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1 Introduction

Given the important role that intentions play in the way we make decisions,
we would expect intentions to occupy a substantial place in any theory of ac-
tion. Surprisingly enough, in what is perhaps the most influential theory of
action, rational choice theory, explicit reference is made to actions, strategies,
information, outcomes and preferences but not to intentions.1 This is not to
say that no attention has been paid to the relation between rational choice and
intentions. On the contrary, a rich philosophical literature has developed on the
relation between rationality and intentions (see for example [10]). However, to
our knowledge, there has been no real attempt to model the role of intentions
in decision making within a rational choice framework.

In this paper we argue that such modelling is a worthwhile enterprise. Start-
ing from a very simplistic rational choice model, we show that enriching it with
tools to represent intentions helps to account for known phenomena such as focal
points, and gives rise to new questions about intention-based strategic interac-
tions. We build our representation of intention on the philosophical foundations
laid down in [2]. Our contribution is twofold. We first show that intentions
can account for focal points in decisions and games. We then show how agents
can use their intentions to simplify decision problems. In neither part do we
go into the question whether intentions can be defined in terms of strategies,
preferences, beliefs, or in any other ingredient of the existing models; we simply
introduce intentions as an extra parameter and then examine some conditions
that might be imposed on them.

1In what follows, we take the term “rational choice theory” as encompassing both “decision
theory” and “game theory”.
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2 Rational Choice Theory

Rational choice theory refers to a huge collection of theories, approaches and
models. Here we are only concerned with two of its branches: single-agent
decision making and multi-agent strategic interactions, which are subjects of
decision and game theory, respectively. Our framework is totally qualitative, i.e.,
it leaves aside probabilities and utilities. This is indeed a major simplification,
for important results in these fields rest on properties of probability spaces and
real-valued utility, e.g. the existence of equilibria in games. But, as we shall
see, interesting issues readily arise in this simplified environment. Of course, we
do hope for an integration of planning agency into full rational choice theory,
and we consider the present work a first step towards it.

2.1 Models of decision situation

Let X and I be finite sets of outcomes and agents. Each element of X is a
complete description of a state of affairs. Each individual i ∈ I is assumed to
have a preference ordering Ri over the outcomes in X that is complete (for all
x, y ∈ X, either xRiy or yRix) and transitive (for all x, y, z ∈ X, if xRiy and
yRiz then xRiz). xRiy intended to mean “x is at least as good as y”. The
relation of “strict preference” is defined from Ri as follows: xPiy if and only if
xRiy but not yRix. An element is called a best element if it is at least as good
as any other. The set of best elements is denoted C(Ri), i.e., C(Ri) = {x| xRiy
for all y ∈ X}.

In a parametric (i.e. single agent) setting the actions of an individual coincide
with the outcomes: an individual picks exactly one outcome of X. In a multi-
agent or strategic context, the result of one’s actions also depends on what the
others do. We thus assign to each individual i a set of strategies Si, and we
call a combination σ of individual strategies, one for each individual, a strategy
profile. An outcome function π : Πi∈ISi → X specifies for each strategy profile
which element of X will result. In our simplified decision models, single-agent
decisions can be seen, somewhat artificially, as degenerate cases of multi-agent
decisions. We thus use the term “strategy” in the parametric context as well.
In that case, a strategy is simply an element of X or, in other words, X = Si

and the outcome function π is such that π(x) = x, for all x ∈ X. In a strategic
context, π(si) describes the set of all states of affairs that may arise if i adopts
strategy si ∈ Si. Formally, π(si) = {x| there is some combination of strategies
σI−i for the other players such that π(si, σI−i) = x}.2 In order to facilitate
reading, the individual subscript will often be omitted.

A decision problem will thus be a tuple DP = 〈I,X, {Si, Ri}i∈I , π〉, the
elements of which have just been described. In both decision and game theory,
solution concepts stipulate what it is rational to do, given a certain decision
problem. For instance, in the parametric setting, choosing elements among the

2It would in fact be more correct to write πi since the definition is in terms of i’s strategies,
but we shall not do so.
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set of preferred elements C(R) can be seen as maximizing expected utility.3 The
behavioural consequences of individual utility maximization can be intricate in
a strategic setting, because the outcome of the game depends on what all agents
choose. Several solution concepts exist and whether it is rational to choose a
strategy depends on which solution concept is used.

Formally, a solution concept yields a set Γ of strategy profiles for each de-
cision problem. Our analysis is limited to solution concepts that consist of
combinations of pure strategies, thus leaving aside individual decision making
under risk and randomization over strategies in games. Throughout the anal-
ysis it is assumed that some (non-empty) Γ is given. To each strategy-profile
belonging to Γ correspond a particular outcome, which will be called a feasible
outcome. The set of feasible outcomes will be denoted by Γπ. Hence, for all
σ ∈ Πi∈ISi, Γπ = {π(σ)|σ ∈ Γ}. Γi denotes the set of i’s strategies which are
part of a strategy profile belonging to Γ. In the parametric context we simply
have Γπ = Γi = C(Ri).

Given a choice situation and a solution concept Γ, we say that a strategy
si for i ∈ I is utility-compatible if and only if it is an element of Γi. The
demand of rational choice, or the demand of utility-rationality as it will be
called, can be defined as the requirement that an individual always chooses
a utility-compatible strategy. Note that this terminology deviates somewhat
from the standard terminology. Take for instance the game-theoretical solution
concept of a pure Nash equilibrium. If there are several equilibria in a given
game, it is conceivable that all individuals choose a utility-compatible strategy
but that the combination of those strategies does not form an equilibrium. The
reason is, of course, that a solution concept like the Nash equilibrium singles
out strategy profiles rather than the strategies constituting those profiles. This
tension between utility rationality and equilibrium concepts, which is sometimes
latent in rational choice theory, is exacerbated once one introduces intentions,
as we shall see at the end of Section 4.

