
Compiler correctness and the translation of logics

Theo M.V. Janssen
ILLC, University of Amsterdam, theo@science.uva.nl

1 Introduction

The first subject one thinks of, when one hears ‘translating’, probably is trans-
lating from one natural language to another (e.g. Chinese into English). Some
readers might next think about translations between logics. But there are many
more context where translating occurs. Frequent use of translations is made in
computers: many different languages are used, and automatic translating be-
tween such languages is daily practice. For instance, the user describes the
information he needs in some for him suitable view language, and the computer
translates it into a data base query. Or the user describes his instructions to the
computer in some programming language, and the compiler translates that into
machine instructions. Translations in different fields are compared by Janssen
(1998) and steps are made to a general theory of translating. In this article
the issue of compiler correctness will be investigated, and the insights obtained
there, are applied to the translation between logics.

2 Correctness of compilers

In order to steer a computer, languages are designed which reflect closely the
structure of a computer: they speak, for instance, about memory cells and
stacks with values. They are called machine languages or assembly languages.
However, when some scientist or administrator wants to express his instructions
to the computer, these languages are not so easy to handle. Therefore soon after
the first computers were built, languages have been developed that allow humans
to express there instructions more easily. One of the first was FORTRAN, which
still is in use; JAVA is a modern one. The compiler is the computer program
that translates from a (higher level) programming language into a (low level)
assembly language. Since one wants to be sure that the computer performs as
intended, correctness of the translation is a crucial issue.

How to characterize correctness formally, how to organize the translation
process in such a way that correctness could be proven? We will consider an
approach that became one of the most important approaches in the theory of
compiler construction.

The source article of the approach was ‘Advice on structuring compilers
and proving them correct’ (Morris 1973). The programming language and the
assembly are interpreted in formal models. For the assembly language that
is a model which can be seen as an idealized computer, with memory cells
and values stored in such cells. Then meanings can be, for instance, state
changing functions in such a model. The programming language is interpreted

1

a more abstract model; and what meanings are there, depends on what the
language speaks about. Part of the advice was to design the languages and
semantic models as algebras, and to define the translations and interpretations
as homomorphisms. The translation can then defined by giving the translations
of the generators in the algebra for the source language into polynomials over
the target language algebra. The same translation method is known in the
field of translations of logic under other names: the grammatical translation
(Epstein 1995) or the schematic mappings (Feitosa & d’Ottaviano 2001). The
crux of the proposal was to define correctness as commutativity of the leftmost
diagram in Fig. 1, which then could be proven by finite algebraic means.

PrL
Compile- AssL

Sem(PrL)

IntPL

?
�
Decode

CompMod

IntAL

?

PrL
Compile- AssL

Sem(PrL)

IntPL

?

Encode
- CompMod

IntAL

?

Figure 1: Compiler correctness.
Morris (1973): correctness is commutativity of the leftmost diagram,
Thatcher et al. (1979): correctness is commutativity of the rightmost diagram.
PrL: Programming Language IntPL Interpretation of PrL
AssL: Assembly Language IntAL Interpretation of AssL
Sem(PrL): meanings of the PrL CompMod: abstract model of computer

Several variants of Morris proposal occur in the literature. Some introduce
algebraic tools in order to facilitate the aims, others have a different correctness
definition. We discuss one alternative, for other variants, see Janssen (1998).

Thatcher et al. (1979) use more algebra than Morris (1973), and they propose
to define compiler correctness as commutativity of the rightmost diagram (in
which the lower arrow point points from left to right). This proposal could
not be their last word on the issue, because a counterexample can easily be
given. Suppose the programming languages has a notation for both positive
and negative numbers, but the assembly language has no information on signs.
Then in the computer model there is only one kind of numbers, say only positive
numbers. There is a encoding homomorphism: assign to +3 and −3 the same
number, viz. 3. This of course not what intuitively would be called a correct
compiler because essential information from the programming language gets lost
in translation. As matter of fact, Thatcher et al. admit that their definition is
not fully adequate. They say [names and ref. adapted TJ] : ‘[. . .] commuting of
the rightmost diagram in Fig. 1 is not, in itself “compiler correctness”. ProgL
and AssL could be one point algebras and Compile, IntPL and encode the
unique homomorphisms to those one point algebras resulting in a commutative
square. One possibility around this degenerative case [. . .] would be to require
the encoding to be injective (it is in pour case) and that condition is certainly
sufficient. We are just not sure at this time that it is necessary.’

