
Modelling Simultaneous Games in Dynamic Logic

Abstract. We make a proposal for formalizing simultaneous games at the ab-
straction level of player’s powers, combining ideas from dynamic logic of sequential
games and concurrent dynamic logic. We prove completeness for a new system of
‘concurrent game logic’ CDGL with respect to finite non-determined games. We also
show how this system raises new mathematical issues, and throws light on branching
quantifiers and independence-friendly evaluation games for first-order logic.

1. Introduction: parallelism in games

Games are very much a part of our daily lives. Even our dialogues,
arguments, or other interactions can be viewed naturally as games
involving goals and strategies. Games also play an important role in
economics, logic, linguistics and computer science. In all these settings,
the following distinction makes sense. We can talk about a single game,
but also about several games played in sequence, or in parallel. While
sequential games have been studied a lot recently by logicians, the focus
of this paper is simultaneous play in parallel games.

In game theory, typical matrix games like ‘Prisoner’s Dilemma’ in-
volve simultaneous moves for two players: each chooses independently
from the other, and the outcome may be viewed as the set of both
moves. In another setting, computer scientist use parallel games with
simultaneous moves to model concurrent processes. And finally, in lin-
guistics, parallel play has entered the area of ‘branching quantifiers’

∀x∃y
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∀z∃u
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These have been modelled by means of ‘IF games’ of imperfect in-
formation by (Hintikka and Sandu, 1997). E.g., with the preceding
quantifier pattern, the challenge player Abelard chooses an assignment
for x following which the response player Eloise chooses one for y in
one game. In another part of the game without informational access
to the first, Abelard chooses for z following which Eloise chooses for
u. We may view these games as played simultaneously, and after this
phase, we have a ‘test’ game checking whether Rxyzu holds.
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How can we model these games in logic? The structure of sequential
games, and players’ responses to observed moves by others is relatively
well-understood in terms of modal logic. (Parikh, 1985) used analogies
with Propositional Dynamic Logic (PDL) to define a Dynamic Game
Logic (DGL) of sequential game constructions, representing players’
global powers for determining the final outcomes of the game. More-
over, (van Benthem, 2001) showed how dynamic logics enhanced with
epistemic and preference modalities can describe a richer move-by-move
local structure of extensive sequential games, and in particular the
interplay between players’s moves and their uncertainties. But what
about parallel games? So far, no version of DGL has been proposed
which deals with parallel games. Likewise, no elegant game logic is
known for the above IF evaluation games.

Finding such a logic is not one question, but a whole family, de-
pending on how we cast parallel play. In computer science, the chal-
lenge of concurrency has led to such systems as Process Algebra and
Game Semantics. These systems vary in what communication they
allow between the different components of a parallel process. (Baeten
and Verhoef, 1995) gives a nice exposition of different types of parallel
operators, viz. free merge, left merge as well as communication merge.
Modelling ‘open systems’ that interact with their environment gave rise
to the concept of ‘concurrent game structures’ (Alur et al., 2002), both
synchronous and asynchronous (interleaving).

Against this background, the present paper has a modest aim. We
will model simultaneous play of parallel games in terms of players’
abstract powers, without allowing for communication. Using ideas from
dynamic logic for concurrency, we will propose a system where players’
powers in a parallel game can be reduced to their powers in the con-
stituent games. This is by no means the only perspective that makes
sense, and we will discuss some alternatives in our Section 4 on game
bisimulation, game algebra, and richer modal languages.

Our starting point is this. (Goldblatt, 1992) proves completeness
for concurrent PDL over abstract state models, proposed by (Peleg,
1987), whose key program construct is α ∩ β, meaning “α and β are
executed in parallel”. We will work at this same modal abstraction level
for describing players’ powers in games, for its familiarity and elegance.
And thus, we seek the missing link in the following diagram:

PDL(sequential programs) DGL(sequential game logic)

CPDL(concurrent extension) ///o/o CDGL?(concurrent game logic)
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After explaining the less familiar parts of this diagram, we propose
a new concurrent dynamic game logic (CDGL), prove some of its key
properties, including completeness – and relate all this to logical eval-
uation games and game algebra. We finally show how CDGL suggests
further interesting questions, as well as generalizations to richer modal
logics of parallel games.

Before doing all this, here are two more points. One is that we
say ‘games’ where a game theorist would say ‘game forms’, since we
disregard preferences or utilities. The latter structure is important,
but beyond the scope of this paper. This is in line with common usage
in logic and computer science, though it may sound strange at first to
readers from other communities. The other, more crucial point is this.
Parikh’s DGL is a logic of determined games, where one of the two
players has a winning strategy. But as we shall see, this mathematically
convenient simplification no longer works with parallel games, so we will
allow non-determined games throughout, whose sequential logic will be
denoted by DGL• in later sections.

2. From PDL to DGL

2.1. Powers of players in complex games

Propositional dynamic logic is well-known and we assume that the
reader is familiar with it (Harel et al., 2000; Blackburn et al., 2001).
Its ideas have spread to many other areas, including the dynamic logic
of sequential games. We start with an informal analysis of players’
powers in extensive games. Following that, we briefly review the basics
of DGL, first proposed in (Parikh, 1985), and further developed by
(Pauly, 2001), (Pauly and Parikh, 2003), (van Benthem, 2003) and
others. DGL works over ‘game boards’ rather than real games, but to
motivate this abstraction, we will first analyze the latter.

