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1 Introduction

Many logical systems today describe behaviour of intelligent interacting agents over time. Frame-

works include Interpreted Systems (IS, Fagin et al. [5]), Epistemic-Temporal Logic (ETL, Parikh &

Ramanujam [13]), STIT (Belnap et al. [4]), Process Algebra and Game Semantics (Abramsky [1]).

This proliferation is an asset, as different modeling tools can be fine-tuned to specific applications.

But it may also be an obstacle, when barriers between paradigms and schools go up.

This paper takes a closer look at one particular interface, between two systems that both address

the dynamics of knowledge and information flow in multi-agent systems. One is IS/ETL (IS and

ETL are basically the same up to model transformations, cf. [11]), which uses linear or branching

time models with added epistemic structure induced by agents’ different capabilities for observing

events. These models provide a Grand Stage where histories of some process unfold constrained

by a protocol, and a matching epistemic-temporal language describes what happens. The other

framework is Dynamic Epistemic Logic (DEL, [6, 3]) which describes interactive processes in terms

of epistemic event models which may occur inside modalities of the language. Temporal evolution is

then computed from some initial epistemic model through a process of successive ‘product updates’.

It has long been unclear how to best compare IS/ETL and DEL. [6, 18, 21, 19] have investigated

various aspects, but in this paper, we strengthen the interface to a considerable extent.

We first show how to transform DEL protocols into classes of ETL models, leading to a simple

language translation from dynamic modalities to temporal operators. Next, we prove a new repre-

sentation theorem characterizing the largest class of ETL models corresponding to DEL protocols
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in terms of notions of Perfect Recall, No Miracles, and Bisimulation Invariance. These describe the

sort of idealized agent presupposed in standard DEL. Next, we consider further assumptions on

agents, and introduce a new technique of modal correspondence analysis relating special properties

of DEL protocols to corresponding ETL-style properties. Finally, we how the DEL ETL analogy

suggests new issues of completeness. Our new contribution is an axiomatization for the dynamic

logic of public announcements constrained by protocols, which has been an open problem for some

years, as it does not fit the usual ‘reduction axiom’ format of DEL.

Once again, we are not reducing one framework to another. We show rather how ETL and DEL

lead to interesting new issues when merged as accounts of intelligent agents.

2 Relating the Two Frameworks

Epistemic Temporal Logic: We start with the basics of ETL. Let Σ be any set and A a finite set

of agents. Elements of Σ are called events, and elements of the set of finite strings Σ∗ histories.

For any two sets X and Y , XY is the set of sequences consisting of an object in X followed by

one in Y . Given h ∈ Σ∗, the length of h (len(h)) is the number of events in h. Given h, h′ ∈ Σ∗,

we write h � h′ if h is a finite prefix of h′. Let λ be the empty string. For a set of finite histories

H ⊆ Σ∗, FinPre−λ(H) = {h | h is nonempty and ∃h′ ∈ H such that h � h′}. Given an event e ∈ Σ,

we write h ≺e h
′ if h′ = he.

Definition 2.1 (ETL Structures) Let Σ be any set of events. A protocol is a set H ⊆ Σ∗ with

FinPre−λ(H) ⊆ H. An ETL frame is a tuple 〈Σ,H, {∼i}i∈A〉 with Σ a (finite or infinite) set of

events, H a protocol, and for each i ∈ A, ∼i is a binary relation1 on H. An ETL model is a tuple

〈Σ,H, {∼i}i∈A, V 〉 where V is a valuation V : At → 2H and 〈Σ,H, {∼i}i∈A〉 an ETL frame. /

We write ∼∗ for the reflexive transitive closure of the union of the ∼i relations. A protocol H can

be seen as a forest of trees. The intended interpretation is that each h ∈ H represents a certain

point in time in the evolution of an interactive situation (such as a game or conversation), with h′

such that h ≺e h
′ representing the point in time after e has happened in h. As usual, the relations

∼i represent the uncertainty of the agents about how the situation has evolved.

1Although we will not do so here, typically it is assumed that each ∼i is an equivalence relation.
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Different modal languages describe these structures (see [9]), with ‘branching’ or ‘linear’ vari-

ants. Here we give just the bare necessities. Let At be a countable set of atomic propositions.

Formulas are interpreted at histories h ∈ H. The basic propositional modal language LEL has epis-

temic operators for each agent (Ki), and extended with temporal operators for each event e ∈ Σ

(Ne) it becomes the larger language LETL. Truth is defined as usual: see [5] and [9] for details.

We only recall the definition of the knowledge and the temporal operators:

• h |= Kiφ iff for each h′ ∈ H, if h ∼i h
′ then h′ |= φ

• h |= Neφ iff there exists h′ ∈ H such that h ≺e h
′ and h′ |= φ

It is often natural to extend the language LETL with group knowledge operators (eg., common

or distributed knowledge) and more expressive temporal operators (eg., arbitrary future or past

modalities). This may lead to high complexity of the validity problem (cf. [8, 19] and Section 5).

Dynamic Epistemic Logic: An alternative account of interactive dynamics was elaborated by

[6, 3, 16, 20] and others. From an initial epistemic model, temporal structure evolves as needed.

Definition 2.2 (DEL Structures) An epistemic model is a tuple M = 〈W, {Ri}i∈A, V 〉 where

Ri ⊆ W × W and V is a valuation function (V : At → 2W ). The set W is the domain of M ,

denoted D(M). An event model E is a tuple 〈S,−→i, pre〉, where S is a nonempty set of events,

−→i⊆ S × S and pre : S → LEL. The set S is called the domain of E, denoted D(E).