That is an attractive proposal: if the encoding is an injective homomorphism,
the encoding becomes an isomorphism, and then the translation exactly mimics

2

the intended meaning of the source language. However, the differences between
the programming language and assembly language can be considerable, and
only in exceptional cases isomorphy arises. We will consider an example that
illustrates this, and helps to appreciate the correctness definition; first it is
described abstractly, next with historical details. The example will also be
relevant for the case of translations between logics.

Suppose the programming language deals with numbers, and has two syn-
tactically distinct expressions for the number zero, viz. +0 and −0. Suppose
moreover that these are translated in different expressions in the assembly lan-
guage and that their interpretation in the machine model differs as well. So
at the bottom of the diagram there cannot be a function from left (one num-
ber zero) to right (two representations in the computer model), and there is no
isomorphy: there only is a function from right to left.

This example was not designed for the purpose of defending a correctness
definition; it describes a real situation. Computers with such a number represen-
tation systems were made in the seventies, an example was the CDC computer.
Numbers were represented in a binary format, and a initial sign bit indicated
whether it was positive or negative; then 00000 was +0, and 10000 was −0,
00001 was +1, 11110 was −1. The advantage was that changing the sign of a
number was very easy: changing all 0’s into 1’s. The disadvantage was that
arithmetical operations might yield +0 or −0 depending on operands. Scien-
tists did not appreciate that situation. In computers from a later period (e.g.
the IBM360) each number had its own representation as a string, and zero was
always encoded as a positive number. Attractive, but there also was a disad-
vantage. Since there is an even number of binary strings of fixed length, the
computer could either not represent as many negative numbers as positive ones,
or one bit pattern was left over. For an extensive discussion of these represen-
tation methods, see Tanenbaum (1976); in the third edition (Tanenbaum 1999,
p. 559) he states that the first method is obsolete now.

Also general considerations can explain this situation. Let some program-
ming language be given together with its intended meaning. Since the compiled
program should do what it has to do according to the semantics of the pro-
gramming language, going through a compiler should be a way to obtain the
originally intended semantics. Hence the meanings of the assembly language
should be interpreted in the intended semantics in order to see whether the
compiler yields the intended results. So compiler correctness consist in the ex-
istence of a decoding mapping such that the left diagram in Fig. 1 commutes.

3 Application to logic

An application of the ideas from the previous sections to logic is not straight-
forward because it is not always easy to say what the meaning of a logic is. If a
logic is sound and strongly complete with respect to a certain class of models one
may consider the class of models in which the a formula is true as its meaning,
and if both involved languages are of this nature, one may have, as counterpart
of the translation, a transformation that changes models. Sometimes this is the
case: Epstein (1995, p. 394) presents a translation from Intuitionistic Logic (Int)
into a modal logic (S4) together with a transformation on the models. However,
most logics are defined as a deduction system and then this approach is not

3

easily applied. Therefore Janssen (1998) hardly gives attention to translations
of logics.

Another approach is possible. As a general approach to translations Carnielli
& d’Ottaviano (1997) and Feitosa & d’Ottaviano (2001) have applied the view
that logics are languages with a consequence relation, and judge mappings for
being a translation on the basis of this consequence relation. The relevant
definitions from their papers are given below, but with an adopted terminology.
I prefer to use ‘translation’ as a general term for the map between languages,
and call ‘consequence preserving translation’ what they call ‘translation’.

Definition 3.1. A logic is a pair L= 〈L,CL〉, where L is a formal language
and CL a consequence operator, that is a function CL : ℘(L)→℘(L) that
satisfies for X,Y ⊆ L, the following conditions:

1. X ⊆ CL(X),
2. If X ⊆ Y , then CL(X) ⊆ CL(Y),
3. CL(CL(X)) ⊆ CL(X)

Definition 3.2. A consequence preserving translation from logic K =
〈K,CK〉 into logic L= 〈L,CL〉 is a translation T : K→L such that,

for every X ⊆ K:
T (CK(X) ⊆ CL(T (X)).