Consider forcing relations describing each player’s powers to end a
game in a set of final states, starting from an initial state:

sρi
GX : player i has a strategy for playing game G from state s on-

wards, whose resulting final states are always in the set X, whatever
the other players choose to do.
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As an example, consider the following simple extensive game tree
describing a game of perfect information for two players:
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In this game, player E has two strategies, forcing the sets of end states
{1, 2}, {3, 4}, while player A has four strategies, forcing one of the sets
of states {1, 3}, {1, 4}, {2, 3}, {2, 4}.

This is a determined game. Non-determinacy arises, for instance,
when we allow imperfect information about other players’ moves. In
the following imperfect information game, the dotted line indicates that
player A cannot observe E’s move:
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Players’ powers are now given by uniform strategies which prescribe the
same move at epistemically indistinguishable nodes. Thus, E’s powers
are the same as above, whereas A can now just force the game to end
in {1, 3} (‘always play left’) and {2, 4} (‘always play right’).

Similar non-determined phenomena occur in strategic matrix games.
In Prisoners’ Dilemma, players simultaneously choose one of {co-operate},
{defect}, and the power for any choice consists of two outcomes, sharing
the chosen move, but differing in what the other does.

While these examples are finite games, ‘forcing relations’ apply equally
well to infinite games, viewing their complete histories as the outcomes.
In particular, even sequential games of perfect information can be non-
determined with infinite play. The notions and results in our paper
apply to all these settings, illustrating the power of abstraction.

Forcing relations satisfy two simple conditions (van Benthem, 2003):

(C1) Monotonicity: If sρi
GX and X ⊆ X ′, then sρi

G X ′.

(C2) Consistency: If sρE
GY and sρA

GZ, then Y and Z overlap.

Here, Monotonicity makes for smoother theory - though it may obscure
some intuitive features of players’ powers. In this paper, we will assume
Monotonicity for the most part, for ease of exposition. But at some
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strategic places in our exposition, we also give more informative for-
mulations of players’ powers that work without it. For a deeper logical
study of non-monotonic versions of powers in a general neighbourhood
setting, we refer to (Hansen et al., 2007).

For determined games, a much stronger third condition holds, which
says that, if one player lacks a set power X, the other player has the
complement power −X. This property typically failed in our earlier
games with imperfect information, and with simultaneous moves. We
will discuss this issue once again later.

Next, consider the following intuitive constructs which form games
out of given ones. We do not provide their precise definitions as math-
ematical operations on trees, which are available in many places, but
their meaning should be clear: choice (G∪G′), dual (Gd), and sequen-
tial composition (G;G′). Some game logics also have a construct of
iteration for repeated play, but we will disregard such infinitary game
constructions in this paper - interesting though they are.

The following observation shows how players’ powers have an elegant
recursive structure in complex games (van Benthem, 1999). Note that
we are not assuming determinacy, which explains our deviation from
the more usual presentations of DGL. We need to describe the powers
of both players independently, without the winner taking all the center
stage in the account. We will use ‘E’ and ‘A’ to denote the two players,
and ‘i’ for either player when the statement is the same for both.

FACT 2.1. Forcing relations for players in complex sequential two-
person games satisfy the following equivalences:

sρE
G∪G′ X iff sρE

G X or sρE
G′X

sρA
G∪G′ X iff ∃Z : sρA

GZ, ∃Z ′ : sρA
G′Z ′ and X = Z ∪ Z ′

sρE
GdX iff sρA

GX

sρA
GdX iff sρE

GX

sρi
G;G′X iff ∃Z : sρi

GZ and for each z ∈ Z, ∃Xz : zρi
G′Xz,

with X =
⋃
{Xz : z ∈ Z}.

Some of these equivalences can be easily simplified using Monotonic-
ity. We gave this version as it seems closer to computation of powers
in concrete games, both sequential, and later on, also parallel.

2.2. Test games

In what follows, we also need a stipulation of powers for auxiliary ‘test
games’, which have been a topic of some discussion in the literature.
The standard DGL stipulation is given by:
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sρE
δ?X iff s ∈ [[δ]] and s ∈ X.

sρA
δ?X iff s 6∈ [[δ]] or s ∈ X.

This makes test games determined, but the roles of the two players
look asymmetric. In our view, the following more symmetric stipulation
is preferable, which we adopt for DGL•:

sρA
δ?X iff s 6∈ [[δ]] and s ∈ X.

This makes test games one more example of indeterminacy: A does
not get any powers if s ∈ [[δ]], but this does not mean that E gets every
power then. Note also that, on both stipulations, players never get the
empty set as a power: Non-Triviality holds.

One reason why taking a stand on test games is confusing are the
three notions involved: a test game δ?, its dual game (δ?)d, and the test
game (¬δ)?. We will not attempt to sort all this out here, as it seems
orthogonal to the main points that we want to make in what follows.

2.3. A dynamic logic of game boards

Now we leave the arena of concrete games G, moving towards ‘generic
games’ that can be played starting from any state s on ‘game boards’.
In this generic calculus, atomic games can be arbitrary: finite, infinite,
with perfect or imperfect information. The basic ‘game boards’ are
models with a set of states plus some ‘hard-wired’ forcing relations:

DEFINITION 2.2. A game model M = (S, {ρi
g | g ∈ Γ}, V ) has a

set S of states, a valuation V assigning truth values to atomic propo-
sitions in states, and for each g ∈ Γ, ρi

g ⊆ S × P(S). For each g, the
relations satisfy Monotonicity and Consistency, and we also require
Non-Triviality: no player can force the empty set.

Note that the forcing relation ρ, unlike the state-to-state transition
relations for programs in PDL, runs from states to sets of states.