3 Intentions and planning agency

Our analysis is restricted to future-directed intentions. This is one of at least
three forms of intentions that have been extensively studied in the philosophy of
action. As early as [1], future-directed intentions (e.g. “I intend to go to Berlin
tomorrow”) were distinguished from intentional actions (“I intentionally take
the train to Berlin”) and from intentions in actions (“I go to Berlin with the
intention of enjoying myself for a few days”). The analysis of future-directed
intentions has been enormously influenced by the work of Michael Bratman (see
[2] and [3]). He sees future-directed intentions as plans for action that have
certain characteristics. First, such plans are often partial : they usually do not
describe every aspect of a person’s future behaviour. I may have an intention
to go to a concert tonight and yet not have decided how to get there, whether

3There exist other decision-theoretical solution concepts, but in this paper we will focus
on utility maximization.
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I will ask someone to join me, etc. Secondly, plans typically have a hierarchical
structure. My intention to rent a car this afternoon may be the result of my
intention to go to the concert tonight, my intention to go the concert tonight
may be related to a more general intention to relax more often, and so on.
Finally, intentions involve a certain kind of commitment, which Bratman calls
the “volitive commitment”. If I have the intention to realise a certain future
state of affairs, and nothing unforeseen happens after I formed this intention, I
will normally try to achieve it.

Two different kinds of future-directed intentions can be distinguished: I can
have the intention to perform a certain action (e.g. “I intend to fly to Berlin next
week”) or I can have the intention to realise a certain state of affairs or outcome
(e.g. “I intend to be in Berlin next week”).4 In hierarchically structured plans
the two types are often related: the intention to fly to Berlin can be seen as the
consequence of the intention to realise the state of affairs of me being in Berlin
next week. In this paper we focus primarily on intentions to realise certain states
of affairs i.e., certain elements of X. The intentions of an individual i are taken
to be given exogenously. Each individual i has a set of intentions, denoted by Mi,
which consists of subsets of X. Intuitively, an intention A ∈ Mi is an intention
to realise the aspects that all the states in A have in common. To illustrate,
suppose that each element of X stands for a specific holiday destination. If
it is my intention to spend my vacation in France, then it is my intention to
realise the set A consisting of all possible destinations in France: one element
of A may, for example, describe a vacation in Paris and another a vacation in
Toulouse. If B is the set of all possible beach destinations, then having the
intention to realise A ∩B describes the intention of spending one’s vacation on
a French beach, A∪B describes the possible intention of spending one’s vacation
in France or at a beach, and so on.

Bratman has argued that certain norms apply to rational intentions.5 We
are going to capture these norms by imposing axioms on the intention set Mi

of each agent.
Intentions are first required to be feasible.6 An individual should not intend

impossible states, such as visiting the mountains of Holland. To avoid trivial
cases, we also require that the agent has some intentions, hence the following
axiom:

Axiom 1. ∅ 6∈ Mi and Mi 6= ∅
4Note, however, that the distinction between outcomes and actions is not very rigid. An

action (drinking a glass of milk) can also be described as a state of affairs (i.e. the state of
affairs in which I am drinking a glass of milk).

5Some arguments can already be found in [2], but a clear and up-to-date argumentation
can be found in [4].

6There is an important proviso to this norm in [4]. Bratman’s view is that intentions should
be feasible “together with one’s beliefs”[p.1] or, in other words, that intentions of an agent i
should be feasible if i’s beliefs were true. Since beliefs are not modelled in our minimal rational
choice framework, we shall reduce this belief-feasibility requirement to plain feasibility. This
is of course not an argument for such reduction. Quite the contrary: we believe that this
simplification only shows the importance of proceeding towards an analysis of intentions in
more sophisticated models of rational.
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Intentions are also required to be “agglomerative”, meaning that they should
close under intersection.7

Axiom 2. If A,B ∈ Mi, then A ∩B ∈ Mi.

An immediate consequence of these two axioms is that the intentions in a
set Mi share a non-empty intersection. This translates into another norm for
which Bratman has argued: the intentions of an agent should not exclude each
other. Note that the intersection

⋂
A∈Mi

A of all the intentions in Mi will be
its smallest element. We use a special notation for this, ↓Mi, for it will prove
to be crucial in many of the examples below.

Finally, we impose some kind of “intention logical omniscience”.8 One will
be thought as to intend all the logical consequences of his intentions. If, for
instance, I intend to go to Florida, then it is also my intention to go to the
United States.

Axiom 3. If A ∈ Mi, and A ⊆ B then B ∈ Mi

Bratman has stressed repeatedly the tight connection between, on the one
hand, feasibility, agglomerativity and consistency and, on the other hand, spe-
cific functions of intentions, as both input to and output of the decision making
process. In what follow we examine two of these roles in turn, to see how inten-
tions constrained by Axiom 1, 2 and 3 influence decision making. In the next
section we look at what Bratman calls the “volitive commitment” of intentions,
which concern mainly what happens after an agent has adopted certain inten-
tions. As an illustrative example, we show that it sheds light on the existence of
“focal points”, something that goes beyond standard rational choice theory.9 In
Section 5 we turn to the “reason-centered commitment” of intentions, accord-
ing to which previously adopted intentions influence deliberation. We do so by
modelling the fact that agents can use their intentions to simplify the decision
problems they face. Finally, we put these two functions together in Section 6,
and analyze some examples that reveal their joint effect on decision making.

4 Intentions and focal points

By “volitive commitment”, Bratman denotes the fact that intentions act as
motivational force towards action. In this section we see how this “driving
force” can be used to explain focal points.