The product update M ×E of an epistemic model M with an event model E is the epistemic

model (W ′, R′i, V
′) such that W ′ = {(w, e) | w ∈ W, e ∈ S and M,w |= pre(e)}, (w, e)Ri(w′, e′) iff

wRiw
′ in M and e −→i e

′ in E, and V ′((s, e)) = V (s). /

The language LDEL extends LEL with operators 〈E, e〉 for each pair of event models E and event e

in the domain of E. Truth for LDEL is defined as usual. We only give the definition of the typical

DEL modalities: M,w |= 〈E, e〉φ iff M,w |= pre(e) and M × E, (w, e) |= φ.

From DEL Protocols to ETL Models: Our key observation is that by repeatedly updating an

epistemic model with event models, the machinery of DEL in effect creates ETL models. To make

this precise, let a DEL protocol be a set E of finite sequences of pointed event models closed

under the initial segment relation (cf. Definition 2.1)2. For simplicity, for each DEL protocol E , we

2The preconditions of DEL also encode protocol information (cf. [16]). We do not pursue this line here.

3



let the domains of each event model in E be disjoint. Let D(E) be their union.

Definition 2.3 (DEL Generated ETL Models) Let M be an epistemic model, and E a DEL

protocol. The ELT model generated by M and E , Forest(M, E), represents all possible evolutions of

the system obtained by updating M with sequences from E . It is a disjoint union of models of the

form M × E1 × · · ·En where (E1E2 . . . En) ∈ E . More formally, Forest(M, E) = 〈Σ,H, {∼i}i∈A, V 〉

with Σ = {s | s ∈W}∪ {e | e ∈ D(E)} and H ⊆ D(M)D(E)∗. The uncertainty relations are copied

from the models M × E1 × · · · × En, and the temporal relations (≺e for each e ∈ D(E)) are the

initial segment relation as above. If E is a protocol, we set F(E) = {Forest(M, E) | for all M}. /

Because E is closed under prefixes, so is the domain of Forest(M, E). Hence, Definition 2.3 indeed

describes an ETL model. We illustrate this construction with an example.

Example: In public announcement logic (PAL [14]), each event model denotes an announcement !A

of some true formula A. Thus it consists of a single point with one reflexive arrow for each agent and

the precondition is A. The corresponding operators 〈!A〉φ mean: “after publicly announcing A, φ

is true”. The product update model resulting from an initial model M and a public announcement

model E is simply the submodel of M consisting of all states where P is true. Now, suppose

that E = {(!P ), (!P, !Q), (!P, !R)} and consider the figure below. The initial epistemic model M

is displayed on the left and the generated ETL model Forest(M, E) is on the right. Note that in

this example Forest(M, E), (t) |= R ∧ ¬〈!R〉>. Thus even though a formula is true, it may not be

“announcable” due to the underlying protocol. This raises issues to be discussed in Section 5.
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Matching our model transformation, there is also a translation between languages. Think of the

DEL operators 〈E, e〉 as labelled temporal operators. This defines a translation (·)# : LDEL →

LETL as follows: (·)# commutes over boolean connectives, is the identity map on the set of proposi-
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tional variables, and3 (〈E, e〉φ)# = NE,eφ
#. This translation preserves truth in the following sense.

Let DEL be the protocol of all finite sequences of event models. Let M be an epistemic model,

w ∈ D(M), and hence (w) ∈ Forest(M,DEL).

Proposition 2.4 For any formula φ ∈ LDEL, M,w |= φ iff Forest(M,DEL), (w) |= φ#.

Proposition 2.4 explains a common intuition about linking DEL to ETL. But there is more to come!

3 Representation results

Not all ETL models can be generated by a DEL protocol. Indeed, such generated ETL models

have a number of special properties. In this section we study precisely which properties these are.

First we note that standard DEL events do not change ground facts. Let T = 〈Σ,H, {∼i}i∈A〉

be an ETL frame. We say T satisfies propositional stability iff for all h ∈ H, e ∈ Σ with he ∈ H,

h |= p iff he |= p. Our second property reflects the fact that in product update, uncertainty does

not cross between M and M ×E. We say T satisfies synchronicity iff for all h, h′ ∈ H, if h ∼i h
′,

then len(h) = len(h′). The further properties come from the definition of product update and vary

depending on one’s class of DEL protocols. We start by characterizing the ETL models resulting

from consecutive updates with one single event model.

Definition 3.1 (Epistemic Bisimilar) A relation ∼ over histories in H is an epistemic bisimu-

lation when for all h and h′, if h ∼ h′, then (1) h and h′ satisfy the same atomic propositions, (2)

for every h′′ such that h ∼i h
′′, there is a h′′′ such that h′ ∼i h

′′′; and vice versa. If there is an

epistemic bisimulation connecting h and h′, we say that h and h′ are epistemically bisimilar. /

Definition 3.2 ETL Properties Let T = 〈Σ,H, {∼i}i∈A, V 〉 be an ETL model. T satisfies:

• Perfect Recall iff for all h, h′ ∈ H, e, e′ ∈ Σ with he, h′e′ ∈ H, if he ∼i h
′e′, then h ∼i h

′

• No Miracles iff for all h, h′ ∈ H, e, e′ ∈ Σ with he, h′e′ ∈ H, if there are h′′, h′′′ ∈ H with

h′′e, h′′′e′ ∈ H such that h′′e ∼i h
′′′e′ and h ∼i h

′, then he ∼i h
′e′.

• Bisimulation Invariance iff for all epistemically bisimilar h, h′ ∈ H, he ∈ H only if h′ ∈ H. /

3We also have versions with more standard temporal operators Ne which we leave to the full paper.

5



Let E be a fixed event model and EE be the protocol that consists of all finite sequences of the

repetition of the single event model E. That is EE = {h | h ∈ {D(E)}∗ − {λ}}.

Proposition 3.3 (van Benthem [16]) An ETL model T is of the form Forest(M, EE) for some

M and E iff T satisfies propositional stability, synchronicity, perfect recall, no miracles and bisim-

ulation invariance.

But there are many further DEL protocols E of interest4. Eg., to model ‘conversation’, let F(PAL)

consist of all models Forest(M, E) with E involving just public announcements.