The language of DGL• (without game iteration) is defined as follows:

DEFINITION 2.3. Given a set of atomic games Γ and a set of atomic
propositions Φ, game terms γ and formulas φ are defined inductively:

γ := g | φ? | γ; γ | γ ∪ γ | γd

φ := ⊥ | p | ¬φ | φ ∨ φ | 〈γ, i〉φ,

where p ∈ Φ, g ∈ Γ and i ∈ {A,E}.
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The player modalities introduce an explicit notion of agency.

The truth definition for formulas φ in models M at states s is
standard, except that the modality 〈γ, i〉φ is interpreted as follows:

M, s |= 〈γ, i〉φ iff there exists X : sρi
γX and ∀x ∈ X : M, x |= φ.

In this semantics, we assume the earlier recursive definitions of forc-
ing relations for complex game terms. One can check by induction that
these preserve Monotonicity, Consistency, and Non-Triviality.

Here is the basic result for this logic. Our proof follows the method
of (Pauly, 2001) for determined games, using the suggestions in (van
Benthem, 1999) to circumvent the assumption of determinacy.

THEOREM 2.4. DGL• is complete and its validities are axiomatized
by the following axioms:

a) all propositional tautologies and inference rules

b) if ⊢ φ→ ψ then ⊢ 〈g, i〉φ → 〈g, i〉ψ

c) 〈g,E〉φ → ¬〈g,A〉¬φ

d) ¬〈γ, i〉⊥

e) reduction axioms:

〈α ∪ β,E〉φ↔ 〈α,E〉φ ∨ 〈β,E〉φ

〈α ∪ β,A〉φ↔ 〈α,A〉φ ∧ 〈β,A〉φ

〈γd, E〉φ↔ 〈γ,A〉φ

〈γd, A〉φ↔ 〈γ,E〉φ

〈α;β, i〉φ ↔ 〈α, i〉〈β, i〉φ

〈δ?, E〉φ ↔ (δ ∧ φ)

〈δ?, A〉φ ↔ (¬δ ∧ φ)

Proof. Soundness of these axioms should be clear from the definition
of forcing relations for the complex games given earlier. We stated the
consistency axiom just for one player, as the other one follows.

For the completeness, we use a canonical model construction. The
model is C = (Sc, {Qi

g | g ∈ Γ}, V c), with Sc the set of all maximally

consistent sets of formulae. Let φ̂ = {sc ∈ Sc : φ ∈ sc}. We set:

sc ∈ V c(p) iff p ∈ sc

scQi
gX iff ∃φ̂ ⊆ X : 〈g, i〉φ ∈ sc

For all Y⊆Sc, we define Qi
g(Y ) = {sc : scQi

gY }. Next a function Qi
γ

for complex formulas is defined recursively as follows:
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1. QE
α∪β(Y ) = QE

α (Y )
⋃
QE

β (Y )

2. QA
α∪β(Y ) = QA

α (Y )
⋂
QA

β (Y )

3. QA
αd(Y ) = QE

α (Y )

4. QE
αd(Y ) = QA

α (Y )

5. Qi
α;β(Y ) = Qi

α(Qi
β(Y ))

6. QE
δ?(Y ) = δC

⋂
Y where δC = {sc : C, sc |= δ}

7. QA
δ?(Y ) = ¬δC

⋂
Y where ¬δC = {sc : C, sc 6|= δ}

What we need to prove then is the following lemma:

LEMMA 2.5. For any maximally consistent set sc ∈ Sc and any for-
mula φ: C, sc |= φ iff φ ∈ sc.

To do so, we prove the following two claims by simultaneous induction
on φ and γ:

(1) φC = φ̂, and (2) ∀ψ : Qi
γ(ψ̂) = 〈̂γ, i〉ψ

The base of both claims hold by definition. The boolean inductive steps
for (1) are standard. For the game modality (〈γ, i〉φ), (1) can be proved
easily using (2). We now prove (2) for complex game terms γ. Here are
the typical cases:

Suppose scQi
α;βψ̂. Then, by definition scQi

αQ
i
βψ̂. Now by the induc-

tion hypothesis, Qi
β(ψ̂) = 〈̂β, i〉ψ, and so, Qi

α(Qi
β(ψ̂)) = Qi

α(〈̂β, i〉ψ).

Thus, sc ∈ Qi
α(〈̂β, i〉ψ) = ̂〈α, i〉〈β, i〉ψ, which implies that 〈α, i〉〈β, i〉ψ ∈

sc. Then, by the relevant reduction axiom, 〈α;β, i〉ψ ∈ sc. The argu-
ment is analogous for the converse.

Suppose scQA
α∪βψ̂. Then sc ∈ QA

α (ψ̂)
⋂
QA

β (ψ̂) by definition, and
hence 〈α,A〉ψ ∈ sc and 〈β,A〉ψ ∈ sc by the induction hypothesis.
Therefore, 〈α ∪ β,A〉ψ ∈ sc by the relevant reduction axiom. The
argument is analogous for the converse.

Suppose scQA
αd ψ̂. Then scQE

α ψ̂ by definition, and so 〈α,E〉ψ ∈ sc by

the induction hypothesis. Thus, 〈αd, A〉ψ ∈ sc by the relevant reduction
axiom. All further cases are analogous.

The completeness now follows from the Lemma; with an added rou-
tine check that the forcing relations on our canonical game board satisfy
Monotonicity, Consistency, and Non-Triviality. �
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One way of summarizing this completeness proof is as a combina-
tion of two insights. First, the reduction axioms for players’ powers
turn every formula into an equivalent one involving only modalities
for atomic game terms. Next, the latter really form just a poly-modal
logic interpreted over neighborhood semantics - with just three ad-
ditional constraints, viz. the monotonicity, the non-triviality, and the
consistency between paired modalities 〈α,A〉 and 〈α,E〉.

