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VISUALIZATION OF ORDINALS∗

ABSTRACT

We describe the pictorial representations of infinite ordinals
used in teaching set theory, and discuss a possible use in nat-
uralistic foundations of mathematics.

1 INTRODUCTION

Pictures are everywhere in mathematics. A dining group of mathematicians
will leave a visual trace of their mathematical thoughts and ideas on the
napkins of their chosen restaurant. When the ideas consolidate and reach
publishable form, most of the pictures tend to disappear.1 Our modern pub-
lishing routine that requires authors to produce camera-ready illustrations
may have something to do with this, as mathematicians are notoriously bad
with graphics software. But this pragmatic issue alone cannot account for
the surprising lack of illustrations in mathematical papers.

Mathematics underwent a formalization process starting in the nineteenth
century. An ideal of formal mathematics was developed and informal math-
ematics tried to fit into this new paradigm. Pictures and in particular picture
proofs did not conform to the views of this formalization period, as can be
seen most stringently in the following quote of Moritz Pasch:

Wir werden nur diejenigen Beweise anerkennen, in denen man
Schritt für Schritt sich auf vorhergehende Sätze beruft oder

∗The author would like to thank Stefan Bold, Hannes Leitgeb, Paolo Mancosu, Thomas
Müller, John Pais, Sara Uckelman, and an anonymous referee for comments and technical
assistance. The blackboard photographs have been taken and edited by Sara Uckelman and
are included with her permission.

1We randomly picked volume 13 (2000) of theJournal of the American Mathematical
Societyas a representative selection of current published high-level research mathematics.
The volume had fewer than 50 illustrations on 1009 pages of articles (not counting two-
dimensional notation like matrices or commutative diagrams). 73.5% of thearticles had
no illustration, 88.2% of the articles had fewer than three illustrations, and only one article
in the entire volume had more than 5 illustrations. Note that this volume contains papers
from research areas like “Convex Geometry”, “Algebraic Geometry”and “Differential Geo-
metry” without any illustrations.
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berufen kann. Wenn zur Auffassung eines Beweises die ent-
sprechende Abbildung unentbehrlich ist, so genügt der Beweis
nicht den Anforderungen, die wir an ihn stellen. [. . .] Bei
einem vollkommenen Beweise ist die Abbildung entbehrlich.

(Pas26, p. 45)

Our traditional philosophy of mathematics, rooted in the foundational de-
bates of the early twentieth century, rests on the idea of mathematical activ-
ity as an approximation to formal reasoning. The notion of a logical deduc-
tion from the axioms to the theorems dominates mainstream discussions
about mathematical truth and epistemology.

If pictures enter traditional discussions, it is either as a heuristic instru-
ment or as part of a discussion of Gödelian Platonism and Gödel’s ideas
of a human faculty of perception of abstract objects. Philosophers found
Gödel’s faculty of mathematical intuition puzzling2, and a lot of the philo-
sophical literature on mathematical intuition or the use of pictures struggles
with understanding the relationship of visualization to foundational ques-
tions of ontology and mathematical truth.3

However, no one would dispute that pictures, diagrams, metaphors and
the like are epistemically important for the working mathematician. Out-
side of the mathematical journals, mathematical practice uses a lot of draw-
ings on blackboards and napkins, fingers symbolizing objects, gestures,
movements4, sound, and many other features that traditional views of philo-
sophy of mathematics tend to disregard.5 Of course, foundationalists would
claim that the use of these means by mathematicians tells us nothing about
mathematics.

In this paper, we shall take a decidedly anti-foundationalist stance, fol-
lowing Maddy’s maxim ofNaturalism in Mathematics(Mad97). We be-

2To give just one example: “Talk of this mysterious faculty of intuition is taintedwith
an air of occult mysticism.” (Che97, p. 121)

3Cf. (Kva97; Kva00), the discussion between Brown and Folina (Bro97; Fol99),
(Rot00), and (Gia94). In his recent project on informal provability, Leitgeb agrees with
our point of view: “There is nothing ‘mystic’ about intuition: whenever mathematicians
speak of intuition, they refer tonon-conceptual/non-propositionalrepresentations of math-
ematical structures. (Lei07)”.