Proposition 3.4 (PAL-generated models) An ETL model 〈Σ,H, {∼i}i∈A, V 〉 is in F(PAL) iff

it is synchronous, propositionally stable, satisfies the minimal properties of Theorem 3.6, and:

• for all h, h′ ∈ H, if h ∼i h
′ then he ∼i h

′e if both he, h′e ∈ H (all events are reflexive)

• for all h, h′ ∈ H, if he ∼i h
′e′, then e = e′ (no two different events are connected).

But our main new result is a characterization of the class of all DEL generated models.

Definition 3.5 ETL Properties Let T = 〈Σ,H, {∼i}i∈A, V 〉 be an ETL model. T satisfies:

• Local No Miracles iff for all h1, h2, h, h
′ ∈ H, e, e′ ∈ Σ with h1e, h

′
2e
′ ∈ H, if h1e ∼i h2e

′ and

h ∼i h
′ and h ∼∗ h′ then he ∼i h

′e′ (if he, h′e′ ∈ H)

• Local Bisimulation Invariance iff for all h, h′ ∈ H, if h ∼∗ h′ and h and h′ are epistemically

bisimilar, and he ∈ H, then h′e ∈ H /

Theorem 3.6 Let DEL be the class of all DEL protocols. A model is in F(DEL) iff it satisfies

synchronicity, perfect recall, local uniform no miracles, and local bisimulation invariance.

This Theorem identifies the minimal properties that any DEL generated model must satisfy, and

thus it describes exactly what type of agent is presupposed in the DEL framework.

Remark 3.7 Given our interest in epistemic temporal languages, one might ask for variants of

Theorem 3.6 with models characterized only up to some epistemic-temporal bisimulation. (But eg.,

Perfect Recall is not preserved this way). We pursue this matter in the full paper.

4Van Benthem & Liu [18] suggest that iterating one large event model involving suitable preconditions can ‘mimic’
ETL style evolution for more complex protocols. We do not pursue this claim here.
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4 Correspondence Results

Our representation theorems suggest a more general correspondence theory relating natural prop-

erties of ETL frames with axioms in suitable modal languages. Our method of generating ETL

models with DEL protocols gives us a new way of describing ETL frames – we can look for classes

of frames that are generated by particular types of DEL protocols.

Definition 4.1 (Frame characterization) A formula φ characterizes an ETL frame prop-

erty P iff all and only frames in which φ is valid have property P . A property PDEL of DEL

protocols characterizes a ETL frame property P iff all DEL generated frames with P are generated

by a protocol with PDEL. /

LETL is only one of many languages for reasoning about DEL generated ETL models, and there

are many other temporal and epistemic operators of interest in reasoning about these models.

Formulas of the form Fφ say that “φ is true sometime in the future”, Ne∗φ says that “φ is true

after a finite sequence of e events” and Cφ says that “φ is common knowledge”. Formally, let

T = 〈Σ,H, {∼i}i∈A, V 〉 be an ETL model. If e ∈ Σ and n a natural number, then en is the

sequence of ee · · · e of length n. We can also add “backwards-looking” operators with formulas Yeφ

meaning that φ was true before event e happened (and e happened just before).

• h |= Fφ iff there exists h′ ∈ H, h � h′ and h′ |= φ.

• h |= Ne∗φ iff there exists h′ ∈ H where h′ = hen for some n ≥ 0 and h′ |= φ

• h |= Cφ iff for each h′ ∈ H, if h ∼∗ h′ then h′ |= φ

• h |= Yeφ iff there exists h′ ∈ H such that h′ ≺e h and h′ |= φ

The second main contribution of this paper is a set of correspondences showing that a more general

theory is feasible here5. The Table below summarizes a number of results; some know, some

new. The first two columns correlate ETL frame properties with their characterizing formulas in

the sense of the first item in the Definition 4.1. The first and the third column correlate frame

properties with protocols as in the second item from Definition 4.1. For more precise formulations

and all proofs, we refer to Appendix B. Here we just discuss what the Table says.

5[15] discusses some related correspondence issues but with out our new connection to DEL protocols.
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Frame property Axiom scheme DEL protocols
(1) reflexivity if h ≺e h

′ and h′′ ≺e h
′′′

and h ∼i h
′′, then h′ ∼i h

′′′
NeKiφ→ KiN

◦
e φ reflexivity: e −→i e

(2) commutativity if h ≺e h
′, h′ ∼i h1,

then there is an h2 with h ∼i h2 and
h2 ≺e h1

NeLiφ→ LiNeφ “single-event” protocols: e −→i

f only if e = f .

(3) functionality if h ≺e h
′ and h ≺e h

′′,
then h′ = h′′

Neφ→ N◦
e φ all protocols

(4) perfect observability if h ≺e h
′, h ≺f

h′′, h′ ∼i h
′′, then e = f .

N◦
eKi¬Nf−> “single-event” protocols: e −→i

f only if e = f .
(5) perfect recall if h ≺e h

′ and h′′ ≺e h
′′′

and h′ ∼i h
′′′, then h ∼i h

′′
NeLiNf−φ→ Liφ updates introduce only relations

present in the epistemic model
(6) no miracles If h ≺e h

′ and h1 ≺f h
′
1

and h′ ∼i h
′
1, and if h2 ≺e h′2 and

h3 ≺f h
′
3 and h2 ∼i h3, and h2 ∼∗ h,

then h′ ∼i h
′
1.