As a first step, let us set down some notation connecting strategies and
intentions. Given a decision problem and a set of intentions Mi for an agent
i, a strategy si will be said to be intention-compatible if and only if there is a

7We take the term “agglomerative” from [17].
8This constraint is mainly imposed for technical convenience: every intention set that

satisfies Axiom 1, 2 and 3 turns out to be a filter, a property that will prove to be useful
below. Axiom 3 has not been argued for by Bratman, but it has been defended in the
literature, notably in [13].

9For an introduction to the literature on focal points, see [11, chap.3, sec. 5].
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non-empty A ⊆ π(si) such that A is a subset of all B ∈ Mi. In a parametric
setting, where each strategy is associated with exactly one outcome, intention-
compatibility implies that the alternative a person chooses is an element of each
of the person’s intentions. Thus my choice to go to Paris is only intention-
compatible if I do not have an intention not to go to Paris. The definition
is a little more complicated for strategic settings since a strategy may lead to
various outcomes. Suppose, for instance, that I choose to pay a visit to a very
close friend of mine who lives in Paris. Even though I cannot be sure that he
will indeed be in Paris, going off to Paris is an intention-compatible strategy. It
seems reasonable to assume that the volitive commitment of intentions is related
to these intention-compatible strategies, that is, it seems reasonable to assume
that a rational individual will choose one of his intention-compatible strategies
(assuming there is one). This will be called the demand of intention-rationality.

We thus have the notion of acting rationally because one’s actions are intention-
compatible, intention-rationality, and we have the usual notion of instrumental
rationality, or utility-rationality, as expressed by the requirements of rational
choice. We will locate focal points at the intersection of these two notions.

Given a choice situation, an intention set Mi for each i, and a solution
concept Γ, intention-rationality coincides with utility-rationality if for all i ∈ I
the set of intention-compatible strategies is a non-empty subset of the set of
utility-compatible strategies. If, furthermore, there is an i ∈ I for which it is
a proper subset, then intention-rationality is said to focalise utility rationality.
A strategy profile is a focal point if it is in the set of intention-rational profiles
that focalise utility-rationality.

By defining focal points this way we only consider the special case where
intentions coincide with the demands of utility-rationality. Amartya Sen [14] has
famously argued that intentions (or more generally commitments) are of interest
mainly when they do not coincide with utility maximization. The present work
should not be seen as an argument against Sen’s idea. Quite the contrary: our
purpose here is to show that intentions can be of interest even in cases where
they coincide with utility maximization.

4.1 Focal points in a parametric setting

Here we show the conditions under which intentions create focal points in a
parametric setting. Of course, we could have jumped right away to the multi-
agent setting, and treat individual decision making as a special case. But we
think that the simpler setting of single-agent decision will shed light on our
method, which will later be generalized to an arbitrary (finite) number of agents.

It turns out that the existence of focal points rests on a tight connection
between intention- and utility-rationality, as expressed by the following axiom.

Axiom 4. For any A,B ⊆ X, if A ∪ B ∈ Mi and for all x ∈ A and y ∈ B,
xPiy then A ∈ Mi.

Read contrapositively, this axiom states that if an individual does not have
the intention to realise some set of outcomes A, and if he finds every element of
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A strictly better than any element of B, then the union of A and B does not
belong to his intention set. If I prefer France to Holland as a holiday destination,
but it is not my intention to go on holiday in France, then it will surely not be
my intention to go on holiday in France or in Holland.

We can now establish the following fact, which states that an individual will
intend to realise one or more of his best elements. Furthermore, he intends to
realise any set to which these particular elements belong, and will not intend
any other set.

Proposition 1. Mi satisfies Axioms 1-4 if and only if there is a non-empty
A ⊆ C(Ri) such that Mi = {B| A ⊆ B}.

Proof. The only interesting direction is from left to right. We are going to show
that C(Ri) ∈ Mi. This will be enough because, by Axioms 1 and 2, this will
mean that any smaller set in Mi has to be a subset of C(Ri), and Mi is closed
under supersets (Axiom 3).

Take A = C(Ri) and B = X−A. Observe that A∪B = X which means, by
Axiom 2, that X ∈ Mi. But then, by definition of C(Ri), we have that xPiy for
all x ∈ C(Ri) and y 6∈ C(Ri), that is, for all y ∈ B. We can thus apply axiom
4 and conclude that A ∈ Mi.

The proposition reveals that Axioms 1 to 4 impose a specific structure on
the intention sets: each of the individual’s intentions is a superset of a set of
best elements. Hence, the following result follows.

Corollary 1. If Mi satisfies Axioms 1-4, intention-rationality coincides with
utility-rationality.

What about focalisation? Consider the following axiom, which states that
the absence of an intention to realise a certain state of affairs always entails the
existence of an intention to realise the “negation” of that state of affairs.10

Axiom 5. If A 6∈ Mi, then X −A ∈ Mi.

The following proposition can now be established.

Proposition 2. Mi satisfies Axioms 1-5 if, and only if, there is an x ∈ C(Ri)
such that Mi = {B| x ∈ B}.

Proof. Because X is assumed to be finite, this follows directly from Proposition
1, and the fact that under Axiom 5, Mi is an ultrafilter.

In case Axioms 1-5 are satisfied the individual always intends to realise a
specific element of X. Since there is only one intention-compatible strategy,
viz. the one leading to that outcome, following his intentions entails that a best
element will be chosen, namely the particular best element that he intends to
realise. Hence, we immediately derive the following.

10Stated differently, the axiom states that the external negation of an intention (“it is not
the case that A is intended”) is equivalent to its internal negation (“it is the case that not-A
is intended”).
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Corollary 2. If Mi satisfies Axioms 1-5, and if C(Ri) contains more than one
element, then intention-rationality focalises utility-rationality.