4Cf. (Núñ04).
5Visualization has always played a major rôle in the didactics of mathematics,cf.—as a

completely unrepresentative sample—,e.g., (Nel93) and (Pai01). Recently, it has become a
major focus in philosophy of mathematics as well, as witnessed by (Man05)and the other
papers in the collection (ManJørPed05).
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“Take a line and a point
that does not lie on the
line . . . ”

“. . . and draw the
unique parallel through
the point.”

Figure 1: The annotated kinetigramK0.

lieve that a philosophy of mathematics should take mathematical practice
and the actions and standards of mathematicians very seriously. A philo-
sophy of mathematics that requires major re-interpretation of statements of
mathematicians in order to fit into the philosophical frame is unacceptable
from our point of view. Similarly, a philosophy of mathematics that ignores
a large part of the actual research practice (and focuses on its last step: the
preparation of the published version of the proof) cannot account for all of
mathematical activity.

We observe that our naturalistic position has a number of consequences,
in particular for the philosophy of set theory:

(1) If our philosophy of mathematics has to pay attention to mathemat-
ical practice and attitudes and behaviour of mathematicians, then we
need to rest our philosophical decisions on empirical data. Note that
this does not mean that philosophy of mathematics becomes socio-
logy of mathematics, or becomes subordinate to sociology of math-
ematics, but just that the data typically collected by sociologists of
mathematics should play a major rôle in the development and the
testing of our philosophical hypotheses.

(2) The actual attitudes of set theorists and mathematicians towards ax-
ioms are much more subtle than traditional philosophy of mathemat-
ics can accommodate. It is conceivable that mathematicians accept
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“Let’s take a model of
set theory...”

“...and an elementary
embedding into an
inner model...”

“...and let κ be its
critical point.”

Figure 2: The annotated kinetigramK1.

certain instances of an axiom for intrinsic reasons, but the most gen-
eral form of the axiom is only accepted for extrinsic reasons (such
as having a coherent and presentable theory). If these differencesare
relevant for mathematical practice, a philosophy of mathematics fol-
lowing our naturalistic principles should account for this perceived
distinction.

(3) If pictures and diagrams play such a big rôle in mathematical prac-
tice, then every naturalistic philosophy of mathematics should be able
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to explain their impact for mathematical epistemology in particular
and for mathematics in general. This calls for a philosophical invest-
igation of visualization and picture proofs.

Observation (1) has been made by Thomas Müller and the present au-
thor, and has led to a comprehensive project called “Empirical Philosophy
of Mathematics”. Not only in philosophy of mathematics, but in analytic
philosophy in general, there is a tendency to make claims about intuitions
and the general perception of communities without any empirical basis. For
instance, in philosophy of language, many claims about grammaticality of
phrases are made based on the personal intuition of the author as a native
speaker. Similarly, in epistemology, philosophers decide whether the sen-
tence “yesterday I knew it was true, but today I know that it is false” can
be uttered adequately and if so, what it means, based on their linguistic and
conceptual introspection.

In philosophy of mathematics, many claims have been made about math-
ematicians and their attitudes without realizing that statements like “most
mathematicians are Platonists” or “most mathematicians think that the Ax-
iom of Choice is true” are empirical statements that need to be checked.

A preliminary version of this paper was written in 2002, and in spite
of the fact that the paper has been completely rewritten, the content of the
present paper still reflects its time of origin, which was before Müller and
the present author started their project “Empirical Philosophy of Mathe-
matics”. Most of the claims that we shall make in §3 and §4 follow the
criticized tradition of basing empirical claims on personal introspection.
We shall, however, takeObservations (2) and (3)very seriously.

