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1 Introduction

The 19th century geometrist Jacobi famously said that one should always try to invert

every geometrical theorem. But his advice applies much more widely! Choose any class

of relational frames, and you can study its valid modal axioms. But now turn the

perspective around, and fix some modal axiom beforehand. You can then find the class

of frames where the axiom is guaranteed to hold by 'modal correspondence' analysis –

and we all know the famous examples of that. It may look as if this style of analysis is

tied to one particular semantics, say relational frames: but it is not. Correspondence

analysis also works on neighbourhood models, telling us, e.g., just which modal axioms

collapse these to binary relational frames. We will show how this same style of inverse

thinking also applies to modern dynamic logics of information change. Basic axioms

for knowledge after information update  !A tell us what sort of operation must be used

for updating a given model M to a new one incorporating A. Likewise, we will show

how modal axioms for (conditional) beliefs that hold after revision actions *A actually

fix one particular operation of changing the relative plausibility orderings which agents

have on the universe of possible worlds. And finally, going back to the traditional

heartland of logic, we show how we can read standard predicate-logical axioms as

constraints on the sort of abstract 'process models' that lie at the heart of first-order

semantics, properly understood. In all these cases, in order for the inversion to work

and illuminate a given subject, we need to step back and reconsider our standard

modeling. But that, I think, is what Shahid Rahman is all about.

2 Standard modal frame correspondences

One of the most attractive features of the semantics of modal logic is the match between

modal axioms and corresponding patterns in the accessibility relation between worlds.

This can be seen by giving a class of models, say temporal or epistemic, and then

axiomatizing its set of modal validities. On top of the minimal modal logic which holds

under all circumstances, one gets additional axioms reflecting more specific structure.

For general background to modal completeness theory, as well as the rest of this paper,

we refer to the Handbook of Modal Logic (P. Blackburn, J. van Benthem & F. Wolter,

eds.) which has just come out with Elsevier Science Publishers, Amsterdam, 1997.
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Now, as a counterpoint to the completeness, the point of modal correspondence theory

(van Benthem 1983) is that one can also invert this line of thought. One takes some

appealing modal axiom whose validity is to be guaranteed, and then finds out which

accessibility patterns must then be assumed. Just to get into the spirit, consider the

perennial modal K4-axiom []p �  [][]p.  Let us call a modal  formula 
�

true at a point s

in a semantic frame F = (W, R) if it is true at s under all atomic valuations V on F.

Here is perhaps the mother of all correspondences:

Fact 1       F, s |= []p �  [][]p  iff F's accessibility relation R  is

      transitive at s: i.e., F, s |= � y(Rxy �  � z(Ryz �  Rxz)).

Proof  If the relation is transitive, []p �  [][]p  clearly holds under every valuation.

Conversely, let F, s |=  []p �  [][]p . In particular, the K4-axiom will hold if we take

V(p) to be {y | Rsy}. But then, the antecedent  []p holds at s, and hence so does the

consequent [][]p . And the latter states the transitivity, by the definition of V(p).      �
The theory behind this example involves the Sahlqvist Theorem: all axioms of the right

syntactic shape allow for systematic first-order translation. As a beneficial side-effect,

the inversion in perspective also makes us look differently at familiar modal axioms,

and see patterns unnoticed before! One famous very non-Sahlqvist principle is Löb's

axiom []([]p � p) �  []p  expressing a basic principle of arithmetical provability logic.

This expresses an interesting higher-order feature of accessibility patterns:

Fact 2     Löb's Axiom is true at the point s in a frame F = (W, R)  iff

    (a) F is upward R-well-founded at s, and (b) F is transitive at s.

Correspondence theory is still alive and expanding today. Van Benthem 2005, 2006A

show how Löb's Axiom leads to a systematic analysis of structural properties of

accessibility definable in LFP(FO), first-order logic with added fixed-point operators.

As a consequence, one can also analyze well-known modal fixed-point languages like

the � –calculus in new ways. But further modal axioms define accessibility patterns still

beyond this level, with the McKinsey Axiom []<>p �  <>[]p  as a prime example.