In these cases intentions create a focal point. If there are several utility-
compatible strategies, rational choice does not tell us which of those strategies to
adopt. A person’s intentions do tell us, however: among those utility-compatible
strategies there is only one which is also intention-compatible. One can interpret
this by invoking the well-known distinction between picking and choosing, as it
has been already pointed out in [9, p.183]: “to ‘pick’, in the relevant sense, is
to form an intention”.11

4.2 Focal points in strategic contexts

We now generalize the results of the last section to strategic contexts. It can
easily be shown that Axioms 1-4 cannot be straightforwardly applied there.
For if one were to do so, Proposition 1 would entail that the only intention-
compatible strategies are those that may lead to one of the individual’s best
elements. Stated differently, Axioms 1-4 together imply that an intention-
compatible strategy is always a maximising strategy, that is, a strategy si such
that π(si) contains a best element.

However, in many strategic situations such an assumption about the nature
of intention-compatible behaviour is not very plausible since aspects of the sit-
uation will have a bearing on a person’s intentions. Consider, for instance, the
following game in normal form.

t1 t2
s1 (4,1) (2,4)
s2 (1,2) (3,3)

Table 1: Intention-rationality in a strategic context

The most preferred outcome of the row player, whom we call 1, is (s1, t1).
Hence, by Propositions 1 and 2 it follows that the intention set of 1 consists of
{(s1, t1)} and any of its supersets. Since π(s1) = {(s1, t1), (s1, t2)} is a superset
of {(s1, t1)}, it belongs to 1’s intention set. Because π(s2) = {(s2, t1), (s2, t2)}
is not a superset of {(s1, t1)}, 1’s only intention-compatible strategy is s1. How-
ever, the desired outcome (s1, t1) will only be realised if the column player,
whom we call 2, adopts a dominated strategy.

Now, can an individual really intend to realise an outcome that will only
come about if the others do not act in a utility-rational way?12 It seems rea-
sonable to assume that considerations of utility-rationality will affect a person’s

11Thus, on this interpretation an intention can have a role in decision-making processes
without it being a reason for action. For a defence of the possibility of such a view, see [5].
For the distinction between picking and choosing, see [16].

12It is assumed here that a strictly dominated strategy will not belong to Γi.
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intentions. In parametric setting, Axiom 4 established a link between a per-
son’s intention- and utility-rationality. The example above shows that the ax-
iom should be modified so as to take account of the feasibility of the outcomes
that will be intended.

Axiom 6. Let A∗ and B∗ denote the sets consisting of all feasible elements of
A and B, respectively. If A ∪ B ∈ Mi, A∗ 6= ∅ and either B∗ = ∅ or for all
x ∈ A∗ and y ∈ B∗, xPiy then A ∈ Mi.

Let Ci(RΓ) denote the set of an individual’s most preferred feasible out-
comes. We now derive the following proposition.

Proposition 3. For all i, Mi satisfies Axioms 1-3 and 6 if and only if there is
a non-empty A ⊆ Ci(RΓ) such that Mi = {B| A ⊆ B}.

Proof. The proof of Proposition 1 is readily adaptable to feasible sets.

Whereas the axioms imposed on intentions in the parametric setting lead to
the conclusion that individuals will intend to realise one or more of their best
outcomes, Proposition 3 shows that in a strategic context individuals will intend
to realise one or more of their best feasible outcomes. In terms of the two types
of rationality that were distinguished, we can also say that intention-rationality
coincides with utility-rationality. In fact, it focalises it if at least one person has
a utility-compatible strategy that can never lead to one of the feasible outcomes
he finds best:

Corollary 3. If for some individual there is a strategy in Γi that can never lead
to one of her best feasible outcomes, then intention-rationality focalises utility-
rationality.

To illustrate this, consider a game in which there are two equilibria, one of
which is Pareto-dominated by the other:

t1 t2
s1 (3,3) (0,0)
s2 (0,0) (2,2)

Table 2: An intention-rational focal point

Applying the axioms to this game, we immediately see that both individuals
intend to realise the Pareto-superior outcome. Playing their first strategy is
thus the only course of action that is both utility-compatible and intention-
compatible. Since the familiar game-theoretic solution concepts do not narrow
down the solution this way, we see that intentions do indeed form a solution
to at least some co-ordination problems: intention-rationality here gives more
information than utility-rationality.

It could be argued that this in itself is not very revealing. After all, we would
be surprised if players actually playing this game were to wind up with any of
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the other outcomes. The outcome forms a focal point, and focal points serve
to narrow down the set of equilibria. It should be emphasised, however, that
although the conclusion may not be very surprising, the analysis of intentions
gives an underpinning of this expectation, something which standard game the-
ory cannot do.13 After all, the notion of a focal point refers to factors “beyond”
the game. Our expansion of the game-theoretic framework can be seen as a way
of incorporating some of these factors into the game.

The strategic counterparts of Proposition 2 and Corollary 2 are:

Proposition 4. For all i, Mi satisfies Axioms 1-3 and 5-6 if, and only if there
is an x ∈ Ci(RΓ) such that Mi = {B| x ∈ B}.

Corollary 4. If, for all i, Mi satisfies Axioms 1-3 and 5-6 and there is some
j such that at least two strategies in Γj can never lead to the same feasible
outcome, then intention-rationality focalises utility-rationality.