In §2, we discuss the diagrammatic reasoning used in informal mathem-
atics, developing an informal notion ofannotated kinetigram which will
be used throughout this paper. We then apply this notion in §3 to graphical
representations of ordinal numbers as many mathematicians use them in
introductory set theory courses.

In §4, we shall discuss an interesting phenomenon relating toObserva-
tion (2): set theorists observe a difference in the difficulty of working in
various axiomatic frameworks. Certain ways of contradicting the axiom of
choice are less natural than others. The naturalistic philosopher of math-
ematics needs to find an explanation of this phenomenon. In §5, we shall
tie this phenomenon to our visualizations of ordinals.

As mentioned, this paper does not contain an empirical analysis of the
claims made. In our conclusion, §6, we shall discuss what empirical studies
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will have to be made in order to make the results from §5 acceptable from
the point of view ofEmpirical Philosophy of Mathematics.

2 DIAGRAMS, KINETIGRAMS, ANNOTATED KINETIGRAMS

As mentioned, pictures are ubiquitous in mathematical practice, but static
diagrams don’t suffice to describe how mathematicians discuss mathemat-
ics: Check a blackboard after a mathematics professor has finished a class;
the blackboard will have lots of pictures and drawings of constructions, but
it will be hard if not impossible to recover the constructions from the pic-
ture. The development of the pictures through time is needed to understand
the full meaning of these pictures. This leads naturally to the notion of a
“kinetigram”, which was introduced by Pais as “a diagram that changes”
(Pai01).

We shall go beyond Pais: the typical blackboard presentation of a math-
ematical argument or definition requires additional verbal information in
order to be properly understood. In this paper we shall therefore be con-
cerned withannotated kinetigrams. These are drawings that change over
time with natural language utterances at particular points of the drawing
process. In this paper, we shall represent annotated kinetigrams by a se-
quence of snapshots of the drawn picture with the natural language an-
notations associated with the snapshot that corresponds to the moment of
utterance. Note that this is not a mathematically precise definition, but it
will be enough for the purposes of this paper.6

In a given mathematical context, annotated kinetigrams candescribeor
represent a mathematical concept. Again, this is an informal notion that
is difficult to make precise, but it is empirically easy to establish whether a

6In fact, one of the striking features of the use of pictures in mathematics is their enorm-
ous flexibility and reluctance to be put into a formal framework. The samekinetigram can
have different meanings in different areas of mathematics because the respective audiences
use different rules of vaguely defined pictorial semantics. Annotationscan be used to evoke
certain connotations that activate a different pictorial semantics. While doing mathematics,
you can invent your own diagrammatic language on the fly and be understood by your audi-
ence sharing the same background context. Thus, not even the pictorial vocabulary of our
kinetigrams is fixed.

In artificial intelligence and computer science (for instance, in automated theorem prov-
ing), researchers are interested in approximating the human capacity ofpictorial communic-
ation and argumentation by formal systems. In this context –in contrast with the described
mathematical practice–, the formal vocabulary is fixed. A large body ofwork exists in this
direction, of which we list (Shi94; AllBar196; Jam01; Bar0+02) as examples. In this paper,
however, we are not interested in formalisms of this kind.



Visualization of ordinals 7

given annotated kinetigram describes a particular concept or not by show-
ing them to mathematicians knowledgeable in the relevant area of mathem-
atics.

In some cases, annotated kinetigrams do notper sedescribe a concept,
but only under certain assumptions. As an example of this, consider the
annotated kinetigramK0 in Figure 1. We can imagine a geometer drawing
the chalk lines on a blackboard. Even though the blackboard itself is Euc-
lidean, the lines could represent lines in some non-Euclidean geometry. The
second line drawn in the second snapshot represents the parallel through
the point, but this parallel only exists uniquely if the geometry satisfies the
parallel postulate. We shall say that the second line inK0 represents the
parallel under the assumption that the geometry is Euclidean.

