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Abstract. Ordinals carry a natural topology induced by their linear order.

In this note, we classify the homeomorphism types of all ordinal topologies
using the Cantor normal form and the notion of the Cantor–Bendixson rank
of a point.

Let < be a linear order on a set X. The order topology on X is generated by
the subbase of rays of the form leftX(b) := {x ∈ X : x < b} and rightX(a) := {x ∈
X : a < x} for a, b ∈ X. Natural examples of order topologies are the standard
topologies on N, Q, and R. Ordinals provide another source for natural order
topologies; we call these ordinal topologies. These topologies have many discrete
points: if ξ < ξ + 1 < α, then ξ + 1 is a discrete point and the topological space α

splits disjointly into the open sets leftα(ξ + 1) and rightα(ξ).
We shall provide a complete homeomorphic invariant for ordinal topologies, using

the Cantor normal form and the notion of the Cantor-Bendixson rank. The intuition
behind this classification is that ordinal topologies are mainly determined by their
limit points.

Recall that every nonzero ordinal α can be written uniquely in Cantor normal
form (to base ω) as α = ωα0 · k0 + · · · + ωαn · kn, where α ≥ α0 > · · · > αn and
0 < ki < ω for 0 ≤ i ≤ n [Je03, Theorem 2.26]. We define the limit complexity of
α as lc(α) := α0, the coefficient of α as c(α) := k0 and the purity of α as

p(α) :=

{
0 if α = ωlc(α) · c(α) ≥ ω, and

ωαn otherwise.

We call α a pure limit ordinal if p(α) = 0, and an impure limit ordinal if p(α) > 1.
Of course, α is a successor ordinal iff p(α) = 1.

We shall show that these three data provide a complete homeomorphic invariant
for ordinal topologies:

Main Theorem. For any two ordinals α and β, the ordinal topologies on α and
β are homeomorphic (written α ∼= β) if and only if

〈lc(α), c(α),p(α)〉 = 〈lc(β), c(β),p(β)〉.

2000 Mathematics Subject Classification. Primary 03E10; 06F30.
Key words and phrases. Order topologies; ordinals.
The second author was partially supported by NWO reisbeurs R-62-616. He presented the

results of this paper in lecture courses in Bonn (SS 2001) and Münster (WS 2001/02). Special
thanks are due to Marc van Eijmeren and Philipp Rohde (Bonn, SS 01) and Christoph Duchhardt

and Gyesik Lee (Münster, WS 01/02) for their involvement in these courses.

1



2 VINCENT KIEFTENBELD AND BENEDIKT LÖWE

Elementary equivalence of ordinals. Since the topology on ordinals is ex-
pressed purely in terms of the order relation, it might be guessed that homeo-
morphism of ordinals could be related to definability in terms of the first order
language L∈ of set theory. But this is not the case.

To illustrate how homeomorphic ordinals can disagree about L∈-sentences, con-
sider the following formulas that describe that x is a limit ordinal or limit of limit
ordinals, respectively:

L(x) ≏ ∀y(y ∈ x → ∃z(y ∈ z ∧ z ∈ x))

L2(x) ≏ ∀y(y ∈ x → ∃z(L(z) ∧ y ∈ z ∧ z ∈ x))

Then the ordinals ω2 + ω + 1 and ω2 + 1 (which are homeomorphic by the function

π :
ξ 7→ ω + 1 + ξ for ξ ≤ ω2 + 1

ω2 + ξ 7→ ξ for ξ ≤ ω + 1.

as proved in our main theorem) do not have the same theories:

ω2 + ω + 1 |= ∃x∃y(x ∈ y ∧ L2(x) ∧ L(y)), but
ω2 + 1 |= ¬ ∃x∃y(x ∈ y ∧ L2(x) ∧ L(y)).

Also the converse is not true: elementarily equivalent ordinals need not be home-
omorphic. For this, we need the following result of Mostowski and Tarski:

Theorem 1 (Mostowski-Tarski). Two ordinals α < β are elementarily equivalent
if α ≥ ωω and there is some δ such that β = ωω · δ + α. [DoMoTa78, Corollary 44]

Now, ωω and ωω · 2 are elementarily equivalent by Theorem 1, but not homeo-
morphic by our main theorem.

Proof of the main theorem. The rest of the paper will be devoted to the proof
of the main theorem.

Clearly, the main theorem holds if one of the ordinals is finite: the characteristic
data for α are 〈0, n, 1〉 if and only if α = n and finite ordinals are homeomorphic if
and only if they are the same. From now on, we shall restrict ourselves to infinite
ordinals.

Lemma 2. Let X be a topological space and let A and B be two open disjoint
subsets of X such that A ∪ B = X. Then X and A ⊕ B are homeomorphic where
⊕ denotes the direct sum of topological spaces.