The logic DGL• presented here is also decidable, since the preceding
completeness proof can be carried out wholly in a finite universe of
subformulas for the initial formulas to be refuted. But we will not
discuss issues of computational complexity in this paper.

2.4. Intermezzo: determinacy and non-determinacy

We have proved the completeness of game logic for the non-determined
case. To simplify things, game logic as in (Parikh, 1985) and (Pauly
and Parikh, 2003) works with determined games. While convenient,
this also suppresses the essentially intertwined roles of the players. The
condition can be stated as follows, with S the total set of states:

(C3) Determinacy: If it is not the case that sρE
GX, then, sρA

G(S-X),
and the same for A vis-a-vis E.

We summarize once more why non-determinacy is natural: cf. also
(van Benthem, 1999). Consider our examples in Section 2.1. In the
imperfect information game given there, the set {2, 3} is not a power for
player E, but neither is its complement {1, 4} a power for A. Essentially
the same held with simultaneous play in matrix games, and we will
elaborate that example in Section 3.2, using an appropriate account of
compound outcome states. Finally, as we pointed out already, our test
games, too, violate condition (C3) for understandable reasons.

In determined games, the powers of one player completely fix those of
the other. (Parikh, 1985) showed that the dual-free logic of determined
games with iteration is sound and complete w.r.t the class of all board
models. (Pauly, 2001) showed that iteration-free logic of determined
games with dual is sound and complete on the class of all game models.
Our completeness proof for the non-determined case includes dual but
not iteration. Since the first version of this paper appeared in (van
Benthem et al., 2007), (van Eijck and Verbrugge, 2008) have used
our framework to analyze the full sequential language with iteration,
announcing a completeness proof for DGL• with iteration.

Against this background, our general setting including parallel play
suggests the need for a richer logic which can deal with non-determined
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games as well as a non-sequential ‘product’ construct for games. In the
next section, we will discuss a modal process logic which leads the way.

2.5. Game boards and real games

DGL• and DGL are about generic games played on game boards. But
as stated in Section 1, there is another, and richer, tradition: process
algebra and game semantics give mathematical models for communica-
tion and general interaction between agents and systems (Bergstra et
al., 2001) with real game trees for players and their moves. We only note
one simple connection here. One can represent game boards as coming
from real game trees, either determined or not, using the following two
representation results from (van Benthem, 2001):

PROPOSITION 2.6. Any two families F1 and F2 of subsets of some
set S satisfying the three earlier conditions (C1), (C2), and (C3) are
the powers of players at the root of some two-step extensive game.

PROPOSITION 2.7. Any two families F1 and F2 of subsets of some
set S satisfying just the conditions (C1), (C2) can be realized as players’
powers in a two-step imperfect information game.

For further discussion, we refer to Section 6. As for the present,
however, we will stay at the board level.

3. From Concurrent PDL to Concurrent DGL

3.1. Concurrent PDL

The system of concurrent dynamic logic due to (Peleg, 1987) extends
regular dynamic logic by introducing a new program operator α × β,
interpreted as “α and β executed in parallel”. In (Goldblatt, 1992)
two modalities 〈α〉 and [α] are introduced for describing the effects of
this, which are no longer interdefinable by ¬. Concurrent PDL with
these two modalities is finitely axiomatizable and decidable. Given our
interests, we will only review a fragment of CPDL in the following.

The language of iteration-free, necessity-free CPDL is as follows:

DEFINITION 3.1. Given a set of atomic programs Γ and atomic propo-
sitions Φ, program expressions γ and formulas φ are defined as:

γ := g | φ? | γ; γ | γ ∪ γ | γ × γ
φ := ⊥ | p | ¬φ | φ ∨ φ | 〈γ〉φ

where we take p ∈ Φ and g ∈ Γ.
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DEFINITION 3.2. A CPDL-model is a structure M = (S, {Rg | g ∈
Γ}, V ) where S is a set of states, V is a valuation assigning truth values
to atomic propositions at states, and for each g ∈ Γ, Rg ⊆ S × P(S)
is a relation of simultaneous reachability. Truth of a formula φ in M
at state s is defined as usual, except for 〈γ〉φ, which reads:

M, s |= 〈γ〉φ iff there exists T ⊆ S with sRγT and T ⊆ φM

Again, the relation Rg, unlike those for programs in PDL, runs from
‘states to sets of states’. But this time, unlike with our forcing relations
for sequential games, the view of the sets is ‘conjunctive’ rather than
‘disjunctive’: a distributed program runs from one state to a set of
states as its ‘collective output’. This point should be kept clearly in
mind when checking our assertions in what follows.

We now define the intended meanings of the key program constructs
in CPDL in terms of reachability:

Composition: s(R · Q)T iff ∃U ⊆ S with sRU , and a family {Tu :
u ∈ U} of subsets of T with uQTu for all u ∈ U , such that T =⋃
{Tu : u ∈ U}.

Parallel combination: R ⊗ Q = {(s, T ∪W ) : sRT and sQW}.

DEFINITION 3.3. A CPDL-model is standard if it satisfies

Rα;β = Rα · Rβ

Rα∪β = Rα ∪ Rβ

Rα×β = Rα ⊗ Rβ

Rφ? = {(s, {s}) : M, s |= φ}

For this formalism, and even for the full language of CPDL, the
following result has been proved (Goldblatt, 1992):

THEOREM 3.4. CPDL is completely axiomatizable with respect to
standard CPDL-models, and it is decidable.