The idea that the meaning of a formula is the set of its consequences is
attractive aspect because this can be applied to a semantically defined conse-
quence relation as well as to a syntactically defined one. When we represent
the above definition of consequence preserving translation in the format of the
previous section, we obtain the rightmost diagram in Fig. 2 as the representa-
tion for what in the just mentioned papers is called a translation. Note that the
structure of the expressions in the logic plays is not reflected in the consequence
relation, so the algebraic aspects play no role in the diagram.

K
Translate- L

CK(K)

CK

?
�
Respect

CL(L)

CL

?

K
Translate- L

CK(K)

CK

?

Preserve
- CL(L)

CL

?

Figure 2: Translations between logics: Commutative diagrams
Right: Translation according to Feitosa & d’Ottaviano (2001)
Left: Alternative proposed here.
K: language of a logic K= 〈K,CK〉. CK consequence relation of K.
CK(K) = {CK(A) | A∈K}, i.e. the set of consequence sets.
Analogously for L and CL.
Preserve is Translate lifted to sets of consequences, Respect for Translate−1.

This diagram is analogous to the rightmost diagram in Fig. 1. Warned
by that discussion one might worry about degenerated translations. Indeed, if
we translate all expressions from the source language into one and the same

4

expression of the target language, the translation is consequence preserving.
So any logic can be translated consequence preserving into any logic. Another
trivial case is that any logic can be translated consequence preserving into an
inconsistent logic. So Def. 3.2 on its own does not seem to capture an interesting
notion.

My proposal is to follow the idea from the previous section and to define a
restriction on the mapping from right to left, so in the other direction than in
the definition above, see the leftmost diagram in Fig. 1. Instead of calling it
a correct translation (as for compilers), it seems, in the present context, more
appropriate to speak about a consequence respecting translation.

Definition 3.3. A consequence respecting translation from logic K =
〈K,CK〉 into logic L= 〈L,CL〉 is a map T : K→L such that for any A∈K
holds:

if B ∈CL(T (A)) then T−1(B) ⊆ CK(A).

This type of translation has an interesting consequence.

Definition 3.4. A logic L is consistent iff for some B ∈L: B 6∈CL(∅).

Theorem 3.5. If T : K→L is a consequence respecting translation, and K is
consistent, then L is consistent.

Proof. Assume K to be consistent, and assume L to be inconsistent. Let
B 6∈CK(∅). Since L is inconsistent, T (B)∈CL(∅), so T−1(T (B)) ⊆ CK(∅),
hence B ∈CK(∅). Contradiction. So L must be consistent.

As a special case we may consider the conservative translations. The defini-
tion below is the same as the one by Carnielli & d’Ottaviano (1997) and Feitosa
& d’Ottaviano (2001); they give examples and investigate category theoretic
properties of conservative translations. It is an attractive form of translation,
but as was the case for compilers, it is a strong condition that in several inter-
esting cases cannot be achieved, see Sect. 4. Less retrictive is the notion faithful
translation, a type of translation that often is used in the literature.

Definition 3.6. A conservative translation from K into L is a function
T : K→L such that for every set X ⊆ K and A∈X:

A∈CK(X) ⇐⇒ T (A)∈CL(T (X)).

Definition 3.7. A faithful translation from K into L is a function T : K→L
such that for every A∈K: A∈CK(∅) ⇐⇒ T (A)∈CL(∅).

Theorem 3.8. A translation T is conservative if and only if it is consequence
preserving and consequence respecting.

4 Examples

We will illustrate our definition of consequence respecting translations by some
examples.

5

4.1 Translation of Int into PL

We consider intuitionistic propositional logic (Int). In that logic a proposition
A is interpreted as ‘I have a proof for A’, ¬A as ‘I do not have a proof for A’,
so from ¬¬A (‘I do not have a proof that I do not have a proof for A’) does not
follow A (‘I have a proof for A’). But from A does follow ¬¬A.

Let the translation T from intuitionistic logic (Int) into propositional logic,
defined by T (A) = A for any A∈ Int (the identity map). One easily sees that
this translation is consequence preserving. But, for any proposition letter p,
CPL(T (p)) = CPL(T (¬¬p)). So the translations of two formulas which have in
Int distinct consequences are by CPL assigned the same sets of consequences.
This means that there is no map from right to left, the translation is not con-
sequence respecting.