To illustrate, consider the classic example of a pure coordination game, i.e.,
a game in which there are two outcomes between which both individuals are
indifferent:

t1 t2
s1 (1,1) (0,0)
s2 (0,0) (1,1)

Table 3: A pure coordination game

To refer to the standard example of such a coordination game, assume you
have an appointment to meet a friend but have forgotten to name a specific
meeting point. Let one of the outcomes be the natural focal point, say the
railway station. Assuming that Axioms 1-3 and 5-6 hold, intention-rationality
not only says that you will go to one of the two places, but also which one you
will go to. Hence, in this case intentions give more information. This does not,
of course, guarantee that the coordination problem will be successfully solved.
After all, the individuals may intend to go to different places. A distinction
should be made, however, between the possibility of showing how the particular
structure of intentions yields a way out of a coordination problem, and the possi-
bility that intentions as such form the locus where such a solution is to be found.
That the individuals will in fact attain an equilibrium outcome is not ensured
by the particular structure that is imposed on the intentions. The individuals
may have different intentions, may therefore adopt different strategies, and may
thus end up in a non-equilibrium. However, it could plausibly be maintained
that if one of the equilibrium outcomes forms a focal point then, by virtue of it
being a focal point, it will be the outcome that individuals intend to realise in

13See, however, [7] who offers a general method for the selection of a unique outcome of
non-cooperative games that is based on pre-game moves, some of which are described as
“self-commitment moves”. It would be interesting to explore the extent to which these self-
commitment moves can be construed as intentions in the sense described here.
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such circumstances. Saying that the railway station is a natural meeting point
in such a coordination game is then understood to entail that the players will
intend to realise that particular outcome. The intention to go there is thus a
result of that particular outcome being a focal point. Again, the usefulness of
the approach is that it brings these outside factors within the game.

Bratman himself argued that intentions are useful for solving coordinating
problems, both on the intrapersonal and on a social level, and the results es-
tablished thus far underline this point. In the parametric case, intentions are
helpful in solving the problem of choosing between equally attractive outcomes.
On the social level, they may help to narrow down the set of possible equilib-
ria. However, although intentions can thus be shown to solve some coordination
problems, there are also decision problems that our approach does not seem
to be able to solve, in which recourse to intentions may in fact have counter-
intuitive consequences. Consider games in which there are multiple equilibria
and in which the players have divergent preferences concerning those equilibria.
Take, for instance, the familiar Battle of the Sexes. Sticking to the stereotype
version of it, assume that the male player prefers to go to a boxing match and
his female friend wants to go to the ballet, but they both prefer being together
than being alone at one of those events.

Boxing Ballet
Boxing (2,1) (0,0)
Ballet (0,0) (1,2)

Table 4: The “Battle of the Sexes”

Now assume that Axioms 1-3 and 6 hold for both individuals and also assume
that the solution concept is pure Nash equilibrium. It can readily be seen that
in this case each individual has only one strategy that is both intention-rational
and utility-rational: the row player should choose his first strategy and his
friend (the column player) her second one. But this combination of utility- and
intention-compatible strategies leads to an outcome that is not an equilibrium.14

In other words, in this example the combination of intention-rationality and
utility-rationality can only result in a non-equilibrium outcome.

This is due to Axiom 6, under which a person will always intend to realise
one or more of his best feasible outcomes. In other words, this axiom makes
intention rationality “egocentric”. Intentions are forced into an individualistic
maximising behavior, irrespective of what the other players’ intentions are. It
should thus come as no surprise that, in examples such as the “Battle of the
Sexes”, intention-rationality inevitably steers the players out of the equilibria.
There seems to be a notion of compromise built into the two pure Nash-feasible
outcomes of this example, a notion that turns out to be at odds with the present
definition of intention-rationality.

14In fact, it not only fails to be an equilibrium, it is also Pareto-dominated.
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The next section, in which we study the simplificative function of inten-
tions, provides other occasions to study the divergence between individualis-
tic intention-rationality and interactive solution concepts such as (pure) Nash
equilibrium. But a natural question at this moment is whether Axiom 6 can be
weakened so as to give a less individualistic interpretation. This could be done
in many ways, notably by “furnishing” our model with an information structure
(cf. [12, chap.5]) thus allowing one to model a player’s knowledge about the in-
tentions of others. Another line of attack would be to look for a weakening of
Axiom 6 more in line with a satisficing approach (cf. [15]). This is not pursued
here, but it should be noted that it would contribute to a theory of “bounded
rationality”.15

5 Intentions and simplification of decision prob-
lems

In the previous section we showed that intentions can account for focal points.
Now we turn to the function of intentions as input of deliberation, the “reason-
centered commitment”. Bratman has repeatedly emphasised that a plan acts as
a filter over the set of options that will be considered during practical reasoning.
It rules out options that are incompatible with its own achievement. If one
intends to go to France for one’s holidays, one will not consider Madrid as a
potential candidate for best destination. Plans are also usually partial, and as
such they ask for completion. The agent who plans to go to France will, at
some point, have to decide between, say, Chamonix, Marseilles and Paris. But
this completion does not need to settle every detail of the trip. The agent will
ponder between alternatives that differ only up to a certain level of detail, and
will surely not bother to decide now whether it is better to go to Paris with a
red or white shirt, for example.

Of course, an agent without time constraints will not lose anything by con-
sidering a few incompatible alternatives, and an agent with unlimited “memory
space” and “computational power” can handle any amount of detail, however
irrelevant at the moment of deliberation. Thus it is only for agents with limited
time and capacities that the functions of filtering and completion become really
useful. In what follows we model these two simplification functions of intentions
for bounded agents.

15Note that in the framework presented here it is possible to distinguish satisficing behaviour
with respect to one’s intentions from satisficing with respect to one’s utility. The approach
suggested here would explore the possibility of bounded rationality giving an underpinning
of utility-maximisation: by forming satisficing rather than maximising intentions, utility-
maximisation can perhaps be ensured. In other words, bounded rationality with respect to
intentions may help to ensure “unbounded” rationality with respect to utility.
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5.1 Ruling out options

The first function we consider is the ruling out of options that are incompatible
with the achievement of a plan. Given the structure we imposed on these sets,
this corresponds to removing from the original set of alternatives those that are
not in ↓Mi.