There are also interesting model-theoretic aspects to CPDL. E.g.,
(van Benthem et al., 1994) give a bisimulation analysis, and show how
both sequential and parallel operations are ‘safe for bisimulation’. Later
on, we will state similar results for our game operations.

Now our task is to combine the model for concurrency presented here
with that for the earlier sequential game logic.
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3.2. Forcing relations for product games

To introduce forcing relations for players in product games, we must
reconcile the two earlier perspectives. Games can produce complex
outcome states now, denoted by sets read ‘conjunctively’ as in CPDL,
but players also have choices leading to sets of such sets, still read
disjunctively at this second level as we did with DGL. Here is our
proposal - and it is the essential new feature of this paper. X,U, T,W
range over sets of sets of states, t, w range over sets of states, and s, u
range over states:

DEFINITION 3.5. Forcing relations for composite games are these:

sρE
G∪G′X iff sρE

GX or sρE
G′X

sρA
G∪G′X iff sρA

GX and sρA
G′X

sρE
GdX iff sρA

GX

sρA
GdX iff sρE

GX

sρi
G;G′X iff ∃U : sρi

GU and for each u ∈
⋃
U , uρi

G′X

sρi
G×G′X iff ∃T , ∃W : sρi

GT and sρi
G′W

and X = {t ∪ w : t ∈ T and w ∈W}

As an illustration, we show how this format for computation of
players’ powers fits an intuitive example of parallel games, for instance,
simultaneous move selection in a matrix game:

E

����
��

��
22

22

1 G 2

A

����
��

��
22

22

3 H 4

To make things comparable, we now change earlier single outcomes
s to singleton states s. The powers of E in the game G are given by
{{1}}, {{2}} and that of A by {{1}, {2}}. Similarly, in the game H,
the powers of E and A are {{3}, {4}} and {{3}}, {{4}}, respectively.
The powers of E and A in the product game G × H are then formed
by taking unions: {{1, 3}, {1, 4}}, {{2, 3}, {2, 4}} and {{1, 3}, {2, 3}},
{{1, 4}, {2, 4}}, respectively. Reading the inner brackets as conjunctive,
and the outer ones as disjunctive, this seems to fit our intuitions.

3.3. Concurrent DGL

3.3.1. Modal language and forcing models

The language of our new game logic of Concurrent DGL is a simple
combination of all ingredients we had so far:
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DEFINITION 3.6. Given a set of atomic games Γ and atomic propo-
sitions Φ, game terms γ and formulas φ are defined inductively as:

γ := g | φ? | γ; γ | γ ∪ γ | γ × γ
φ := ⊥ | p | ¬φ | φ ∨ φ | 〈γ, i〉φ

where we take p ∈ Φ, g ∈ Γ and i ∈ {A,E}.

The intended meaning of the new game construct α × β is that the
games α and β are played in parallel, without communication.

DEFINITION 3.7. A conjunctive game model is a structure M =
(S, {ρi

g | g ∈ Γ}, V ), where S is a set of states, V is a valuation assigning
truth values to atomic propositions in states, and with basic relations
ρi

g ⊆ S × P(P(S)) assigned to basic game expressions g, satisfying the
conditions of Monotonicity, Consistency and Non-Triviality.

Here, we assume the same structural conditions on forcing relations
as before. In the semantics of our language, we define the truth of a
formula φ in M at a state s in the obvious manner, with the following
key clause for parallel game product:

− M, s |= 〈α, i〉φ iff ∃X : sρi
αX and ∀x ∈

⋃
X : M, x |= φ.

Note that this squashes together the outcomes of all separate games,
making only local assertions at single states. An alternative option
would be to evaluate formulas at ‘collective states’, being sets of the
original states. We will return to this in Section 4.2.

Validities of this logic include all those we had before for DGL•. But
the logic now also encodes facts about parallel games. Here are two,
pointing toward an algebra of parallel games lying encoded here:

− 〈α× β, i〉φ ↔ 〈β × α, i〉φ

− 〈(α × β)d, i〉φ↔ 〈αd × βd, i〉φ

A crucial further principle will be found just below.

3.3.2. Axioms and completeness

Here is the reduction axiom for game product (‘Product Axiom’):

− 〈α× β, i〉φ ↔ 〈α, i〉φ ∧ 〈β, i〉φ.

THEOREM 3.8. The Product Axiom is valid in CDGL.
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Proof. M, s |= 〈α× β, i〉φ
iff ∃X: sρi

α×βX and ∀x ∈
⋃
X : M, x |= φ

iff ∃X: ∃T , ∃W : sρi
αT and sρi

βW and X = {t∪w : t ∈ T and w ∈W}

and ∀x ∈
⋃
X : M, x |= φ

iff (by some simple calculation; crucially using Non-Triviality forbid-

ding the forcing of an empty set of outcome states) ∃T : sρi
αT and

∀y ∈
⋃
T : M, y |= φ and ∃W : sρi

βW and ∀z ∈
⋃
W : M, z |= φ

iff M, s |= 〈α, i〉φ and M, s |= 〈β, i〉φ

iff M, s |= 〈α, i〉φ ∧ 〈β, i〉φ. �

Next, using our earlier methods again, we claim that CDGL is
complete. The argument is a combination of the following two facts.

FACT 3.9. Thanks to the reduction axioms, all game formulas can be
reduced to equivalent ones involving only atomic modalities 〈g, i〉φ.

Also, our generalized semantics still has the original board models
for DGL• as a special case. For, the map f : S → P(S) with f(s) = {s}
is easily lifted to an injective map from P(S) to P(P(S)), and so, any
X ⊆ S can be represented as f(X) ⊆ P(S).

