which lie outside the contextfree languages [Clark 1996].

3 Learning

3.1 Identification in the limit

After stating some assumptions and preliminary definitions in computational

linguistics and quantifiers, we would like to present basic ideas of formal learning
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theory.2 This part of the paper is needed to establish final results.

The identification in the limit model [Gold 1967] shows what the process of

learning can look like in general and what results we can obtain using it. This

model describes the learnability of a given class of languages. One language

from the class is chosen. The learner gains some information about it. The

information can be presented in several possible ways (the data presentation

method). The learner’s task is to guess the name of the language in question.

Names of languages are simply grammars. The aim of the learner is to find a

correct grammar for the presented sequence of linguistic data.

In each step of the procedure the learner is given a unit of data about

the unknown language. Therefore, the learner always has only a finite set of

information. In each step the learner chooses a name of a language.

The procedure is infinite. The language is identified in the limit if, after

some time (finite but not specified in advance), the guesses remain the same

and are correct. Identifiability concerns classes of languages. The whole class

of languages is identifiable in the limit, if there is a guessing algorithm (learner)

such that it identifies in the limit every language from this class. It is worth

mentioning that the learner does not know when his guesses are correct. The

learner proceeds infinitely, because it is not able to check if the next step won’t

force it to change its decision.

Identification in the limit depends on three factors: data presentation

method, naming relation and chosen class of languages.

The learner has the information presented in one of two ways:

Definition 4 A TEXT for language L is an ω-sequence, I, of words

α1, α2, . . . ∈ L, such that every word α ∈ L occurs at least once in I.

Definition 5 An INFORMANT for language L is an ω-sequence, I, of

elements of (A∗ × {0, 1}), such that for each α ∈ A∗:

(α, 1) is in I if α ∈ L

(α, 0) is in I if α 6∈ L.

The learner can use one of two naming relations:

Definition 6 A GENERATOR for language L is Turing Machine, e, such

that:

L = {α ∈ A∗ : {e}{α} ↓}.

Definition 7 A TESTER for language L is Turing Machine that computes

the function χL such that for each α ∈ A∗:

χL(α) =

{

0 if α /∈ L

1 if α ∈ L.

Let us now present Gold’s table of results for learnability and non-

learnability of languages from the Chomsky hierarchy.3

2For a detailed analysis of various learning algorithms see [Gierasimczuk 2005].
3For details and proofs see [Gold 1967].
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Anomalous text Recursively enumerable

Recursive

Informant Primitive recursive

Context-sensitive

Context-free

Regular

Superfinite

Text Finite cardinality languages

Table 1: Identifiability results. (Anomalous text is primitive recursive text with

a generator naming relation. A superfinite class of languages is a class containing

all finite languages and at least one infinite language.)

3.2 Syntax Learning Algorithms

We give here examples of learning algorithms effective for a certain class of

languages. Firstly let us describe the L∗-algorithm proposed by Dana Angluin

[Angluin 1987]. In her paper she analyses the possibility of finite and effective

identification of regular languages from an informant. The algorithm identi-

fies the language by finding a deterministic finite automaton adequate for the

unknown language. This procedure is controlled by the so-called Minimally

Adequate Teacher. He answers two types of questions:

1. Membership queries: Is sequence α in the unknown language?

2. Extensional equivalence queries: Is the deterministic finite automaton cur-

rently being guessed by the L∗-algorithm extensionally equivalent4 to the

deterministic finite automaton which corresponds to the unknown lan-

guage being learned? If it is not, then the teacher gives a counterexample.

The algorithm L∗ is able to identify every regular language. L∗ works in time

polynomial in the number of states of the minimal dfa for the language being

learned and in the maximum length of the counterexample given by the teacher.

The idea of learning with queries has been further explored, particularly in

the direction of wider classes of languages. An example of such an attempt is

the algorithm of Yasubumi Sakakibara [Sakakibara 1990]. It is a quite straight-

forward translation of the L∗-algorithm described in the previous paragraph for

context-free grammars. The LA-algorithm learns a given context-free grammar

on the basis of so-called structural data: skeletons of derivation trees of the

given grammar. The following facts allow identification in the limit:

1. The set of derivation trees of given context-free grammar is regular.

2. A regular set of trees is recognized by some tree automaton.

4We say that two finite automata are extensionally equivalent if they accept the same set

of strings.
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3. The procedure of changing derivation trees into their structural descrip-

tions preserves the regularity of the set.

4. The problem of learning a context-free grammar from structural descrip-

tions is therefore reducible to the problem of learning a certain tree au-

tomaton.

It should be stressed that the aim of LA learning is not context-free language

but some particular context-free grammar. It is known that for each context-

free language there are infinitely many adequate grammars, therefore such a

restriction is indispensable here.