3 Modal distribution and neighborhood models

Some people think correspondence analysis is tied up exclusively with one particular

view of what modal models must be like, viz. directed graphs. But it will work on any

sort of structure, even ones that look 'higher-order'. E.g., Rodenburg 1986 showed how

one can do correspondence analysis of intuitionistic axioms on Beth models, taking

points and branches as primitive objects. Here is an example closer to modal logic itself

(van Benthem 1992, 1996B, Chapter 11). Neighbourhood models generalize directed
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graphs by having accessibility relations RxY relating points to sets of points. These

structures have concrete motivations in scenarios of 'deductive support' in logic

programs, topological semantics and modal logics of space, or modal logics of players'

powers of reaching outcomes in games. One can then interpret the key modality via the

following generalization of the usual truth condition:

M, s|= <> �   iff there is a set of points Y with RsY and for all y � Y, M, y |= �
The resulting minimal logic loses distributivity of the modality over either conjunction

or disjunction, though it retains upward monotonicity. Moreover, its SAT complexity

drops from Pspace-complete for modal K to NP-complete: i.e., 'from worse to bad'. But

this move to a more general semantics now means that formerly minimally valid

principles now acquire substantial content. In particular, we have this simple

Fact 3 The distribution axiom <>( p � q� 	�
 � 
  p � � 
 q)  is valid on a frame iff

that frame is generated by a binary relation Rxy with RxY iff {y:Rxy}� Y.

Van Benthem 1992 investigates correspondences over neighbourhood frames in more

details, and finds appropriate generalizations for the correspondence-theoretic content

of major modal principles, such as the above K4-axiom. Consider its existential version:

Fact 4 <><>p �  <>p corresponds to a rule of Cut  ('Generalized Transitivity'):
�

x
�

Y
�

{Zy| y � Y}: ((R xY �  R yZy (for all y� Y)) �  R x � {Zy| y � Y})

Just as over directed graphs, such correspondences can be computed automatically by a

substitution algorithm (cf. Blackburn, de Rijke & Venema 2000), this time, producing

relational conditions in a weak sub-language of second-order logic.   

4 Geometry: two-sorted modal logic

Another source of correspondence thinking which goes 'out of the box' is in geometry.

Van Benthem 1996A, 1999 makes a plea for a many-sorted view of space, with points

and lines, or points and arrows, on a par. Matching modal languages will now be two-

sorted, with one kind of formulas referring to points, and another to lines or arrows. Of

course, relations can be of many kinds here, beyond the original idea of accessibility for

worlds. The resulting modal geometry has appealing concrete correspondences between

modal axioms and spatial patterns. We give two examples here.

Consider modal Arrow Logic, a two-sorted language describing both points and

transitions between them as first-class semantic citizens. We focus on the latter here.

Basic arrow models are of the form M = (A, C3, R2, I1, V) with A a set of 'arrows' with
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three predicates: C3x,yz (x is a composition of y and z), R2x,y (y is a reversal of x), I1x

(x is an identity arrow). The modal language is interpreted with these key clauses:

M, x |=  � • � iff     there are y, z with C x, yz and M, y |=  � � M, z |=  �
M, x |=  � ˇ iff     there exists y with R x, y  and M, y |= �

Here is the content of two famous principles for converse and composition from

Tarski's Relational Algebra, re-stated as modal axioms of Arrow Logic:

Fact 5 ( � • � )ˇ ��� ˇ• � ˇ corresponds to � xyz:  C x, yz �  C r(x), r(z)r(y)

�  • ¬( � ˇ• � ) �  ¬ � corresponds to � xyz:  C x, yz �  C z, r(y)x

Given these properties of our relations, we can view composition triangles like the one

depicted here from any arrow we please taking reversals:

  a

      b        c

Basic arrow logics are decidable. But an ominous threshold is the existential principle

of associativity, which makes these logics undecidable, just like relational set algebra:

Fact 6  The associativity axiom ( � • � )•����� •( � •� � corresponds to

� xyzuv: (C x, yz &  C y, uv) �  
�

w: (C x, uw &  C w, vz))

This says that structures have to be rich enough to admit of 'recombination'.

Complex or not, this same axiom is highly appealing from a geometrical standpoint.

Our second example comes from modal logics of space (Aiello & van Benthem 2003).

Here is what Associativity says when we shift our correspondence analysis to modal

logics of geometry where the ternary relation now rather stands for affine betweenness

B x, yz: x lies on the segment y–z. We use the following modality:

M, s |= C� � iff  
�

t, u:  Bs, tu & M, t|= �   & M, u|= �
Fact 7   The associativity law C(C� � )���  C� (C � � � � corresponds to Pasch' Axiom

 � xyzuv: (Bu, xy & Bv, uz) � � s (Bv, xs & Bs, yz)).

x (� )

   u

        v

y (� ) s z (� )
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Thus, depending on the semantic environment, correspondence analysis may reveal very

different content for well-known modal principles, linking them up in surprising ways

with mathematical structure known from other sources. Let's now move elsewhere.