〈C〉NeLiNf−> →
(NeKiφ → KiN

◦
f φ)

(〈C〉 = ¬C¬)

In the above table, N◦
e is ¬Ne¬, Li is ¬Ki¬ and Nf− is the converse of Nf . Properties (1) and

(2) distinguish PAL protocols. So there is a relation between their frame axioms and the axioms of

public announcement logic. And indeed, if in the PAL reduction axiom [!A]Kiφ↔ (A→ Ki[!A]φ),

we replace the public announcement !A with an arbitrary event label, and its precondition A

with the sentence Ne> (the precondition for an occurrence of e in the ETL-model) this becomes:

N◦
eKiφ ↔ (Ne> → KiN

◦
e φ). In the presence of functionality (3), the two implications in this

equivalence are provably equivalent to the axioms in (1) and (2).

Item (4) highlights the fact that “perfect observability” – if an event takes place, you know

that no other event takes place – cannot be characterized within the class of all ETL frames with

the “forward-looking” operators only: we need “backwards-looking” operators as well. Also perfect

recall (5) and no miracles (6) cannot be characterized by forward-looking formulas – the latter

needs common knowledge as well. As all DEL generated models satisfy these properties, there

are no particular protocols that distinguish them. Still, perfect recall captures exactly that having

sRis
′ in the original model is a necessary condition for having (s, e)Ri(s′, e′) in the new model.

5 Axiomatization and Completeness

Representation theorems as in Section 3, or correspondence results as in Section 4, are two ways

of describing the DEL-ETL interface. But there is also the familiar approach of completeness

theorems. In this section we discuss a number of languages and axiomatization results.
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Here are two natural classes of DEL induced ETL models. The first is F(E): all ETL models

Forest(M, E) generated from a specific DEL protocol E . An example is F(DEL), the class of all ETL

structures generated by the ‘full protocol’ of all possible sequences of DEL events. But also of inter-

est are the ETL models generated from a fixed set of DEL protocols. For such sets X we define FX =

{Forest(M, E) |M an epistemic model and E ∈ X}. Eg., with XDEL = {E | E is a DEL protocol},

FXDEL consists of all ETL structures generated by some DEL protocol.

The move to special sets of protocols is non-trivial. For instance, consider again the crucial

‘reduction axiom’ [!A]Kiφ ↔ (A → Ki[!A]φ) of public announcement logic (PAL). This drives

the compositional analysis of epistemic postconditions, and in the end, it reduces every dynamic-

epistemic formula to an equivalent epistemic one in LEL. But this key axiom does have a presup-

position: the assertion A, if true, is always available for announcement. If we no longer assume this

— as is natural in conversational scenarios — the usual DEL completeness results are in jeopardy!

We return to this observation below, but first, we review known results for full protocols.

5.1 Logics of Specific Protocols

‘Full protocols’ have been the norm in DEL so far. Let PAL be the protocol of all possible public

announcements (i.e., all finite sequences of formulas from LEL). The usual axiomatization PAL

of public announcement logic works for this class. Similarly, the logic of F(DEL) is the standard

axiomatization of DEL [3, 20]). But with extended languages the situation becomes more diverse.

It is argued in [16] that in the full PAL protocol, there is a sequence of public announcements that

can change implicit knowledge of ground facts into common knowledge. In other words, for ground

formulas φ, Dφ→ FCφ is valid in F(PAL), where Dφ is distributed knowledge of φ.

This table summarizes what we know about complete logics for such extended languages:

Language F(PAL) F(DEL)
Ki, Ne Finitely Axiomatizable [14] Finitely Axiomatizable [3]
Ki, Ne, C Finitely Axiomatizable [3] Finitely Axiomatizable [3]
EPDL, Ne Finitely Axiomatizable [20] Finitely Axiomatizable [20]
Ki, Ne, F Finitely Axiomatizable [2] Open
Ki, Ne, Ne∗ Not Finitely Axiomatizable [10] Open
Ki, Ne∗ Open Open
Ki, Ne, C, Ne∗ Not Finitely Axiomatizable [10] Open

Miller & Moss [10] show that F∞E0 = {Forest(M, E0) | M infinite } where E0 = {Li>}∗ is not even

axiomatizable for languages that contain knowledge modalities and arbitrary future modalities.
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There are many further questions here (cf. [19]): we refer to the full version of the paper.

5.2 Logics of Protocol Sets

Our main new observation is about real scenarios for conversations. Unlike ‘full protocols’, these

restrict the available assertions. Logics for their generated ETL models have not been explored yet.

We first consider FXPAL = {Forest(M, E) | M a epistemic model, E a PAL protocol} and the

language LETL. This is the space of all possible ‘conversation scenarios’. Example 2 already showed

that the standard axiomatization of PAL will not work here. Truth of A is no longer equivalent to

〈!A〉>, the availability of A for assertion in our scenario. This invalidates the usual axioms of PAL

– and we must redo the job. Our third main result of this paper shows that we can!

Definition 5.1 (TPAL Logic) The logic of conversation is the set TPAL:

PC Any axiomatization of propositional calculus

Ki Ki(φ→ ψ) → (Kiφ→ Kiψ)

R1 〈!A〉p↔ 〈!A〉> ∧ p

R2 〈!A〉¬φ↔ 〈!A〉> ∧ ¬〈!A〉φ

R3 〈!A〉(φ ∧ ψ) ↔ 〈!A〉φ ∧ 〈!A〉ψ

R4 〈!A〉Kiφ↔ 〈!A〉> ∧Ki(A→ 〈!A〉φ)

A1 〈!A〉(φ→ ψ) → (〈!A〉φ→ 〈!A〉ψ)

A2 〈!A〉> → A

which is closed under modus ponens and necessitation for Ki and [!A]. /

These axioms illustrate the mixture of factual and procedural truth which drives conversations.

A few remarks are in order. Axiom R1 illustrates that, in an arbitrary PAL protocol, truth of

A does not guarantee that A can be announced. Second, axiom R4 hides a subtlety. One would

expect this ‘procedure-oriented’ axiom: 〈!A〉Kiφ ↔ 〈!A〉> ∧ Ki(〈!A〉> → 〈!A〉φ). The point is,

however, that in our setting, announcements are uniform actions: if A can be announced at some

history h and agent i knows A, then A can be announced in all i-equivalent histories. Indeed, the

corresponding theorem 〈!A〉> → Ki(A→ 〈!A〉>) is derivable in TPAL (Lemma C.7).