4 Quantifier Learning

The problem of quantifier learning was raised and explored in

[van Benthem 1986, Clark 1996, Florêncio 2002, Tiede 1999]. These were

similar to our attempts to use syntax-learning models to describe learning of

the semantic aspect of language.

Persisting in the declared paradigm of computational semantics leads us to

the assumption that acquisition of natural language quantifiers consists essen-

tially in collecting procedures for computing their denotations. Additionally

assumptions about the adequacy of finite models and restriction to monadic

quantifiers gives us an opportunity to analyse many natural language quantifiers

from the point of view of syntax-learning models. We can encode a quantifier

and check its learnability according to results known from the field of inference

theory. For instance, one such known fact is:

Theorem 4 [Tiede 1999] There are subclasses of FO quantifiers which are

identifiable in the limit using text, e.g. the set of first-order left upward monotone

quantifiers.

We now present similar results which can be inferred from previous considera-

tions and theorems:

Proposition 1 The classes of FO, FO(Dω) and semilinear quantifiers are not

identifiable in the limit using text but are identifiable using informant.

Proof This result follows directly form Theorems 1, 2, 3, and the fact that regu-

lar and context-free languages are not identifiable using text but are identifiable

using informant. �

Proposition 2 The monadic FO(Dω)-definable quantifiers are learnable using

the L∗-algorithm.

Proof By Theorem 2 every monadic FO(Dω)-definable quantifier can be rep-

resented by the set LQ, which is accepted by some deterministic finite automa-

ton. We know that deterministic finite automata are learnable by Angluin’s

L∗-algorithm. Therefore, the monadic FO(Dω)-definable quantifiers are learn-

able using the L∗-algorithm. �
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Proposition 3 Semilinear quantifiers of type (1) are learnable using the LA-

algorithm.

Proof From Theorem 3 we know that a quantifier of type (1) is semilinear iff it

can be represented by a set LQ which is accepted by some pushdown automaton.

Pushdown automata are a class of devices equivalent to context-free grammars,

which are effectively learnable using Sakakibara’s LA-algorithm. Therefore, the

semilinear quantifiers of type (1) are learnable using the LA-algorithm. �

5 Conclusions

The approach presented in this paper can be treated as a strictly theoretical

proposal. Nevertheless, let us now discuss some problems connected with mod-

elling the natural process of semantic learning. First of all we can pose the

question about the adequacy of tools of syntactic learning theory for describ-

ing the process of semantic learning. Let us present some intuitions about the

construction of semantic competence.

ability to check the logical value

input: M and ϕ; M |= ϕ?

ability to recognize

Semantic inferential relations

competence input: ϕ̄, ψ̄; e.g. ϕ̄ ` ψ̄?

ability to generate

adequate descriptions

input: M ; find ϕ̄ s.t. M |= ϕ̄

The learnability models presented so far do not distinguish between the

ability to check the logical value of a sentence and the ability to describe a

given situation. There is of course a mutual translation between automata

(testing devices) and grammars (generating devices). But are we allowed to

treat these abilities as equivalent? Is it the case that if we can recognize

the logical value of some sentence ϕ in a given model M , then we can also

generate the sentence ϕ as the description of M? Some research concerning

the relation between comprehension and production (equivalents of testing and

generating) has already been done. It shows that the respective acquisitions

of testing and generating competence are not parallel. First we can under-

stand semantic constructions and only then are we able to use them in descrip-

tions (see e.g. [Bates et al. 1995, Benedict 1979, Clark 1993, Fraser et al. 1979,

Goldin-Meadow et al. 1976, Layton, Stick 1979]). Generating is more compli-

cated than testing and the assumption of mutual reducibility of these two com-

petences seems unrealistic.

To state another problem with our approach we should focus on the distinc-

tion between referential and inferential meaning.
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The referential meaning of a sentence ϕ is given by determining a method of

establishing the truth-value of ϕ in all possible situations. This kind of meaning

is what we mainly refer to in this paper.

However, having a sentence ϕ we can establish its truth-value by means of in-

ferences (recognized by our logical competence) between ϕ and other sentences.

For example, knowing that a sentence ψ is true and ψ ⇒ ϕ we know that ϕ is

true; knowing that ϕ is false and ψ ⇒ ϕ we know that ψ is false. In this way

we determine the inferential meaning of ϕ.

Semantic learning models which are based on the syntax-learning approach

seem to have no application in the case of learning inferential meaning. The

nontrivial enterprise would be to describe possible learning mechanisms respon-

sible for the acquisition of various semantic devices. Therefore we conclude that

the learnability model presented so far is not compatible with the proposed de-

scription of semantic competence. If one wants to propose a psychologically and

linguistically plausible model of semantic learning, one must fight the aforemen-

tioned subtle difficulties.
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