Corollary 3. Let ξ and η be ordinals. If ξ and η are successor ordinals, then
ξ + η ∼= η + ξ.

Proposition 4. Every infinite ordinal α is homeomorphic to ωlc(α) · c(α) + p(α).

Proof. As mentioned, without loss of generality, we have α ≥ ω, so lc(α) 6= 0. We
consider three cases: α is a pure limit, a successor, or a impure limit ordinal.

If α is a pure limit ordinal, then p(α) = 0 and so α = ωlc(α) · c(α) = ωlc(α) ·
c(α) + p(α) and we have nothing to show.

If α is a successor ordinal, then without loss of generality, we have α = ωlc(α) ·
c(α)+1+β+1 for some β < ωlc(α). By Corollary 3, we get ωlc(α) ·c(α)+1+β+1 ∼=
β + 1 + ωlc(α) · c(α) + 1 = ωlc(α) · c(α) + 1 = ωlc(α) · c(α) + p(α).

If α is an impure limit ordinal, then p(α) ≥ ω. Therefore,

ωlc(α) · c(α) + β + p(α) = ωlc(α) · c(α) + β + 1 + p(α).
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We use the same idea as in the successor case, and apply it twice. First split the
whole space into two pieces:

ωlc(α) · c(α) + β + 1 + p(α) ∼= (ωlc(α) · c(α) + β + 1) ⊕ p(α).

Then normalize the first piece: ωlc(α) · c(α) + β + 1 ∼= ωlc(α) · c(α) + 1. Finally, put
the pieces back together:

(ωlc(α) · c(α) + 1) ⊕ p(α) ∼= ωlc(α) · c(α) + 1 + p(α) = ωlc(α) · c(α) + p(α).

�

If 〈lc(α), c(α),p(α)〉 = 〈lc(β), c(β),p(β)〉, then using Proposition 4 twice we have

α ∼= ωlc(α) · c(α) + p(α) = ωlc(β) · c(β) + p(β) ∼= β.

This proves the sufficiency of the invariants.

The Cantor–Bendixson derivative of a topological space X is the set X ′ of all
limit points in X [Je03, p. 40]. Using transfinite recursion, the iterated derivatives
are defined by

(1) X(0) := X,
(2) X(α+1) := (X(α))′, and
(3) Xδ :=

⋂
α<δ X(α) for limit ordinals δ.

We define the Cantor–Bendixson rank of a point x ∈ X as

CBX(x) := sup{α ∈ On ; x ∈ X(α)},

where we set supOn := ∞. Note that the Cantor–Bendixson rank of a point is a
homeomorphic invariant.

Furthermore, in the special case of ordinal topologies, if β < α0 < α1, then
CBα0

(β) = CBα1
(β). We may therefore drop the subscript in our case. Moreover,

if α = ωα0 · k0 + · · · + ωαn · kn in Cantor normal form, then CB(α) = αn and in
particular CB(α) < ∞.

Lemma 5. Let β be an ordinal, k0 and k1 positive natural numbers and 0 <

γ0, γ1 < ωβ .

(1) If ωβ · k0 and ωβ · k1 are homeomorphic, then k0 = k1.
(2) If ωβ · k0 + γ0 and ωβ · k1 + γ1 are homeomorphic, then k0 = k1.
(3) If β∗ > β, then no ordinal α ≥ ωβ∗

is homeomorphic to ωβ · k0 + γ0 or
ωβ · k0.

Proof. This is a simple counting argument. We count the number of points ξ with
CB(ξ) = β: the ordinal ωβ ·k0 has k0−1 such points, ωβ ·k1 has k1−1 such points,
ωβ · k0 + γ0 has k0 such points, ωβ · k1 + γ1 has k1 such points, and α ≥ ωβ∗

has
infinitely many such points. �

Lemma 6. Let ξ < α and β be ordinals. Then:

(1) Any infinite X ⊆ ξ has a limit point in α (viz.,
⋃

X ≤ ξ < α).
(2) If π : α → β is a homeomorphism and ζ ∈ α is a limit point of Z ⊆ α, then

π[Z] ⊆ β has a limit point π(ζ).