In the parametric setting, ruling out options boils down to equating X to
↓M. But in a strategic situation there are various ways in which an agent can
judge that a strategy is incompatible with his plan, depending on how much the
agent is willing to “risk” on getting an alternative with the intended features.
Here we only examine two extreme forms of attitude toward such risk. One can
be risk inclined and consider that all strategies that might lead to an intended
outcome are compatible with one’s plan. But one can also be risk-averse and
retain only the options that lead for sure to an intended outcome.

Formally, the cleaned strategy set cl(Si) for an agent i is defined as

cl(Si) = {si | for all σI−i, π(si, σI−i) ∈ ↓Mi}

for risk averse cleaning and

cl(Si) = {si | there is an σI−i such that π(si, σI−i) ∈ ↓Mi}

for risk inclined cleaning. The cleaned version of a decision problem DP will be
defined as the tuple cl(DP ) = 〈I,X ′, {cl(Si), R′

i}i∈I , π
′〉 with:

• X ′ = {x | ∃σ ∈ Πi∈Icl(Si) s.t. π(σ) = x}

• R′
i = Ri ∩ (X ′ ×X ′)

• π′ is π with the restricted domain Πi∈Icl(Si) and image X ′

Clearly, every decision problem has a unique cleaned version, which is not
empty if every cleaned strategy set is not empty. Note that the strategies that
remain after risk-averse cleaning are just the intention-compatible ones but that
a risk-inclined agent does not always comply with the demands of intention-
rationality, as defined in Section 4. It should be noted, however, that there are
some decision problems for which the cleaned strategy set of an agent i is empty
for risk averse cleaning. Sometimes an agent can be too fussy about his own
strategies! To avoid such cases we will use risk-inclined cleaning in the examples
below, unless explicitly mentioned.

5.2 Ignoring irrelevant details

We mentioned that a plan demands a completion, but not for an over-detailed
one. The level of detail to be considered will depend on the modes of achieve-
ment the agent has to decide upon. To capture this, take a partition Ai of ↓Mi

to be a set of means of achievement for the plan, on which the agent will have
to make a decision. Intuitively, Ai can be seen as a set of mutually exclusive
ways to achieve ↓Mi. In our model we are going to ignore irrelevant details by
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grouping together options that are identical up to these attainments. Formally,
two outcomes x, x′ are equivalent modulo Ai, denoted x ∼i

X x′, if and only if
they belong to the same cell A ∈ Ai or they do not belong to ↓Mi at all. Two
strategies si and ti of i are equivalent modulo A, denoted si ∼i

S ti, if and only
if for all σI−i , π(si, σI−i) ∼i

X π(ti, σI−i). The reader can check that both rela-
tions ∼i

X and ∼i
S are equivalence relations on X and Si, respectively, and that

they are the same in parametric settings. The strategies belonging to the same
equivalence classes [si] can be seen as attainment-equivalent for i, with respect
to his attainment set Ai. However the other agents play, i will achieve his in-
tention in the same way by choosing any strategy in [si]. When confusion may
arise, we use [x]∼X

and [s]∼S
to denote the equivalence class of x and s under

∼X and ∼S , respectively. Otherwise we just omit the subscripts and write [x]
and [s]. The equivalence classes of the strategies whose outcomes never belong
to ↓Mi will be denoted [s]↓Mi

.
To build a decision problem out of these equivalence classes of strategies we

need to specify how the agents are going to “evaluate” them, so to speak.16

One can imagine different ways to do so. Here we study one in which the
agent “picks” one representative per equivalence class, and considers that the
outcome(s) of this equivalence class is (are) just the outcome(s) that would be
secured by choosing this representative in the original decision problem.

Given some decision problem DP , we call any function θi : {[si] : si ∈ Si} →
Si such that θ([si]) ∈ [si] a representative function for an agent i. A representa-
tive function gives, for each equivalence class, one chosen representative, out of
which the simplified decision problem will be constructed. Given a problem DP
and a representative function θi defined for each i, the means-simplified version
DP ∗ = 〈I,X∗, {S∗

i , R∗
i }i∈I , π

∗〉 is defined as follows, for all i ∈ I:

• S∗
i = {θi([s]) : s ∈ Si}

• X∗ = {x | ∃σ ∈ Πi∈IS
∗
i s.t. π(σ) = x}

• R∗
i = Ri ∩ (X∗ ×X∗)

• π∗ is π with the restricted domain Πi∈IS
∗
i and image X∗

Many decision problems have multiple means-simplified versions, as we shall
see in the next section. Each of these versions has a corresponding, different
profile of representative functions Θ = Πi∈Iθi. Given their importance, we
shall sometime abuse our own notation and use the profiles Θ to designate the
simplified version they generate. Note that a profile Θ will simplify a decision
problem, just in case there is one agent for which one of his ∼S-equivalence
classes is not a singleton.

16“So to speak”, because what the agent really values are outcomes and not strategies.
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6 Ruling out and ignoring irrelevant details

We proposed two operations on decision problems to model two aspects of
reason-centered commitment, and we see no reason why intention-based deci-
sions should be confined to one of them. In other words, we would like simplified
decision problems to be both “cleaned” and “means-simplified”. But we cannot
go on without specifying the sequential order in which these operation are being
applied, because they do not commute in the general case, assuming that the
intention set of an agent satisfies Axioms 1 and 2.

Proposition 5. It is not the case that, for all decision problems DP , cl(DP ∗) =
(cl(DP ))∗.

Proof. The following is a counter-example.

t1 t2
s1 (0,1) (1,1)
s2 (1,1) (0,1)

Table 5: Counter-example to commutativity

Assume that Γ is the set of all strategy profiles.17 Let the intention and
attainment sets of each player be as follow: ↓M1 = {(s2, t1), (s1, t2)}, A1 =
{{(s2, t1)}, {(s1, t2)}}, ↓M2 = C2(RΓ) and A2 = {C2(RΓ)}. It means that
[s1] = {s1}, [s2] = {s2} and [t1] = [t2] = {t1, t2}. Take θ2([t1]) = t1, and
consider the means-simplification below.