Surprisingly, this translation is given as a motivation for the definition of
consequence preserving translation (Carnielli & d’Ottaviano 1997, p. 72). ‘In the
literature, definitions of translations between logics require, in general, that the
converse of the condition [in Def. 3.2] also holds. We prefer the notion as defined
in order to accommodate certain maps that seem to us as obvious examples of
translations, such as the identity map from intuitionistic into classical logic’.
For me this example counts as a translation because it is a map between the
two languages, but otherwise I would neglect it, because it is a translation in
which essential information about the intuitionistic meaning is lost.

4.2 Translating of PL into Int

The Gödel interpretation Gd from classical propositional logic PL into propo-
sitional intuitionistic logic Int is defined as follows:

∗ Gd(p) = p, for proposition letters

∗ Gd(¬A) = ¬Gd(A)

∗ Gd(A ∧B) = Gd(A) ∧Gd(B),

∗ Gd(A ∨B) = ¬(¬Gd(A) ∧ ¬Gd(B))

∗ Gd(A→B) = ¬(Gd(A) ∧ ¬Gd(B)).

Consider now the PL formulas p (i.e. a simple proposition letter) and ¬¬p.
These formulas from PL are translated into the formulas p and ¬¬p of Int.
In PL these formulas are equivalent, so CPL(p) = CPL(¬¬p). In intuitionistic
logic finer distinctions are made and the meanings of p and ¬¬p differ; in fact
CInt(¬¬p) ⊂ CInt(p). In spite of this distinction, the translation is a good en-
coding of the original consequence relation. We know what has to be added to
the target language consequences in order to obtain those of the source mean-
ings: add the axiom of the excluded third, and recalculate the consequences
again. Hence Gd is a consequence respecting translation.

In Feitosa & d’Ottaviano (2001) this Gödel interpretation is given as an
example of a mapping that is not a translation according to their definition:
p ∈ CPL(¬¬p) whereas T (p) 6∈ CInt(T (¬¬p)), and therefore this translation
does not preserve derivability. I wellcome this as a translation because it respects
derivability: it is consequence preserving. Moreover, it is faithful.

6

4.3 Translation of PL into Kleene’s three valued logic K3

Kleene (1952) introduced a three-valued logic as a way to reason with proposi-
tions whose truth-value we do not or cannot know. Besides the truth values T

and F, he introduced the value U (undefined). The truth tables are as follows:

B
A ∧B T U F

A : T T U F

U U U F

F F F F

B
A ∨B T U F

A : T T T T

U T U U

F T U F

B
A→B T U F

A : T T U F

U T U U

F T T T

A ¬A
T F

U U

F T

Figure 3: Truth tables for Kleene’s three valued logic K3

The tautologies for K3 are defined as the formulas which for all valuations
yield T. Since a formula with proposition letters which all take value U is eval-
uated as U, the logic K3 has no tautologies.

The map Id : PL→K3 which assigns to each formula the identical formula
in K3, is a information preserving translation from PL into K3, as one sees as
follows. The part of the tables of K3 which deals with T and F is identical with
the tables for propositional logic PL. So if A is a consequence of B in K3,
then A is a consequence of B in PL. The difference between the logics is that
CPL(A) contains more consequences then CK3(A), e.g. tautologies. In order
to find T−1(CK3(A)) we have, intuitively speaking, to add all tautologies and
what can be obtained by using them. Or formulated more simply, apply CPL
because CPL(Id−1(CK3(Id(A)))) = CPL(A). We may say that K3 respects
derivability of PL, it keeps the distinctions, but does not follow it exactly: it
does not express the influence of tautologies.

As we noticed before, the logic has no tautologies, its theory is empty. Propo-
sition 1.28 of Feitosa & d’Ottaviano (2001) states that there is no translation in
their sense (consequence preserving) from a logic with a non-empty theory into
one with an empty theory. One can easily see that for this case: tautologies
that do no have an occurrence of A are in CPL(A), but not in CK3(T (A)). It
seems to me to be a useful translation; it is a faithful, but not a conservative
one.

One sees the analogy with the previous case; the system K3 makes more
distinctions than PL, it discriminates e.g. between consequences that need the
given premise, and those that do not.