Theorem 5.2 TPAL is sound and complete with respect to the class FXPAL.
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The proof is no longer a routine exercise in dynamic to epistemic reduction; and so we put the main

steps of the proof in Appendix C. The situation is still more interesting with language extensions.

Consider, sub-protocols of the XPAL. In a simple dialogue, we could identify the content of a

statement of φ by an agent i with a public announcement that Kiφ – agents can only say what

they know to be true. Protocols built from such announcements have special properties. We

mention one observation from [6]: the information present in the initial model – called “combined

knowledge” in [6] and “the communicative core” in [16] – will not grow (or diminish). With an

operator I expressing this notion, our protocol logic would encode this as the validity of Iφ→ GIφ.

With sets of DEL protocols, one can also formalize further phenomena (cf. [12, 16]). Consider,

For example, the classic “coordinated attack” problem ([5]) where no new facts can become common

knowledge. Now, let X′ be the set of DEL protocols containing sequences of event models with two

events, one with precondition φ, the other with the trivial precondition. The sender’s accessibility

relation connects the events, that of the receiver is the identity relation. We can prove a parallel

observation: Cφ↔ GCφ is valid in FX′

But the general logic of DEL protocol sets seems wide open. It is likely that results of Halpern,

van der Meyden and Vardi [7] are relevant here. We still have to do the math!

6 Conclusions

Epistemic-temporal logic and dynamic-epistemic logic are two major and interestingly different

ways of describing knowledge-based interaction over time. We have shown how the two can be

linked in three ways: using representation theorems, modal correspondence analysis, and new

sorts of axiomatic completeness theorems for epistemic-temporal model classes generated by DEL

protocols. Our results suggest a more systematic ‘logic of protocols’ using ideas from DEL to add

fine structure to ETL.

As for extensions, one should increase the descriptive scope of our analysis to deal with changing

beliefs over time. This seems quite feasible, using doxastic-temporal logics and recent versions of

DEL for belief change [17]. The other challenge that we see is using DEL, with its explicit account

of model construction inside the logic, as an intermediate between ETL-style frameworks which

describe properties of states and histories inside given models, and paradigms like process algebra

or game semantics, with their explicit construction of dynamic processes.
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A Proofs from Section 3

Theorem A.1 Let DEL be the class of all DEL protocols. A model is in F(DEL) iff it satisfies
synchronicity, perfect recall, local uniform no miracles, and local bisimulation invariance.

Proof. The ‘soundness’ part that each model in F(DEL) satisfies these properties is straightfor-
ward. The only property that needs discussion is local epistemic bisimulation invariance. The point
is that if s and t are such that s ∼∗ t, then they are ‘in the same epistemic model’. That means
that they have a ‘common history’: s and t are both in the domain of a model of the form M×(E)i,
where (E)i is some element of E . Now, if s · e is in the model, that means that there is some En+1

such that (E)i ·En+1 is in E that is such that e is en event in En+1 and M × (E)i, s |= pre(e). But if
s and t are epistemically bisimilar, and since pre(e) is an sentence of epistemic logic, we have that
also t |= pre(e), and therefore that t · e is in the model as well.

For the model construction in the other direction, suppose we have an ETL model. We construct
an initial model M and a set of sequences of event models E .

For the initial model M , we take the submodel of T that has singleton sequences as its domain.
Now, for each complete history h in T , define the epistemic closure of h in T be the the submodel

of T that has as its domain H the smallest set that contains all prefixes of h, and if h′ ∈ H and
h′ ∼∗ h′′, then also h′′ ∈ H. This set is closed under prefixes (by perfect recall), and has the
property that at each point in time, the model is completely connected.

Now we define, for each complete history h in T , a sequence (E)h
i of event models that generates

exactly the epistemic closure of h. Then, E = {(E)h
i | h is a complete history in T} generates T .

The events in Ei are {e | there is a sequence s of length i in T with s = t · e}.
The accessibility relations are given e −→i e

′ iff there are sequences s and s′ of length i ending
in e and e′ respectively, such that s ∼i s

′.
For preconditions, we set pre(e) in Ei to be the formula that characterizes {s | s · e is in T and

length of s = i} among the states of length i. Such a formula does exist, due to local bisimulation
invariance. If the previous model is finite, this formula can be finite as well.

Now it is easy to see that Forest(M,E) and T have the same set of states. To see that T is
identical to Forest(M,E), we show by induction that s ∼i s

′ in T iff s ∼i s
′ in Forest(M,E).

Suppose that s ∼i s
′ in T . Then, by synchronicity, len(s) = len(s′).

If len(s) = 1, the wanted result is immediate by definition of M . For the induction step, let
s = t · e and s′ = t′ · e′. By perfect recall, t ∼i t

′ in T . So, by induction hypothesis, t ∼i t
′ in

Forest(M,E) as well. By definition of Ei, e −→i e
′ in Ei. It follows by the definition of product

update that s′ ∼i s
′ in Forest(M,E).

For the other direction, assume t · e ∼i t
′ · e′ in Forest(M,E). Then, by definition of product

update, t ∼i t
′ in Forest(M,E) and e −→i e

′ in the event model Ei. By the way the event model is
defined, there must be some x and x′ with x · e ∼i x

′ · e′ in T , and therefore, by local no miracles,
also t · e ∼i t

′ · e′. qed

This proof generalises the one in van Benthem & Liu [18], which is an immediate special case. The
proof of the characterization of PAL (Proposition 3.4) is also a simple variant.

B Correspondence Proofs

Proposition B.1 (1) Let F be the frames that satisfy:
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If s ≺e t and s′ ≺e t
′ and s ∼i s

′, then t ∼i t
′

Then F is exactly the class characterized by the following axiom: NeKiφ → Ki¬Ne¬φ. Also, the
DEL-generated frames with this property are exactly those generated by reflexive models.