The assumptions needed such that a given annotated kinetigram repres-
ents a concept can be used as a measure of quality of depiction. If the
assumptions needed are very strong, then the annotated kinetigram could
be seen as abad representationof the concept. Conversely, if an annot-
ated kinetigram is agreed to be (independently) the natural depiction of a
concept, but only represents the concept under certain assumptions, then
this could be seen as a strong argument to restrict our attention to those
cases where the assumptions are satisfied. The case of the Euclidean geo-
metry can be used as an example, and we shall see another example in §5.

It should be stressed that annotations are crucial for the representation of
mathematical concepts. Dots and lines can represent many different things
in drawings, and can be disambiguated only by the context and natural lan-
guage explanations. We shall see a relevant example in §3. Also note that
annotations are immensely powerful: by our use of natural language we
can let simple lines and arrows stand for excruciatingly complicated math-
ematical concepts, as the standard exampleK1 from set theory (Figure 2)
shows.

Of course, for a mathematical concept, there is never a unique annotated
kinetigram that represents it. Often, mathematicians have to choose how
to represent their concepts pictorially, and some of the representations are
better than others, thus leading to measures of quality of representation. We
already discussed the assumptions needed for being a representation asone
measure of quality, but there are others.

In general, a depiction with fewer or less powerful annotations would be
considered better. In particular, it could be considered preferable if the an-
notations only refer to properties of the diagram as it is drawn. For instance,
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1 •

2 • •

ω • • • · · ·

ω +1 • • • · · · •

ω +2 • • • · · · • •

ω ·2 • • • · · · • • • · · ·
ω

ω ·2+1 • • • · · · • • • · · · •
ω ω·2

ω2 +1 • • • · · · • • • · · · • • • · · · · · · •
ω ω·2 ω2

Figure 3: Dot diagrams of the ordinals 1, 2,ω , ω +1, ω +2, ω ·2, ω ·2+1,
andω2 +1.

the annotations inK0 refer to geometric properties that can be found in the
picture itself, whereas those ofK1 refer to properties that are not geomet-
rically represented such as the elementarity of the embedding.

Note that the informal notions introduced in this section are not precisely
defined in a mathematical sense, but they are concrete enough to serve as
empirically testable features of mathematical practice. Whether a given
annotated kinetigram represents a concept is something that can be eval-
uated by polling the appropriate community of mathematicians; similarly,
you can ask mathematicians whether one annotated kinetigram represents
a concept better than another one. So, in spite of the lack of mathematical
precision in these definitions, the approach of the “Empirical Philosophy of
Mathematics” nevertheless makes our notions meaningful and testable (cf.
§ 6).
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“You start with infin-
itely many dots...”

“...then you add a dot
that is bigger than all
of these...”

“...and repeat drawing
infinitely many dots...”

“...and now you repeat
this procedure infin-
itely many times...”

“...and add a final dot.”

Figure 4: The annotated kinetigramK2.

3 PICTURES OF INFINITE ORDINALS

When the present author teaches students how to conceive ordinals, henor-
mally draws them as dot diagrams as exemplified for some small ordinal in
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the list of diagrams from Figure 3. Most likely, many other set theorists do
the same.7

While the depictions of 1, 2,ω , ω +1, ω +2, ω ·2, ω ·2+1 can still be
understood as diagrams without change and annotation, the ordinalω2 +1
is more complicated. Note that there are two different kinds of ellipses: one
indicating the infinite continuation in anω-sequence, the other indicating
the infinite continuation of the pattern seen before the ellipsis. An annota-
tion will disambiguate these two different kinds of ellipses, as seen in the
annotated kinetigramK2 in Figure 4.

The dot diagrams stress the order structure of the ordinals, and are partic-
ularly good for the visualization of concepts that have to do with this order
structure (like, e.g., the notion ofcofinality; cf. § 5).

It is more complicated to use the dot diagrams for the notion ofcardin-
ality as this cannot preserve the order structure. However, for small infinite
ordinals, we can give diagrams to depict their countability by displaying
the (definable) bijections toω as depicted in Figures 5 and 6.