5 Knowledge and Information Update

Another paradigm for modal logic is the analysis of knowledge and other information-

related attitudes. Here, models stand for information patterns describing current states

of one or more agents in interaction. The modal language is as usual: p |¬ �  | � �  | Ki �
and perhaps common knowledge CG � , while models M =  (W, {~ i | i ! G}, V) have

worlds W, accessibility relations ~i, and a valuation V. The standard epistemic truth

condition reads: M, s |= Ki �  iff for all t with s ~i t: M, t |=  � " The usual modal frame

correspondences apply here, both for knowledge modalities and for the common

knowledge, treated as a fixed-point operator in the sense of Section 2. So far, so good.

But now consider a modern trend,  the analysis of informational actions which change a

current epistemic model (van Benthem 2006B). For instance, a public announcement !P

works as follows: learning P eliminates the worlds where P is false. In a picture:

              from M s # ###  !P    to M|P s

    P              ¬P

To describe this, we need a dynamic-epistemic logic, with a key operator

M, s |= [!P] �   iff  if M, s |=P, then M|P, s |= �
The logic of this can be axiomatized completely. In particular, one compositional law

explains when agents acquire knowledge after an announcement of some 'hard fact' P:

Fact 8 The following modal axiom is sound for public announcement:

 [!P]K i � $ (P % Ki(P %  [!P] � & &
Well-understood, this axiom expresses non-trivial assumptions about epistemic agents.

In particular, the interchange of knowledge and observed events expresses their capacity

of perfect memory. This is indeed presupposed in the following argument.

Proof  Compare two models: (M, s) and (M|P, s) before and after the update: it helps

to draw pictures. The formula [P!]K i �  says that, in M|P, all worlds ~i-accessible from s

satisfy � . The matching worlds in M are those ~i-accessible from s and which satisfy P.

Moreover, truth values of formulas may change in an update step, say from ignorance

to knowledge. Hence the correct description of these worlds in M is not that that they
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satisfy '  (which they do in M|P), but rather [P!] ' : they become ' . after the update.

Finally, a small detail. !P is a partial operation, as P has to be true for its truthful public

announcement. Thus, we make our assertion on the right only if !P is executable, i.e.,  

P is true. Altogether then, [P!]K i '  says the same as P ( Ki(P (  [P!] ' .                     )
The use of pictures here is not just a convenience. These pictures also reflect genuine

intuitions concerning what might be called the geometry of knowledge and update.

But now, Jacobi's advice once more. We have seen that treating public announcement of

hard facts as world elimination validates the above axiom. What about a converse.

Suppose that this axiom looks independently plausible for information update, which

operations on models would validate it? The answer is again a correspondence

argument (van Benthem 2007). We consider abstract model-changing operations * p
taking epistemic models M with sets of worlds p inside to new models M * p – with

some mild conditions on available worlds for their domains. A simple proof then shows

Fact 9   Eliminative update is the only model-changing operation which

  satisfies the equivalence [ * p] K q  +�,  p ( K(p (  [ * p] q)).

Proof  From left to right, the formula implies the following. Take q equal to the set of

worlds which are ~-accessible from the current one s inside the set p. Assume also that

the world s is in p. Then the right-hand side says that all worlds still ~-accessible from

s after the operation * p are in q: i.e., they were accessible before, and they were

members of p. Thus, the relation change leaves only already existing links from p-

worlds to p-worlds. By a similar argument in the converse direction, we see that indeed,

all such links are preserved into the new model after the operation * p. This is precisely

the link-cutting version of epistemic update described before.          )
This argument can be sharpened up, defining the universe of relevant epistemic frames

and transition relations explicitly, and stipulating how individual worlds can be related

across frames. In such a setting, three axioms capture eliminative update for public

announcement. First, the equivalence (a) <!p>T +  p makes sure that inside a given

model M, the only worlds surviving into M -  p are those in the set denoted by p. Next,

a reduction axiom (b) <!p>Eq +  p .  E<!p>q for the existential modality Eq ("q is

true in some world") says that the domain of M -  p contain no objects beyond the set p

in M. Finally, the above axiom (c) for knowledge ensures that the epistemic relations

are the same in M and M -  p, so that our update operation really takes a submodel.

An open problem is taking this correspondence analysis to the current world of

dynamic epistemic logics for larger families of informative events, including partial
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observation and hiding. In particular, one would want to show that the basic product

update mechanism of Baltag, Moss & Solecki 1998 for such more sophisticated

scenarios is essentially the only model construction in some suitable abstract space

validating the general DEL axiom [E, e]Ki / 0  (PREe 1 111  2 222  { Ki[E, f] / ))  | f ~i e in A}).

6 Geometry of Belief Revision

We do not just receive information which smoothly updates our current knowledge.