θ2 θ2([t1]) = t1
[s1] (0,1)
[s2] (1,1)

Table 6: The means-simplification of Table 5

If we perform a risk-inclined cleaning on this decision problem, [s1] will be
removed. In other words, [s1] 6∈ cl(DP ∗). But observe that cl(DP ) = DP and
that Table 6 thus is (cl(DP ))∗, which means that (cl(DP ))∗ 6= cl(DP ∗).

The counter-example used in this proof crucially involves more than one
agent, and shows that the order in which the two simplification operations are
performed makes a difference. But the reader may have noticed that it involves
one application of each operation. In other words, it might be possible that
for some decision problems and some representative function profiles cleaning
and means-simplification converge towards a “minimal” simplified version after
a finite number of alternative applications of these two operations. For example,
the iterative simplification of the game used in the last proof does stabilize after

17Γ could be the removal of weakly dominated strategies, for example.
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one more cleaning: the reader can check that cl((cl(DP ))∗) = cl(DP ∗) and that
any further application of cleaning or means-simplification will not simplify the
problem further. This decision problem thus has a unique simplificative fixed
point. If every decision problem had a unique simplificative fixed point where
each agent has a non-empty strategy set, we could just refer to it when we
mention its “simplified version”. However, it is not only possible that a decision
problem has different simplicative fixed points, but it may also be the case that
the fixed point leaves no strategy available for one of the players. Consider the
following game:

DP t1 t2
s1 (0,1) (0,1)
s2 (1,1) (0,1)

Table 7: A case where simplification “empties” the strategy set of one player.

If we assume that the intention set of each player satisfies Axiom 1-3 and 6
and we take ↓M1 = {(s2, t1)} and ↓M2 as the whole outcome set, a first round
of cleaning results in the following.

cl(DP ) t1 t2
s2 (1,1) (0,1)

Table 8: The cleaned version of Table 7

Assuming further that A2 = {↓M2} and, taking θ2([t1]) = t2, we obtain the
following matrix after means-simplification of cl(DP ).

(cl(DP ))∗, θ2 [t1]
[s2] (0,1)

Table 9: The means-simplification of Table 8

But then [s2] does not survive a further step of cleaning, leaving no strategy
for 1. This can be seen as a disappointing result, for it forces us to specify
the order in which the operations are applied, and to keep track of them if we
want to avoid ending up with no strategy for one player. But this example,
as well as the one displayed in Table 5, show the importance of interaction
in the simplification procedure, for the two operations commute in parametric
contexts. In other words, when there is only one agent a unique simplificative
fixed point is always reached after a single “round” of cleaning and means-
simplification.

Proposition 6. For any parametric decision problem DP , if Mi satisfies Ax-
ioms 1 and 2 then (cl(DP ))∗ = cl(DP ∗).
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Proof. The proposition is a direct consequence of the following lemma.

Lemma 1. For all (parametric or strategic) decision problems DP where Mi

satisfies Axioms 1 and 2, given a partition Ai, if a strategy si is removed after the
risk-inclined cleaning of DP then its equivalence class [si] would also be risk-
inclined cleaned from the means-simplified DP ∗, and so for all simplification
profiles Θ on which DP ∗ can be computed. Furthermore, for all parametric
decision problems DP where Mi satisfies Axioms 1 and 2, given a partition
Ai, if an equivalence class [si] is risk-inclined cleaned from the means-simplified
DP ∗, then the strategy si would be removed after the risk-inclined cleaning of
DP .

For the first part, assume that si would be risk-inclined cleaned from DP .
It means that for all profiles σ ∈ Πj∈I−iSj , π(si, σ) 6∈ ↓Mi. In turn, it means
that, in the means simplification of DP , si ∈ [s]↓Mi

, which is the same as to
say that for all s′ such that s′ ∼i

S si and all profiles σ ∈ Πj∈I−iSj , π(si, σ) ∼i
X

π(s′, σ) and so π(s′, σ) 6∈ ↓Mi. But then for all simplificative functions θi,
π∗(θi([si])) ∩ ↓Mi = ∅, which means that in any means-simplification of DP ,
θi([si]) would be risk-inclined cleaned out.

For the second part we can restrict ourselves to a parametric setting, the
game exhibited in Table 5 being a counter-example for the strategic case. As-
sume [si] would be risk-inclined cleaned from DP ∗ obtained from an arbitrary
simplificative function θ. It means, that θ([si]) 6∈ ↓Mi (recall that in parametric
contexts, Si = X). Now there are two cases to consider. If θ([si]) = si, then
we automatically get that si 6∈ ↓Mi and so that this strategy would be risk-
inclined cleaned. If θ([si]) = sj for i 6= j, this means that sj 6∈ ↓Mi. But since
sj ∈ [si], we know that si ∼i

X sj (recall again that ∼i
X is the same relation as

∼i
S in parametric setting), which can only be the case if si is also not in ↓Mi.

It means that si would be cleaned out of the original decision problem. But
observe that the last step holds for all sj ∈ [si], and so for any simplificative
function θ, which proves the implication.

Cases where the two operations do not commute, or end up with an empty
strategy set, are thus to be found in strategic situations. In the examples pre-
sented so far we can indeed see that each player’s simplification is crucially
influenced by the other’s. In the example of Table 7, the fact that 1 ends up
with no intention-rational strategies is a direct consequence of the fact that 2
“chooses” t2 as a representative of [t1]. Similarly, in the example of Table 5,
[s1] would be cleaned out of the means-simplified version of DP only because 2
chooses t1 as representative.