FACT 3.10. There is a faithful embedding from DGL• models into
CDGLmodels making any DGL•-satisfiable formula CDGL-satisfiable.

Soundness of our axioms on CDGL models is easy to check. Next,
suppose φ is not derivable in CDGL. By Fact 3.9, its atomic equivalent
φ′ is not derivable inDGL•. So, φ′ has a counter-model in DGL•. Then,
by Fact 3.10 we get a counter-model in CDGL. This proves

THEOREM 3.11. CDGL is completely axiomatized by the reduction
axioms in DGL• plus the new reduction axiom for product.

Again, decidability can be shown as before, by a simple adjustment.

While this result may seem a victory for PDL-style ‘reductionism’,
our product axiom also reflect the expressive poverty of CDGL (and
indeed, also the program logic CPDL) as an account of parallelism.
We have no means of stating truly collective properties of conjunctive
states. We return to this point in Section 4.

3.4. Monotonicity: An excursion

Our forcing relations in parallel games still satisfy the original mono-
tonicity and consistency conditions, as may be proved by induction:
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(C1′) Monotonicity: If sρi
GX and X ⊆ X ′, then sρi

G X ′.

(C2′) Consistency: If sρE
GY and sρA

GZ, then Y and Z overlap.

But really, in CDGL, two set-theoretic levels are relevant to players’
powers: the ‘conjunctive’ output sets inside, and the ‘disjunctive’ sets of
these at the outside. Accordingly, there is ‘outer monotonicity’ adding
new sets, and ‘inner monotonicity’ enlarging sets inside a power. The
latter has no general appeal for us, since it would represent stronger
outcomes of a process or game. If anything, our weak language stating
universal properties of individual states inside conjunctive sets might
suggest ‘downward monotonicity’ at the inside level.

4. Game Models and Game Algebra

4.1. Game Models

One of the more basic questions of model theory is: “When are two
models equivalent?” The notion of modal bisimulation can be adapted
to express equivalences between game models: cf. (van Benthem et al.,
1994) for CPDL, and (van Benthem, 2002) for general games. For
CDGL, the relevant concept can be formulated as follows.

DEFINITION 4.1. Let M = (S, {ρi
g | g ∈ Γ}, V ) and M′ = (S′, {ρ

′i
g |

g ∈ Γ}, V ′) be two conjunctive game models. A relation - ⊆ S × S′ is
a CDGL-bisimulation between M and M′, if for any s - s′, we have

1. s ∈ V (p) iff s′ ∈ V ′(p), for all p ∈ Φ (the atomic propositions),

2. For all X ⊆ P(S), and g ∈ Γ (the atomic games), if s ρi
g X, then

∃ X ′ ⊆ P(S′) with s′ ρ
′i
g X ′ and ∀x′ ∈ ∪X ′, ∃x ∈ ∪X: x - x′.

3. For all X ′ ⊆ P(S′), and g ∈ Γ, if s′ ρ
′i
g X ′, then ∃ X ⊆ P(S),

such that s ρi
g X, and ∀x ∈ ∪X, ∃x′ ∈ ∪X ′: x - x′.

Analogously to the results in (Pauly, 2001) for DGL, the following
shows that CDGL formulas are invariant for bisimulation, and the
CDGL game constructions are safe for bisimulation:

THEOREM 4.2. Let M = (S, {ρi
g | g ∈ Γ}, V ) and M′ = (S′, {ρ

′i
g |

g ∈ Γ}, V ′) be two conjunctive game models, while s - s′ with s ∈ S
and s′ ∈ S′. Then

1. For all formulae φ : M, s |= φ iff M′, s′ |= φ.
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2. For all games γ : if s ρi
γ X, then ∃ X ′ ⊆ P(S′) with s′ ρ

′i
γ X ′,

and ∀x′ ∈ ∪X ′, ∃x ∈ ∪X : x - x′.

3. For all games γ : if s′ ρ
′i
γ X ′, then ∃ X ⊆ P(S) with s ρi

γ X, and
∀x ∈ ∪X, ∃x′ ∈ ∪X ′ : x - x′.

The proof is a simultaneous induction. The only interesting case is
checking the safety of the ‘product’ construction, where once more, we
need the structural property of Non-Triviality.

Our notion of bisimulation is very ‘rough’, squashing the structure
of sets of sets in the forcing relations. This again reflects the poverty
of our modal language. Let us now try to remedy this.

4.2. Intermezzo: a richer ‘collective’ modal language

Can we create a richer modal language, and a finer notion of bisimula-
tion for parallel games and truly collective action? While the details of
this are beyond the aims of this paper, we do state one possible track,
which also throws some light on our actual system.

Let us reinterpret our modal language over sets of states as the
basic entities, including the original states as singletons. This requires
a valuation assigning sets of sets to proposition letters, but otherwise,
we can use the same models as before:

DEFINITION 4.3. A collective model is a structure M = (S, {ρi
g | g ∈

Γ}, V ), with S a set of states, V a valuation assigning truth values to
atomic propositions in sets of states, with the basic relations ρi

g ⊆ P(S)
× P(P (S)) assigned to basic game expressions g as before, satisfying
again Consistency, Monotonicity, and Non-Triviality.

The sets in P(S) are collective states, and the language can now
express properties of these, rather than just individual states. In par-
ticular, while some properties of collectives may be reducible to those of
their constituent points (or, atomic singleton states), others need not.
This ‘set lift’ by itself would also make sense for CPDL, to make it a
more realistic account of collective action, and we think it might even
simplify the semantics of sequential program composition. The set lift
also fits with the semantics of collective predicates in natural language.