There are also more dramatic episodes of facts which challenge our current beliefs, and

lead to dynamic processes of belief revision. Here, too, the preceding considerations

can be brought to bear. Beliefs can be interpreted over modal models with a comparison

relation of relative plausibility between worlds. The key modality then becomes:

M, s |= Bi /   iff  M, t |= /   for all worlds t minimal in the ordering 3 xy. 4 i, s xy.

But soon, this turns out less than what one needs – and a more general notion of

conditional belief helps 'pre-encode' beliefs we would have if we learnt certain things:

M, s |= Bi( / 5 6 7    iff M, t |= /  for all worlds t which 

are minimal for 3 xy. 4 i, s xy in the set {u | M, u |= 6 }.
The resulting logic the standard principles of the minimal conditional logic. Now, as for

the 'hard facts' of Section 5, it is easy to see that the following axiom holds:

[!P] B i( / 5 6 7     0      P 8  Bi ( [!P] /  | P 9  [!P] 6 )
But more interesting is the response of agents to 'soft triggers', events which make a

proposition more plausible, though not definitively ruling out that it might be false.

Such triggers will not eliminate worlds, but they will change the plausibility pattern.

One typical response of this sort is lexicographic upgrade : ::: P, described variously as

what a trusting, or a radical agent might do. This changes the current model M to M ; P:

P-worlds become better than all ¬P-worlds; within zones, the old order remains.

The complete dynamic logic of this operation of model change can be axiomatized –

first bringing it into the language through this matching modality:

M, s |= [ ; P] /   iff  M ; P, s |= / <
Then the following key principle emerges for the conditional beliefs which agents will

have after a lexicographic plausibility change occurred for some soft trigger with P:

 [ ; P] B( / | 6 )  0>=? ??? = P 9 [ ; P] 6 ) 9  B([ ; P] /  | P 9 [ ; P] 6 ))
    @  ¬ =? ??? = P 9 [ ; P] 6 ) 9   B([ ; P] /  | [ ; P] 6 )
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Here E is again the global existential modality – or a similar epistemic modality. This

time, we will not go into the details of the soundness argument. But we do note that,

extending the analysis for information update, a nice modal correspondence can be

proved, showing that we have captured the essence here. Again, we are working in a

universe of frames connected by abstract relation changing operations A p.

Fact 10  The formula [ A p] B(q|r) BDCE C p F r) F  B(q | p F r) G C ¬ CE C p F r) F  B(q |r))

holds in a universe of frames iff the operation A p is lexicographic upgrade.

Proof  Let H s xy in M A p. We show that H s is the relation produced by lexicographic

upgrade. Let r be the set {x, y} and q = {x}. Then the left-hand side of our axiom is true.

There are two cases on the right-hand side. Case 1: one of x, y is in p, and hence p F r =

{x, y} (1.1) or {y} (1.2) or {x} (1.3). Moreover, B(q | p F r) holds in M at s. If (1.1), we

have H s xy in M. If (1.2), we must have y=x, and again  H s xy in M. Case (1.3) can only

occur when x I p and y J p. Thus, all new relational pairs in M A p satisfy the description

of the lexicographic reordering. Case 2 is when we have ¬ CE C p F r) and none of x, y are

in p. This can be analyzed analogously, using the truth of the disjunct B(q |r).

Conversely, we show that all pairs satisfying the description of lexicographic upgrade

do make it into the new order. Here is one example; the other case is similar. Suppose

that x I p while y J p. Then p F r = {x}. Next, set r = {x, y} and q = {x}. Then we have

B(q |r) for trivial reasons. The left-hand side formula [ K p] B(q|r) is then also true, since

our axiom is supposed to hold for any interpretation of the proposition letters q, r – and

it tells us that, in the model M K p, the best worlds in {x, y} are in {x}:  i.e., H s xy.       L
Again,  van Benthem 2007 actually analyzes the technicalities here a bit more carefully.

In the area of belief revision, this correspondence analysis has further attractions, since

no single action of plausibility change works once and for all. E.g., more conservative,

or less trusting, agents, might respond to a soft trigger by the operation M P, which only

puts the best P-worlds on top, and leaves everything else as it was in M. With a

matching modality, one finds the corresponding reduction axiom for this new policy:

 [ M P] B( N | O ) B�CPQC ¬[ M P] O  )R PS F  B([ M P] N  | [ M P] O S  )
G C ¬ CPQC ¬[ M P] O  )R PS F   B([ T P] N  | (P F [ T P] O  ))

Again a correspondence argument shows this determines the belief change policy M P.