This “mutually-triggered” simplification surely recalls similar phenomena in
iterated elimination of dominated strategies. Of course, the two procedures
differ, as can be seen in Table 5, where there is no pure dominant strategy. But
this similarity calls for further research on the connection between traditional
game theoretical solution concepts and simplification behaviour, given the link
between utility and intention rationality provided by Axiom 6. Under which
conditions do cleaning and means-simplification commute where Γ is, say, pure
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Nash equilibrium? Under which general conditions do they yield an empty
strategy set? These are open questions that we are not going to answer here.
Rather, we want to examine another phenomenon that parallels known game-
theoretical concepts, this time at the interface between intention-rationality,
simplification and decisions.

7 Optimal simplifications

So far we have only investigated the behaviour of the simplification procedure.
We now turn to “intention-based” decision making, that is, decision involving
both volitive and reason-centered commitments of intentions. In other words,
we are interested in agents who use their intentions both to simplify the problem
they face and to focus on certain solutions.

As we saw previously, the outcome of a game can be influenced by the
simplification procedure. In Table 5, the final choice of 1 depends on which
representative of [t1] is picked by 2: [s2] if 2 picks t1 and [s1] if 2 picks t2.
Of course, in that case, one can point out that this difference is not really
noteworthy, because 1 is indifferent between (s2, t1) and (s1, t2). But can it be
that some simplifications are better than others for some players? Or, to put
it the other way around, can some players make things worse by picking the
“wrong” simplification representatives?

To investigate this question, let us say that a profile Θ1 weakly dominates for
player i the profile Θ2, given the solution Γ, if and only for all feasible outcomes x
in Θ1 and y in Θ2, xRiy and there are feasible outcomes x′ and y′ respectively
in Θ1 and Θ2 such that x′Piy

′. Note that the comparison benchmark is the
original game, where all outcomes are still reachable.18 Similarly, let us call
an optimal simplification a representative function profile Θ (with θi the ith

component of Θ) such that, given a solution concept Γ, for all i ∈ I and all θ′i,
if x is feasible in Θ and y is feasible in (θ′i,ΘI−{i}) then xRiy.

To illustrate, take the game in the following matrix. Assume that Γ is the
pure Nash equilibrium solution concept and that the intention set of each player
satisfies Axioms 1-3 and 6.

t1 t2 t3
s1 (2,2) (1,2) (0,0)
s2 (2,2) (0,0) (0,2)

Table 10: A game with dominated simplification

This game has four pure Nash equilibria: Γ = {(s1, t1), (s2, t1), (s1, t2), (s2, t3)}.
Among them, 1 has a clear preference, C1(RΓ) = {(s1, t1), (s2, t1)}, while 2 is in-
different between all feasible outcomes: C2(RΓ) = Γπ. Suppose ↓M1 = C1(RΓ)
and ↓M2 = {(s1, t2), (s2, t3)}, together withA1 = {↓M1}, A2 = {{(s1, t2)}, {(s2, t3)}}.19

18But not necessarily feasible, of course.
19Agent 2 might intend to “harm” 1, for example.
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It means that s1, s2, t2 and t3 remain after risk-inclined cleaning.20 Moreover,
we get [s1] = [s2] = {s1, s2} but [t2] = {t2} and [t3] = {t3}. It means that 1
has two ways to simplify the decision problem: θ([s1]) = s1 and θ′([s1]) = s2,
while 2 has no further simplification available. The games resulting from the
two simplification possibilities of 1 are displayed in Table 11.

Θ1 t2 t3
θ([s1]) (1,2) (0,0)

Θ2 t2 t3
θ′([s1]) (0, 0) (0,2)

Table 11: The two simplifications of Table 10

Since 1 strictly prefers the Nash equilibrium of Θ1 over that of Θ2, the former
dominates the latter and is an optimal simplification of this game.

Again, one can ask whether there are connections between dominated strate-
gies and dominated simplifications, as well as between Nash equilibria and op-
timal simplifications. We have not investigated the full generality of these con-
nections, but we do hope to have shown the importance of them.

8 Conclusion

The point from which this paper departed was the question of whether intentions
and plan can introduce interesting questions within rational choice theory. We
have focused on intentions to realise states of affairs, and tried to capture some
of their important features axiomatically. We then proceeded to explore the
extent to which “intention-rationality” is compatible with “utility-rationality”.
In particular, it was shown that intentions can account for focal points. We sub-
sequently switched focus to simplification, and showed an interesting interplay
between simplification and traditional utility rationality.

It should be emphasised that we started from a rational-choice framework.
Given the specification of a particular decision situation, we examined how in-
tentions might add something to its analysis. It means, for instance, that some
of the axioms imposed on intentions could be seen as decision-theoretic con-
straints on those intentions. It cannot be emphasised enough that the analysis
is restricted to particular decision situations, viz., situations in which the in-
dividuals possess complete information. Obviously, in a setting of incomplete
information the analysis may have to be modified considerably. Moreover, it was
noted that the maximising stance that underlies the axioms that were imposed
on intention sets may lead to counterintuitive results.

Further analysis of the relation between intentions and rational choice within
a framework may perhaps contribute to the development of a ‘richer’ theory of
choice. We have already hinted at a different notion of feasible option, in which
the feasible set is no longer defined in terms of mainstream rational-choice the-
ory, but rather in terms of what the agent believes or knows. Other alternative

20Note that no strategy would remain after risk-averse cleaning.

19



accounts of rational choice have been developed, of course: we should mention
[6] and [8], alongside the other approaches to rational action that have already
been referred to. This paper’s attempt to provide a “standard” rational-choice-
theoretic analysis of intentions, and the problems that it yields, may provide an
underpinning for the further exploration of these alternative approaches.
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