We shall now generalize the simple idea of Lemma 6 to a technical notion that
we shall need in our proof. Let η be a limit ordinal and ζ an arbitrary ordinal.
If C ⊆ η is a cofinal subset of η, we call a function S : C → ζ a 〈C, ζ〉-slope if
CB(S(γ)) = γ for all γ ∈ C. For δ < η, we set Cδ := {γ ∈ C ; δ < γ}. An ordinal
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τ ∈ ζ is called a top of the slope S if for every δ < η, the ordinal τ is a limit point
of the set Sδ := {S(γ) ; γ ∈ Cδ}. As a consequence, CB(τ) = η, and therefore, τ

cannot be an element of the slope. Of course, the top of a slope need not be unique:
the 〈ω, ωω · 2 + 1〉-slope defined by

S0(2n) := ω2n

S0(2n + 1) := ωω + ω2n+1

has both ωω and ωω · 2 as tops. Also, the idea of Lemma 6 (1) of taking the union
of (the range of) a slope in order to get the top does not work: if S : η\{0} → ζ is
any slope and δ is bigger than all elements of the range of S, then S1 defined by

S1(0) := δ + 1

S1(ξ) := S(ξ) if ξ 6= 0

has the property that the union of the range of S1 is just δ + 1 which is not a top.
For a given 〈C, ζ〉-slope S and δ < η, we define σδ :=

⋃
{S(γ) ; γ ∈ Cδ}. We call

a slope cofinal if δ 7→ σδ is a constant function. In that case, we call the constant
value of this function the supremum of S. Clearly, if δ < δ′, then σδ ≥ σδ′ ;
therefore, even if S is not a cofinal slope, there must be some σ and δ0 < η such

that for all δ > δ0, we have σδ = σ. Then Ŝ := S↾Cδ0
is a cofinal slope.

Lemma 7. Let η be a limit ordinal, C cofinal in η, and ζ an arbitrary ordinal. If
S is a cofinal 〈C, ζ〉-slope with supremum σ ∈ ζ, then σ is a top of S.

Proof. Fix δ < η and fix a neighbourhood B := rightζ(ϑ) ∩ leftζ(σ + 1) of σ (so
ϑ < σ). Since σδ =

⋃
{S(γ) ; γ ∈ Cδ} = σ, there is some δ < γ ∈ C such that

S(γ) > ϑ. �

Clearly, if π is a homeomorphism between ζ and ζ ′ and S is a 〈C, ζ〉-slope, then
π ◦ S is a 〈C, ζ ′〉-slope, and by Lemma 6 (2), if τ ∈ ζ is a top of S, then π(τ) is a
top of π ◦ S.

Proposition 8. If α ∼= β, then 〈lc(α), c(α),p(α)〉 = 〈lc(β), c(β),p(β)〉.

Proof. It suffices by Proposition 4 to consider the situation where

α = ωlc(α) · c(α) + p(α) ∼= ωlc(β) · c(β) + p(β) = β.

Lemma 5 immediately shows that lc(α) = lc(β) and c(α) = c(β). We are left
to show that p(α) = p(β). Assume towards a contradiction that ωα∗

= p(α) >

p(β) = ωβ∗

. Let us write α = α̂ + ωα∗

and β = β̂ + ωβ∗

.

Case 1. α∗ = γ + 1. Then β∗ ≤ γ, and thus ωβ∗

does not contain any points of

Cantor-Bendixson rank γ. Therefore all such points in β must be below β̂. As a
consequence, by Lemma 6 (1), every infinite set of points of Cantor-Bendixson rank
γ in β has a limit point.

Now in α, consider the set {α̂ + ωγ · n ; n ∈ ω}. This is an infinite set of points
of Cantor-Bendixson rank γ without a limit point in α. Lemma 6 (2) shows that α

and β cannot be isomorphic.

Case 2. α∗ is a limit ordinal. We use our notion of slope here. Obviously, the
function S∗(ξ) := α̂ + ωξ is an 〈α∗, α〉-slope with the property that for any δ < α∗,
the slope S∗↾Cδ does not have a top (in α).
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If α and β are homeomorphic by some function π, then π ◦S∗ is a 〈α∗, β〉-slope.

Let Ŝ = π ◦ S∗↾Cδ be a cofinal subslope of π(S∗). Note that since β∗ < α∗, the

range of Ŝ is contained in β̂. Therefore, by Lemma 7, Ŝ has a top in β̂ + 1 < β.

But then π−1 ◦ Ŝ = S∗↾Cδ has a top in α contradicting the definition of S∗. �

Classification up to Borel isomorphism. The simple classification of ordinal
topologies suggests asking the same question for the Borel structure of ordinals. The
order topology on an ordinal α generates a Borel σ-algebra. A bijection between
ordinals is a Borel isomorphism if the both the preimage and the image of every
Borel set is Borel. Can we give a simple classification of the Borel isomorphism
types of ordinals?

The second author had posed this question in 2001. In the spring of 2006, it
was solved by Su Gao and Steve Jackson. The following is the result of Gao and
Jackson (unpublished): If α is an ordinal then define bα as follows: The ordinal
bα := 0 if Card(α) is singular. If Card(α) = κ is a regular cardinal, then let bα be
the largest cardinal λ ≤ κ such that κ · λ ≤ α. Then the pair

〈Card(α),bα〉

is a Borel isomorphic invariant of the ordinal, i.e., α and β are Borel isomorphic if
and only if 〈Card(α),bα〉 = 〈Card(β),bβ〉.
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