•

-

-

-

-

-

- •

-

-

-

-

-

- • · · · • ω +1

• • • · · · ω

Figure 5: Bijection betweenω +1 andω .

• •

*

*

*

*

*

*

* •

8

8

8

8

8

8

8

8 • · · · • • • · · · ω ·2

• • • • • • · · · ω

Figure 6: Bijection betweenω ·2 andω .

Already atω2 drawing bijections becomes very cumbersome, and in gen-
eral, we know that there is no general procedure that allows us to present
bijections like this for all countable ordinals.8 So, the notion ofcardinality

7This visualization of ordinals has already been discussed in a letter (dated 16 August
1926) of Oskar Becker to Hermann Weyl. Becker, however, disagrees with the present
author’s belief that the visualization is crucial for our understanding of the ordinals (cf.
(ManRyc02, p. 187)).

8This would amount to a function assigning codes of wellorderings ofω to all countable
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is not easily represented in our diagrams. In an annotated kinetigram, it
can easily (yet trivially) be incorporated by an annotation, as can be seen
in the annotated kinetigramK3 in Figure 7. The arrow from the part of the
diagram representingω2 to the part ofK3 representingω stands for some-
thing that is not easily depicted in the diagram. In §2, we mentioned that
the geometric representation of properties in the diagram is a measure of
quality for the representation. With this in mind, we should not considerK3

as a high-quality pictorial representation of the fact thatω2 is countable.

“Let’s take ω2...”

“...and ω ...”

“...and a bijection
between them.”

Figure 7: The annotated kinetigramK3.

4 FRAGMENTS OF THEAXIOM OF CHOICE

In axiomatic set theory, mathematicians observe that working in models
without the axiom of choice is more difficult than if you are allowed to use
the axiom of choice: proofs are necessarily more subtle, and it is easier to
make mistakes.

ordinals. This is not possible without the use of the Axiom of Choice, thus there can’t be a
presentable way to do it (uniformly).
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But there are many ways in which the axiom of choice can fail, and from
personal introspection and experience with colleagues and students, wecan
say that there are differences among the possible violations of the Axiom
of Choice that are not necessarily captured by logical strength.

Whereas set theorists (even those of platonistic provenance strongly be-
lieving in the truth of the Axiom of Choice) seem to have no problem work-
ing in some models ofZF+¬AC, e.g., in models ofZF+AD,9 and need
only a little change of perspective to work in models like this,10 they have
more serious problems with models of severe violations of the Axiom of
Choice.

“The ordinal ω1 is
uncountable, but...”

“...for each initial
segment...”

“...there is a bijection
between the initial
segment and ω .”

Figure 8: The annotated kinetigramK4.

9The axiomAD is theAxiom of Determinacystating that every for each infinite two-
player perfect information game with countably many moves, one of the two players has
a winning strategy. This axiom contradictsAC. More details can be found in (Kan94,
§§27–32).

10A platonist believing in the Axiom of Choice would think of working in an inner model
of ZF+AD where mathematicians of different philosophical conviction would think ofthe
universe being a model ofZF+AD; while of philosophical importance (cf. the discussion
of Kleinberg’s use of language in (Ste97)), this distinction is of little consequence for their
mathematical practice.
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Let us consider the fragmentR stating “ω1 is regular”.11 The theory
ZF+¬R is consistent (ifZF is): the Feferman-Lévy model (Jec03, Example
15.57) is a model of this theory, but the present author has seen that arguing
in models ofZF+¬R is much harder for mathematicians and students alike
and that people are much more prone to making mistakes when arguing in
ZF+¬R than inZF+R. This statement has not been empirically tested but
is based on anecdotal personal evidence (see §6).

Let us assume that there is indeed a measurable difference that makes
¬R a particularly bad violation of the axiom of choice. How can we explain
this?