Proof. The correspondence between frame property and axiom can be done with standard meth-
ods, and is straightforward.

We show that F = {Forest(M, E) | E contains reflexive models only }.
Suppose F is the frame of a model Forest(M, E), for some reflexive E . Suppose s ∼i s

′, s ≺e t
and s′ ≺e t

′. Then, by reflexivity and the definition of product update, se ∼i te.
For the other direction, assume that F is a DEL-generated frame that satisfies the property.

Consider the construction of the “canonical” protocol in the proof of Proposition 3.6, but change it
slightly and define the accessibility relations e −→i e

′ iff for all sequences se and s′e′ it holds that
if s ∼i s

′ then se ∼i se
′. The proof that F is generated by this protocol works just the same, and

it is easy to see that now the protocol must contain only reflexive events. qed

Proposition B.2 (2) and (4) The class of frames that satisfy: if s ≺e t and t ∼i t
′, then there is

an s′ with s ∼i s
′ and s′ ≺e t

′ is characterized by the axiom

NeLiφ→ LiNeφ

The DEL-generated frames satisfying this property are exactly those generated by event models
with: if e −→i f , then e = f

Proof. The correspondence between commutativity and its modal axiom is well-known.
For the DEL-correspondence, suppose F is the frame of a model Forest(M, E), for some E built

with event models with the stated property. Suppose se ∼i te
′. Then, from the definition of product

update, we know that e −→i e
′ and s ∼i t. By assumption, e = e′, and so t ≺e te

′.
For the other direction, consider the protocol that generates F that we constructed in the proof

of proposition 3.6. Now, suppose that e −→i e
′ in that model. By construction, that means that

there must be se and te′ in F such that se ∼i te
′. With our frame property, there must be an s′

such that s′e is in the model, and s ∼i s
′ and s′e = te′. But that means that e = e′.

As commutativity and perfect observability coincide on DEL frames, (4) is a corollary. qed

Properties (4), (5) cannot be expressed in the “forward-looking” language only:

Proposition B.3 The properties of perfectly observable events, perfect recall and uniform no mir-
acles cannot be characterized in the forward-looking language

Proof. To prove this, we provide pairs of frames that validate the same sentences, one verifying
and the other falsifying the relevant frame property. (We can see that the frames validate the same
sentences by finding a total relation ∼ between the states of the frame such that if s ∼ s′, then the
generated subframe of s is isomorphic to the generated subframe of s′ in the second frame.)

For perfect observability, compare the frame s0 ≺e s1 ∼i t1 and t0 ≺f t1 (with e 6= f) that
falsifies perfect observability, with a frame that has s0 ≺e s1 ∼i t1 and t′0 ≺f t

′
1.

For perfect recall, we can use the same example.
For uniform no miracles, we can again use the same example with some added structure: both

both models, add states u0 ≺e u1 and u0 ∼i v0 ≺f v1. qed
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Definition B.4 (Generalized Update) A function U that takes Kripke models and event mod-
els to a new Kripke model is an Update Function iff the new model as as its domain all pairs (s, e)
such that s |= pre(e); i.e. the new model has as the same domain as M × E, but the exact nature
of the accessibility relations remains undetermined. /

We can now talk about Forest(M, E , U) as the forest generated by updating M along the lines
of E as prescribed with U , and talk about properties of update functions characterizing frame
properties in much the same way as in Definition 4.1. This abstract setting is related to the
correspondence analyses for belief revision in [17].

Proposition B.5 (5) Update functions U such that if se ∼i s
′e′, then s ∼i s

′ generate exactly the
models that satisfy perfect recall.

Proof. The “soundness” part is fairly straightforward – just check if the update functions generate
the right kind of models, as in Theorem 3.6.

For the other direction, suppose U does not satisfy the property. Then there is a model M and
event model E with states s and s′ in M and e and e′ in E such that se ∼i s

′e′ with s 6∼i s
′. But

then, of course the protocol starting with E, applied to M , lacks perfect recall. qed

C Completeness of TPAL

We give the details of the completeness of TPAL discussed in Section 5. To make this section
self-contained we first recall the definitions of the intended class of models and the language.

Definition C.1 (TPAL Language) Let At be a set of propositional variables (either finite or
infinite) and A a (finite) set of agents. The basic temporal public announcement language
is generated by the following grammar:

p | ¬φ | φ ∧ ψ | Kiφ | 〈!φ〉ψ

where p ∈ At and i ∈ A. Let LTPAL be the set of all formulas generated by this grammar. We use
standard abbreviations for all further connectives, and for the modal operators 〈i〉 and [!φ]. /

Definition C.2 (PAL Structures) Given a Kripke model M = 〈W,Ri, V 〉 and φ ∈ LTPAL, the
model M× Eφ = 〈W !φ, R!φ

i , V
!φ where

• W !φ = {(w, φ) | w ∈W and M, w |= φ}

• for each (w, φ), (v, φ) ∈W !φ, (w, φ)R!φ
i (v, φ) iff wRiv

• for each p ∈ At, V !φ(p) = {(w, φ) | w ∈ V (p)}

We may also denote this model M!φ. /

Given a sequence of formulas σ := φ1φ2 · · ·φn of formulas from LTPAL and a Kripke model M, we
write M×Eσ for the model (· · · (M×Eφ1)×Eφ2) · · · ×Eφn . We denote this model 〈W σ, Rσ, V σ〉.
The states W σ of M× Eσ are sequences starting with a state from M followed by σ.
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Definition C.3 (TPAL Structures) A TPAL-protocol is a set E of finite sequences of formulas
from LTPAL. For each sequence σ ∈ E where σ = φ1φ2 . . . φn and Kripke model M, Forest(M, E)
is the ETL-model 〈H,∼i, V 〉 where

• H = {h | h is a state from M× Eσ for some σ ∈ E}

• For each h, h′ ∈ H, h ∼i h
′ iff hRσ

i h
′ where h = wσ and h′ = vσ for some σ ∈ E .