4.4 Translation of PL into the paraconsistent logic J3

A paraconsistent logic is a logic in which a non trivial theory may include
both a proposition and its negation. A survey of the paraconsistent logic J3 is
given in chapter 3 of Epstein (1995)(written in collaboration with J3’s creator
d’Ottaviano).

In J3 there are three truth values: 1 for truth, and 1
2 for a degree of truth,

and 0 for false. By definition |= A holds iff A has value 1 or 1
2 . The truth

tables we need in our discussion are the ones for ∧, →, ∼, where ∼A is a weak
negation), and c©, where c©A asserts that A has a definite truth value (viz. 1
or 0), see Fig. 4.

7

B
A ∧B 1 1

2 0
A : 1 1 1

2 0
1
2

1
2

1
2 0

0 0 0 0

B
A→B 1 1

2 0
A : 1 1 1

2 0
1
2 1 1

2 0
0 1 1 1

A ∼A
1 0
1
2

1
2

0 1

A c©A
1 1
1
2 0
0 1

Figure 4: Truth tables for the paraconsistent logic J3

Epstein (1995, p. 358) defines a map ∗ from PL to J3; it is not a schematic
(or grammatical) translation, but it is an interesting one because it is faithful.

Definition 4.1. The translation ∗ : PL→ J3 is defined by:
1. First take A0 = A with ¬ replaced by ∼.
2. Then set A∗ = (

∧
[pi in A]) c©pi) → A, where

∧
{pi in A} means the con-

junction of all proposition letters in A (associated to the left).

Theorem 4.2. The translation ∗ : PC→ J3 is consequence respecting.

Proof. Let A and B be formulas from propositional logic which contain pi,
respectively qi, as proposition letters. Assume A∗ |=J3 B

∗. For J3 a semantic
deduction theorem holds (Epstein 1995, p.343,355), so |= A∗→B∗. Hence for
every valuation V : {{pi}∪ {qj})→{0, 1

2 , 1} holds that V (A∗→B∗) equals 1
2 or

1 . From the truth table for→ in J3 then follows that V (A∗) = 0 or V (B∗) = 1.
Consider the case that V (A∗) = 0. So V ((

∧
[pi in A]

c©pi)→ A0) = 0. From
the truth table follows V (

∧
[pi in A]

c©pi) = 1 and V (A0) = 0. The former says
that each proposition letter has a definite truth value, and from the latter follows
V (A) = 0. So for any V ′ : {pi}→{0, 1} holds V ′(A) = 0. From V (B∗) = 1 it
analogously follows that V ′(B) = 1.

Since V ′(A) = 0 or V ′(B) = 1 we have |=PL A→B, hence A |=PL B.

Theorem 4.3. The translation ∗ : PC→ J3 is not consequence preserving.

Proof. We know that p ∧ ¬p |=PL q. Furthermore (p ∧ ¬p)∗ = c©p→ (p ∧ ∼ p)
and q∗ = c©q → q. We show that c©p→ (p ∧ ∼ p) 6|=J3 c©q→ q. Let V (p) = 1

2
and V (q) = 0. Then p has no definite truth value, so V (c©p) = 0, hence
V (c©p→ (p ∧ ∼ p)) = 1. But V (c©q) = 1, so V (c©q→ q) = 0.

T respects the consequence relations of PL: they are not mixed up and can
be reconstructed from the consequences in of the translation. One easily checks
that T (p∧¬p) |=J3 T (p). So J3 distinguishes between consequences based upon
contradiction and those based upon conjunction reduction. So again we are in
the situation that the target language does have fewer consequences than the
source language, but keeps the distinctions from the source language. Note that
the translation is faithful, but not conservative.

5 The translation paradox

The first example illustrates that an information preserving translation is not
possible if the source language makes more distinctions than the target lan-
guage can express. The other three examples illustrate that in case the target

8

logic makes more distinctions than the source logic, a information preserving
translation may be possible.