Correspondence theory tells us the exact correlation between principles describing

changes of (conditional) beliefs and suitably definable semantic changes in plausibility

patterns. Thus, as with knowledge, we get a geometry of belief and belief changes.
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7 Modal Foundations for First-Order Logic

My final example of the power of correspondence analysis and inversion goes back to

the heartland where it all started. Modal logic started as an extension of, or maybe a

fine-structure fragment of, standard first-order predicate logic. But well-understood,

that  system itself is very 'modal'! Consider Tarski's clause for the existential quantifier

M, U  |= V x W iff for some d X  |M|:  M, U xd |= W . Here, the variable assignments U  are

essential in decomposing quantified statements. But much less than this is needed to

give a compositional semantics for first-order quantification, viz. the abstract pattern

M, U   |=  V x W  iff  for some 
Y

: Rx U Y  and M, 
Y

 |= W
Here, the assignments become abstract states, and the concrete relation U =x 

Y
 which

holds between U  and U xd has become just a binary relation Rx. Evidently, this is the

semantics of a minimal poly-modal language. This state semantics has an independent

appeal. First-order evaluation is an informational process that changes computational

states (van Benthem 1996B), and formulas are compound procedures over basic atomic

actions of testing for a fact, and shifting the value of some variable.

Accordingly, the usual validities of first-order logic, which one can look up in a good

textbook like Enderton 1972, split into two groups. One group consists of the minimal

modal logic: (a) all classical Boolean propositional laws, (b) Modal Distribution: Z x
( W []\ ) [  ( Z x W [DZ x \ ), (c) Modal Necessitation:  if  |- W  , then  |- Z x W , and (d) a

definition of V x W  as ¬ Z x¬ W . Much first-order inference can be described this way. But

now, we can also look at further first-order axioms, and see what these say on top of

this. What we expect is that they reflect additional properties of the evaluation process.

Again, this may be brought out using modal frame correspondences. The full story is in

van Benthem 1997, but we cite a few high-lights here. First, there are some universal

properties of the specific relations U =x 
Y

 among assignments. The fact that these are

equivalence relations is reflected in valid S5-style axioms such as V x V x W [ V x W ^  As

usual, the latter corresponds to the transitivity. Indeed, the total system corresponding to

making these general assumptions, but without any existential ones on 'fullness' of the

set of available assignments leads us to an interesting, and still decidable, version of

first-order logic called CRS (Németi 1985), related to generalized relational algebras.

But now about the sources of the undecidability of our usual first-order logic! Modal

frame correspondences help us discover these. 'Deconstructing' the further first-order

axioms in Enderton 1972, one is quickly left to focus on the valid interchange laws for
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quantifiers. These turn out to correspond (just by virtue of their Sahlqvist forms) to

well-known significant existential geometrical properties of the evaluation process:

Fact 11  (a) _ y _ x ` a _ x _ y `   expresses 'Path Reversal':b c d e
 ( (Rx
c d

 & Ry
d e

) a _ f  (Ry
c f  & Rx f e ))

   (b)  _ y 
b

x ` a b x _ y ` expresses 'Confluence':b c d e
 ( (Ry
c d

 & Rx
c e

) a _ f  (Rx
d f  & Ry

e f ))
d

             y          xc f
  x          ye

Illustration for Confluence

Thus, by stepping back into a broader class of semantic structures, we give predicate-

logical validities different voices. Some remain universally valid – but others express

various specific properties of the space of available computational states. And when that

space becomes full enough, with grid structures associated with known undecidable

Tiling Problems, we get undecidability of its modal theory.

But such a larger universe also brings further rewards. E.g., more distinctions can be

made on abstract state models for first-order logic than on standard Tarski models. In

particular, there are now separate denotations for substitution operators [t/x].  Also one

can naturally interpret polyadic quantifiers _ x for tuples of variables x to the first-order

language, in terms of simultaneous change of values in their registers. This genuinely

enriches the first-order vocabulary, while still retaining decidability over abstract state

models (Andréka, van Benthem & Németi 1998). Of course, modal correspondence

analysis applies to principles in these richer languages, too.

8 Conclusion

Modal correspondence analysis arises when we invert an established perspective, look

back at the models we have chosen, and ask what sort of semantic content attaches to

proposed syntactic axioms. This style of thinking may look like an abstract and

somewhat curious interest at times. But we hope to have shown that there are benefits

across a wide range of cases. We can check whether proposed axioms really capture

what they are supposed to so, we can find surprising new content to familiar principles,

and sometimes, we are led to the construction of new semantic domains, and new

languages over these. Lot's wife was punished for looking back. There was great

unfairness in that – but in logic, looking 'the other way' can only benefit us!
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