• For each p ∈ At and h ∈ H, h ∈ V (p) iff V σ(p) where h = wσ and h′ = vσ for some σ ∈ E

Forest(TPAL) consists of all models Forest(M, E) for some Kripke model M and protocol E . /

Given a model Forest(M, E) = 〈H,∼i, V 〉 truth of formulas φ ∈ LTPAL is defined as in Section
4. The atomic propositional variables and boolean connectives are as usual. We recall the definition
of the modal operators: let h ∈ H and t ∈ N,

• h |= Kiφ iff for each h′ ∈ H, if h ∼i h
′ then h′ |= φ

• h |= 〈!ψ〉φ iff hψ ∈ H and hψ |= φ

Definition C.4 (TPAL Logic) The TPAL-logic is the set TPAL of all instances of

PC Any axiomatization of propositional calculus

Ki Ki(φ→ ψ) → (Kiφ→ Kiψ)

R1 〈!A〉p↔ 〈!A〉> ∧ p

R2 〈!A〉¬φ↔ 〈!A〉> ∧ ¬〈!A〉φ

R3 〈!A〉(φ ∧ ψ) ↔ 〈!A〉φ ∧ 〈!A〉ψ

R4 〈!A〉Kiφ↔ 〈!A〉> ∧Ki(A→ 〈!A〉φ)

A1 〈!A〉(φ→ ψ) → (〈!A〉φ→ 〈!A〉ψ)

A2 〈!A〉> → A

which is closed under modus ponens and necessitation for Ki and [!A]. /

Consistency, satisfiability and validity are defined as usual.

Theorem C.5 TPAL is sound and strongly complete with respect to the class Forest(PAL).

The proof is in Henkin-style. We show that any consistent set of formulas is satisfiable in some
model. By a Lindenbaum Lemma, every consistent set of formulas can be extended to a maximally
consistent set. We now describe how to construct the canonical model. To simplify notation we
write L for LTPAL.

Let M = {Γ | Γ is a maximally consistent set subset of LTPAL}. Consider the set M · L∗ of
sequences of maximally consistent sets followed by sequences of formulas from L. We write σj for
the σj for the jth element of the sequence (thus σ0 ∈ M and for each j > 0, σj ∈ L).

Now, certain sequences σ ∈ M · L∗ are legal as a possible sequence of public announcements.
We attach a maximally consistent set to each legal finite sequence σ. To this end, we define sets
Hn ⊆ M · L∗ of legal sequences of length n and maps from Hn to M (λn : Hn → M) as follows:
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• For n = 0, define H0 = M and for each Γ ∈ H0, λ(Γ) = Γ

• Let Hn+1 = {σA | σ ∈ Hn and 〈!A〉> ∈ λ(σ)}. Let σ = σ′A ∈ Hn+1 and define λn+1(σ) =
{φ | 〈!A〉φ ∈ λn(σ′)}.

We first show that each map λn is well-defined.

Lemma C.6 For each n ≥ 0, for each σ ∈ Hn, λn(σ) is a maximally consistent set.

Proof. Induction on n. The case n = 0 is by definition. Suppose that the statement holds for
Hn and λn. Suppose σ ∈ Hn+1 with σ = σ′A. By the induction hypothesis, λn(σ′) is a maximally
consistent set. Furthermore, by the construction of Hn+1, 〈!A〉> ∈ λn(σ). Therefore, λn+1(σ) 6= ∅.
Let φ ∈ L. Since λn(σ′) is a maximally consistent set either 〈!A〉φ ∈ λn(σ′) or ¬〈!A〉φ ∈ λn(σ′). If
〈!A〉φ ∈ λn(σ′), by construction φ ∈ λn+1(σ). If ¬〈!A〉φ ∈ λn(σ′), by axiom R2, 〈!A〉¬φ ∈ λn(σ′).
Hence, by construction ¬φ ∈ λn+1(σ). Thus for all φ ∈ L, either φ ∈ λn+1(σ) or ¬φ ∈ λn+1(σ).

To show λn+1(σ) is consistent we argue by contradiction. Suppose there are φ1, . . . , φm ∈
λn+1(σ) such that ` ∧m

j=1φj → ⊥. Using standard modal reasoning, ` ∧m−1
j=1 〈!A〉φj → 〈!A〉¬φm.

Since for each j = 1, . . . ,m, 〈!A〉φj ∈ λn(σ′), we have 〈!A〉¬φm ∈ λn(σ′). Using axiom R2 (recall
〈!A〉> ∈ λn(σ′)), ¬〈!A〉 ∈ λn(σ′). This contradicts the fact that λn(σ′) is consistent. qed

Let Hcan = ∪n≥0Hn. Define λ : H → M as follows: for each σ ∈ H, λ(σ) = λn(σ) where n is the
length of σ (denote len(σ)). The canonical model Tcan = (Hcan, {≈i}i∈A, Vcan) is defined as follows:

• Hcan = ∪n≥0Hn.

• ≈i is the smallest relation satisfying the following closure conditions:

– If σ, τ ∈ Hcan are sequences of length one (i.e., σ = (Γ) and τ = (∆) where Γ,∆ ∈ M)
then σ ≈i τ iffdef {φ | Kiφ ∈ λ(σ)} ⊆ λ(τ)

– If σ, τ ∈ Hcan are of the form σ = σ′φ and τ = τ ′φ, then σ ≈i τ iffdef σ
′ ≈i τ

′.

• for each p ∈ At, Vcan(p) = {σ | p ∈ λ(σ)}

Lemma C.7 The formula 〈!A〉> → Ki(A→ 〈!A〉>) is derivable in TPAL.