Béziau (1999) introduced PL/2, a variant of PL in which only one half of
the meaning of the negation is given: if V (ϕ) = T, then V (¬ϕ) = F. He showed
that PL can faithfully be translated into PL/2, by T (¬A) = T (A)→¬T (A),
and T (A) = A in the other cases. So it is an example where a stronger logic is
faithfully translated into a weaker logic that is included in it. Next he considers
another example: the Gödel translation (discussed here in Sect. 4.2). He says:
‘the fact that classical logic can be translated into intuitionistic logic, which is
strictly included into it, is still a paradox because it is against intuition and has
not yet been properly explained’. Three of our examples are of this nature.

Our perspective on translating gives an explanation. If a logic is translated
into a weaker logic, that logic has fewer rules, fewer formulas will be equivalent,
more distinctions are made because. So the weaker logic is more expressive.
If the translation is consequence respecting, it means that a reconstruction is
made in the weaker logic in which no information about the stronger logic is
lost in translation, so for questions about the stronger logic all information
remains available. It is to not surprising that a logic can be translated into a
weaker one. Vice versa would be surprising, because the additional power of
the stronger logic is likely to mix up the consequence structure of the weaker
logic. For instance, the map Id : K3→PL would not work because the non
equivalent K3 formulas A and A∧ (B ∨¬B) are translated into formulas which
have in PL the same consequences. This would not be a consequence respecting
translation.

Humberstone (2005) discusses Béziau’s example concerning PL/2, and men-
tions the explanation we just gave. He claims that ‘this response fails’ and gives
an example of a modal logic that cannot be translated into the weakest modal
logic L. However, I am not convinced by his example. First, he requires the
translation to be a ‘definitional translation’, that is a translation in which a
propositional variable is translated into itself. Hence a complex translation as
in our K3 example (T (p) = c©p→ p, encoding that p has a definite truth value)
is not allowed. So he disallows that a different perspective on basic proposi-
tions is encoded by the translation. Secondly, he requires the translation to be
a conservative one (in his terminology ‘faithful embedding’). So a translation
must not only encode the source logic, but give an isomorphic reconstruction.
Combining all this, is difficult, and sometimes not possible.

6 Conclusion

We have shown that the insights from compiler theory can be transferred to
the theory of translating logics, provided we conceive a logic as a language with
a consequence relation. Inspired by compiler theory, we found the definition
‘consequence respecting translation’ which was defined as commutativity of a
certain diagram. The alternative definition (consequence preserving) was shown
to suffer from the same shortcomings as the corresponding correctness definition
in compiler theory. Some examples illustrated the attractiveness of our notion
of translation. The insights obtained from compiler theory explain that Béziau’s
translation paradox in fact describes a phenomenon that is to be expected.

9

References

Béziau, J.-Y. (1999), ‘Classical negation can be expressed by one of its halves’,
Logic Journal of the IGPL 7(2), 145–151.

Carnielli, W. & d’Ottaviano, I. (1997), ‘Translations between logical systems:
A manifesto’, Logique et Analyse 157, 67–82.

Epstein, R. (1995), Propositional logic., Vol. 1 of The semantic foundation
of logic, Oxford University Press, Oxford. First edition published by
Kluwer/Nijhoff, 1990, Dordrecht.

Feitosa, H. & d’Ottaviano, I. L. (2001), ‘Conservative translations’, Annals of
Pure and Applied Logic 108, 205–227.

Humberstone, L. (2005), ‘Béziau’s translation paradox’, Theoria 71, 138–181.

Janssen, T. M. V. (1998), ‘Algebraic translations, correctness and algebraic
compiler construction’, Journal of theoretical computer science 199, 25–
56.

Kleene, S. (1952), Introduction to methamathematics, North-Holland, Amster-
dam.

Morris, F. (1973), Advice on structuring compilers and proving them correct,
in ‘Proceedings ACM Symposium on principles of programming languages,
Boston, 1973’, Association for Computing Machinery, pp. 144–152.

Tanenbaum, A. S. (1976), Structured computer organization, Prentice-Hall.

Tanenbaum, A. S. (1999), Structured computer organization. Third edtion,
Prentice-Hall.

Thatcher, J., Wagner, E. & Wright, J. (1979), More on advice on structuring
compilers and proving them correct, in H. Maurer, ed., ‘Automata, lan-
guages and programming. (Proc. 6th. coll. Graz)’, number 71 in ‘Lecture
notes in computer science’, Springer, Berlin.

10