We can now interpret our modal language in collective models M
over sets of states X as the basic indices. The truth definition for
formulas φ is standard with the modality 〈γ, i〉φ lifted as follows:

− M,X |= 〈γ, i〉φ iff ∃Y : Xρi
γY and for all Z ∈ Y, M, Z |= φ.
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This pretty much recreates CDGL as a logic for sets. But the
interesting feature is now that we can also access other structure,
in particular the inclusion structure among base sets. For this pur-
pose, borrowing an idea from temporal logic, one can introduce modal
operators [⊆]φ for downward inclusion which say that

− M,X |= [⊆]φ iff φ holds at each subset of the current set X.

‘Distributive properties’ like the ones in CDGL hold if and only if
each atomic subset has them. These imply their downward modalized
versions, but other properties may, too. Other well-known modal oper-
ators that make sense here are an upward inclusion modality, as well as
a binary sum modality 〈+〉φψ saying that the current set is a union of
one satisfying and one satisfying ψ. This seems close to what we want
to say about the output of parallel games as defined above.

We can translate our earlier logics into this extended formalism by
forcing every proposition letter p to become distributive. This can be
done using a suitable modal prefix like [⊆]〈⊆〉p, which says that every
subset includes a subset where p holds.

It would be of interest to axiomatize richer modal languages of
joint action like this, and develop the bisimulation-based model theory
of parallel play together with the collective state structure which it
produces. We do not expect obvious reduction principles like the con-
junction axiom of CDGL, since the properties of unions of conjunctive
states from the separate games may have only a tenuous relationship
to those of their components.

4.3. Game algebra for DGL• (DGL) and CDGL

Now we take another mathematical perspective, following (van Ben-
them, 2003). The forcing relations in models for DGL• (DGL) validate
a basic game algebra. Consider a language of game expressions with
variables and the operations ∨ (choice for E), − (dual) and ◦ (sequential
composition). We call two game expressions G and H identical if they
give the same forcing relations for both players in each board model.

The valid game identities form a ‘De Morgan Algebra’: a Boolean
Algebra without special laws for 0 and 1. On top of that, further princi-
ples describe interactions between the choice operators and sequential
composition. We give a few typical examples, where the ‘∧’ game is the
dual of ‘∨’, with the first choice now for player A, not E:
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(x ◦ y) ◦ z ≈ x ◦ (y ◦ z)
(x ∨ y) ◦ z ≈ (x ◦ z) ∨ (y ◦ z)

(x ∧ y) ◦ z ≈ (x ◦ z) ∧ (y ◦ z)

−x ◦ −y ≈ −(x ◦ y)

y � z → x ◦ y � x ◦ z

Here s � t abbreviates s ∨ t ≈ t. Typically, right-distribution of com-
position over choice is invalid here:

G; (H ∪K) = (G;H) ∪ (G;K)

On the left, E has a choice for playing game H or K after playing game
G; but on the right, she must decide in advance which composed game
to play. A set of game equations conjectured by (van Benthem, 1999)
was proved complete by (Goranko, 2003), (Venema, 2003).

In a similar manner, our new logic CDGL contains a game algebra,
this time also for a parallel operation ×. It is still unknown what this
algebra looks like - though we have assembled some valid principles:

x× y ≈ y × x
(x× y) × z ≈ x× (y × z)

x× (y ∨ z) ≈ (x× y) ∨ (x× z)

x× (y ∧ z) ≈ (x× y) ∧ (x× z)

−(x× y) ≈ −x×−y

As a matter of fact, one could have different interpretations of ×
and consequently different sets of algebraic equations. For example, for
some other notions of concurrent game Idempotence x × x ≈ x might
be considered a desideratum.

This setting suggests a representation result for CDGL game al-
gebra in terms of a concrete algebra of consistent pairs of monotone
relations over some game board. This was done in (Venema, 2003) for
DGL• (DGL) game algebra, but now, we need to incorporate a product
operator–which might give the algebra a ‘quantale’-like structure.

5. Connections with logical evaluation games

DGL is a logic of general game structure, but even so, it has strong
analogies with specific games used by logicians for evaluation of first-
order formulas φ in models M. We quickly recall some basics. Verifier
V and Falsifier F dispute the truth of a formula φ in some model M.
The game starts from a given assignment s sending variables to objects
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in the domain of M. Verifier claims the formula is true in M, Falsifier
claims it is false. The rules of the game eval(φ,M, s) are as follows:

• If φ is an atom, V wins if φ is true, and F wins if it is false.

• For formulas φ ∨ ψ, V chooses a disjunct to continue with.

• For formulas φ ∧ ψ, F chooses a conjunct to continue with.

• With negation ¬φ, the two players switch roles.

• For existential quantifiers ∃xψ, V chooses some object d in M,
and play continues with φ and s[x := d].

• For universal quantifiers ∀xψ, F chooses some object d in M,
and play continues with φ and s[x := d].

This analogy has been high-lighted more formally in (van Benthem,
2003), who shows that evaluation games for first-order logic involve a
combination of extensive game trees eval(φ,M, s) where s is a variable
assignment at which the game starts, plus a game board consisting of all
variable assignments over the model M. Players’ powers make sense as
well. E.g., ‘Hintikka’s Lemma’ says that Verifier has a winning strategy
iff φ is true in (M, s), while it is false iff Falsifier has a winning strategy.