Of course, we have the extrinsic argument invoking the degree of famili-
arity: most working set theorists work inZFC and for any consequenceC of
the Axiom of Choice, the more oftenC is used in our everyday set-theoretic
arguments, the more alien the theoryZF+¬C appears to us. Since the reg-
ularity of ω1 is crucially important for many parts of set theory (e.g., the
theory of Borel sets),ZF+¬R looks remarkably odd to us. This is a purely
extrinsic (and less than satisfactory) reason for acceptingR.12 In §5, we
shall give an intrinsic argument forR based on the pictorial representations
of ordinals from §3.

5 AN ARGUMENT BASED ON VISUALIZATION

The usual set-theoretic definition ofω1 is “the least uncountable ordinal”.
This definition can be represented with the annotated kinetigramK4 in Fig-
ure 8. Clearly, this annotated kinetigram representsω1. However, as dis-
cussed in §3, it is not the most natural kinetigram: it uses an annotation
to tell the viewer that the arrow stands for something that is not properly
representable in the diagram (see Footnote 8).

11Thecofinality of a limit ordinalξ , denoted by cf(ξ ), is the smallestα such that there
is a function f : α → ξ such that

⋃
ran( f ) = ξ . Obviously, cf(ξ ) ≤ ξ . A limit ordinal ξ

is calledregular if cf(ξ ) = ξ . The fragmentR is an easy consequence of the Axiom of
Choice,cf. (Jec03, Corollary 5.3).

12We are not claiming that intrinsic arguments for axioms are in general better than ex-
trinsic arguments. For a discussion of intrinsic and extrinsic arguments in the history of
the axiom of choice, we refer the reader to (Mad88a, p. 487–489); in (Mad88b, §VII),
Maddy gives a general discussion of these two types of arguments forfoundational axioms
in mathematics.

It is, however, part of our empirical assumption that the (extrinsic) argument based on
exposure and familiarity is not good enough to explain the “measurable difference” that
mathematicians experience when dealing with various systems with violations of the axiom
of choice.



14 Benedikt Löwe

Now consider the annotated kinetigramK5 in Figure 9. This annotated
kinetigram represents some ordinal without using the annotation to intro-
duce notions that are foreign to the diagrammatic representation. As such,
it is preferable toK4. In ZF, K5 represents the smallest ordinalξ such that
cf(ξ ) > ω . The statement “ξ = ω1” is equivalent toR. Consequently,K5

does not representω1 in ZF +¬R and therefore not inZF, but it does in
ZF+R.

“The ordinal ω1 is the
smallest ordinal such
that...”

“...whenever you
have an increasing
ω-sequence...”

“...it ends before
reaching the top.”

Figure 9: The annotated kinetigramK5.

As discussed in §2, having a natural annotated kinetigram for a mathem-
atical concept under some assumptionA might be construed as an argument
for restricting our attention to models that satisfyA. If the reader accepts
our belief thatK5 is a more natural representation ofω1 thanK4, this could
count as an intrinsic explanation for the fact that mathematicians preferR

over¬R.



Visualization of ordinals 15

6 FUTURE WORK

In this paper, we observed differences in the attitude of mathematicians
towards different negations of the axiom of choice, identifyingZF+¬R as
a particularly bad theory.

In our attempt to explain why mathematicians might viewZF +¬R as
bad (or, contrapositively, why they think thatR is an important axiom), we
gave two different representations ofω1 by annotated kinetigrams. The an-
notated kinetigramK4 used more powerful annotations and was less natural,
whereasK5 was more natural, but only representedω1 under the assump-
tion of R. This was construed as an intrinsic argument forR.

However, our analysis rests on many empirical claims that we did not
even attempt to justify. Is is really true that mathematicians find it more
difficult to work in the Feferman-Lévy model than in a model of, say,ZF+
AD? Is it really true that mathematicians prefer annotated kinetigrams with
less powerful annotations? In particular, do set theorists preferK5 over
K4?13

In the spirit of “Empirical Philosophy of Mathematics”, these questions
will have to be investigated before the argument of this paper can be accep-
ted as a philosophical analysis of the set-theoretical process of justifying
axioms.
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