Proof. Using standard modal reasoning we can derive 〈!A〉> → 〈!A〉Ki> using the fact that Ki>
is derivable and A1. As an instance of R4, we can derive 〈!A〉Ki> ↔ 〈!A〉> ∧ Ki(A → 〈!A〉>).
Thus, TPAL ` 〈!A〉> → 〈!A〉> ∧Ki(A→ 〈!A〉>). By propositional reasoning, TPAL ` 〈!A〉> →
Ki(A→ 〈!A〉>). qed

Lemma C.8 (Truth Lemma) For each φ ∈ L and σ ∈ Hcan, φ ∈ λ(σ) iff Tcan, σ |= φ.

Proof. The proof is by induction on the structure of φ. As usual, the boolean connectives and the
base case are easy. We only show the modal case:

Suppose φ is of the form Kiψ and the statement holds for ψ. Suppose σ = ΓA1A2 · · ·An for
some n ≥ 0 and Kiψ ∈ λ(σ). Suppose there is some τ ∈ Hcan such that σ ≈i τ . By construction
of the canonical model this means τ = ∆A1A2 · · ·An with Γ ≈i ∆ (and each subsequence of
the same length are equivalent, but this is not needed). Since Kiψ ∈ λ(ΓA1 · · ·An), we have
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〈!An〉Kiψ ∈ λ(ΓA1 · · ·An−1). Hence, using R4, Ki(An → 〈!An〉ψ) ∈ λ(ΓA1 · · ·An−1). Hence,
〈!An−1〉Ki(An → 〈!An〉ψ) ∈ λ(ΓA1 · · ·An−2) and so Ki(An−1 → 〈!An−1〉(An → 〈!An〉(ψ))) ∈
λ(ΓA1 · · ·An−2). Continuing in this manner, we have

Ki(A1 → 〈!A1〉(A2 → 〈!A2〉(· · · (An → 〈!An〉ψ)))) ∈ Γ

Since Γ ≈i ∆, by construction of the canonical model,

A1 → 〈!A1〉(A2 → 〈!A2〉(· · · (An → 〈!An〉ψ))) ∈ ∆ (∗)

Furthermore, since τ = ∆A1 · · ·An ∈ Hcan, 〈!A1〉> ∈ ∆ and for k = 2, . . . , n, 〈!Ak〉> ∈ λ(∆ · · ·Ak−1).
Using A2, this implies A1 ∈ ∆ and k = 2, . . . , n, Ak ∈ λ(∆ · · ·Ak−1). Hence, by (∗) and
this fact, 〈!A1〉(A2 → 〈!A2〉(· · · (An → 〈!An〉ψ))) ∈ ∆. Therefore, (A2 → 〈!A2〉(· · · (An →
〈!An〉ψ))) ∈ λ(∆A1). Continuing in this manner, we see that ψ ∈ λ(τ). By the induction hy-
pothesis, Tcan, τ |= ψ. Since τ is arbitrary and σ ≈i τ , we have Tcan, σ |= Kiψ.

For the other direction, suppose that Kiψ 6∈ λ(σ). For simplicity, we assume σ = ΓA. This
makes the argument easier to follow, but can easily be generalized as above. By construction of
σ, 〈!A〉> ∈ Γ and so by A4, we have Ki(A → 〈!A〉ψ) 6∈ Γ. If we can find a maximally consistent
set ∆ such that Γ ≈i ∆, 〈!A〉> ∈ ∆ and 〈!A〉ψ 6∈ ∆, then we are done. In this case, ΓA ≈i ∆A
and ψ 6∈ λ(∆A). Thus by the induction hypothesis, Tcan,∆A 6|= ψ and so Tcan,ΓA 6|= Kiψ. Let
∆′ = {χ |Kiχ ∈ Γ}∪{¬(A→ 〈!A〉φ)}. We claim that ∆′ is consistent. Suppose not. Then there are
χ1, . . . , χm such that for each j = 1, . . . ,m, Kiχj ∈ Γ and TPAL `

∧
j=1,...,m χi → (A → 〈!A〉φ).

Using standard modal reasoning, TPAL `
∧

j=1,...,mKiχj → Ki(A→ 〈!A〉φ). Thus, since for each
j = 1, . . . ,m, Kiχj ∈ Γ, we have Ki(A → 〈!A〉φ) ∈ Γ. As Γ is a maximally consistent set, this
contradicts the assumption that Ki(A→ 〈!A〉ψ) 6∈ Γ. Thus ∆′ is consistent and, by Lindenbaum’s
Lemma, can be extended to a maximally consistent set ∆ with Γ ≈i ∆. Note that since 〈!A〉> ∈ Γ,
by Lemma C.7, Ki(A → 〈!A〉>) ∈ Γ. Therefore, A → 〈!A〉> ∈ ∆. Since ¬(A → 〈!A〉φ) ∈ ∆, we
have A ∈ ∆ and 〈!A〉φ 6∈ ∆. Thus, 〈!A〉> ∈ ∆.

Suppose φ is of the forms 〈!A〉ψ and the statement holds for ψ. Suppose that 〈!A〉ψ ∈ λ(σ).
This implies 〈!A〉> ∈ λ(σ) (this follows since for any ψ, by standard modal reasoning TPAL `
〈!A〉ψ → 〈!A〉>). Therefore, σA ∈ Hcan and by definition, ψ ∈ λ(σA). Hence, by the induction
hypothesis, Tcan, σA |= ψ. Therefore, Tcan, σ |= 〈!A〉ψ. For the other direction, suppose that
Tcan, σ |= 〈!A〉ψ. Then by definition of truth, σA ∈ Hcan and Tcan, σA |= ψ. By the induction
hypothesis, ψ ∈ λ(σA). Hence, by definition, 〈!A〉ψ ∈ λ(σ). qed

The proof of Theorem C.5 now follows using standard arguments.
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