Many central features of DGL that were explained earlier occur
in the proof for this simple lemma, and this is no coincidence. The
Booleans of propositional logic match the game constructs of choice
and dual, and quantification involves sequential game composition, in
the way a quantifier ∃x first shifts the current value of the variable x,
‘and then’ moves on to evaluate the matrix formula. Notice that this
set-up has the same generic character as Parikh’s logic: a formula can
start an evaluation game at any model and assignment, and moreover,
the available concrete moves are not encoded in the formula: what
objects can be assigned depends on the model M.

Viewed in this way, first-order evaluation games are a special case of
DGL, with atomic games of two sorts: (a) tests for truth and falsity of
atomic formulas, and (b) variable-to-value reassignment for quantifiers
by themselves. On top of these, one then has the same sequential game
constructs as in DGL. This is a non-standard view of first-order logic,
as consisting of a decidable game algebra over specific atomic games,
where the undecidability of the logic comes from the mathematical
structure of the actions (in particular, full assignment spaces), rather
than the compositional repertoire by itself. Still, (van Benthem, 2003)
proves that no generality is lost, through a converse representation:
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THEOREM 5.1. There is an effective translation τ from DGL-formulas
φ to first-order formulas, and from DGL game expressions to first-order
formula operators, and there is also a transformation taking any game
board M for DGL to a first-order model M∗ such that

(a) M, s |= φ iff M∗, s |= τ(φ).

(b)sρi,M
G X iff sρi,M

τ(G)X.

The idea is, as in Section 2.4, to replace abstract atomic games
g by evaluation games for quantifier combinations ∃∀. Though the
cited paper high-lights the ‘game algebra’ of DGL (Section 4.3), this
representation also implies ((van Benthem, 2003), Section 3.3):

COROLLARY 5.2. There is a faithful embedding of DGL into the
complete game logic of first-order evaluation games.

Thus, logic games – of which there are many more than just evalua-
tion games, though very specialized scenarios, are complete for general
game logics of sequential constructions in a precise sense.

Caveat These results do not say that general games as in (C)DGL
should be understood as test games ǫ? for propositions ǫ in our earlier
sense! The quantifiers are understood here as real moves changing the
current state, and as such, they represent arbitrary game moves, or at
least, arbitrary changes through forced sets.

The above translation involves converting atomic game modalities
〈g〉φ into a relational modality plus one for ‘set membership’, following
the representation result for powers of players in perfect information
games proved in (van Benthem, 2001). This is also related to our ex-
tended languages in Section 4.2, where the inclusion modalities access
substructure of sets as collective states.

Next, as we observed in our introduction, parallel games occur in
the extension of first-order logic to ‘independence-friendly’ IF logic
proposed by (Hintikka and Sandu, 1997) as a procedural analogue of
Henkin’s ‘branching quantifiers’. Indeed, (van Benthem, 2003) consid-
ered this option, and observed how various basic principles of IF logic
seem to be basic game laws for parallel games. Here is a typical example.
Consider the following pattern from the introduction:

∀x∃y
JJJ

J

Rxyzu

∀z∃u

ssss

Clearly, this can be described as a game construction of the form:

(G×H);K
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with G, H the two quantifier prefix games, and K the subsequent test
game. To make this fit our formal framework, we think of G, H as
producing separate assignments (one, s, to x, y, the other, t, to z, u),
and the result of G×H can then be viewed as the set {s, t}, just as in
the semantics of CPDL.

In general, collective states will now be sets of partial assignments,
whose merge is a new total output state. This introduces a new feature
not encountered before. Sometimes, these assignments are ‘inconsis-
tent’, in that their union assigns different values to the same variable.
Thus, we need a CPDL-style semantics where some output sets are
consistent, and others are not. But this is easily accommodated. What
seems harder to accommodate is the role of atomic predicate Rxy whose
variables may refer to different partial assignments. These express truly
collective properties of states, more in line with the extended modal
framework of Section 4.2. We leave this issue unresolved here.

Another nice example of an algebraic way of thinking is the following
basic IF law. Consider the IF formula ∀x∃y/xRxy, where the slash
indicates that Verifier has no access to the value chosen by Falsifier
for x. There has been some discussion about equivalents for this, with
some people claiming that it is just ∃y∀xRxy. But (van Benthem, 2006)
shows that the correct transform is the formula ∃y∀x/yRxy, which
gives players the same powers under any concrete interpretation. This
inversion of quantifiers seems to go against received wisdom in first-
order logic. But viewed in terms of our game algebra, it demystifies
simply to the earlier commutativity of parallel product!

∀x
BB

B

Rxy

∃y

~~~

∃y
@@

@

Rxy

∀x

|||

Thus, we are really seeking, once more, to fill a corner in a diagram:

DGL FOL

CDGL ///o/o/o Branching quantifier game logic

In this connection, (van Benthem, 2003) has proposed to define powers
of players in parallel games through the following stipulation:

sρi
G×HX iff ∃U : sρi

GU,∃V : sρi
HV : U × V ⊆ X.
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But we have found it hard to make sense of this, and our system CDGL
is our new attempt at supplying the ‘missing corner’.

Clearly, all valid laws of CDGL can be instantiated as valid prin-
ciples of branching quantification, or general IF logic. Thus, we have
found a decidable core logic inside a rather gruesome higher-order sys-
tem, whose combinatorial nature is still somewhat ill-understood.

Even so, open problems abound. For instance,

Question Can we extend Theorem 4.1 to a representation of CDGL
models in terms of IF evaluation games of imperfect information?

We could try to use the representation theorem for powers in im-
perfect information games of (van Benthem, 2001) for this purpose,
introducing suitable moves and uniform strategies over given game
boards. Another possible result might arise by sticking to a modal
language, but using an IF -variant for it, as in (Sevenster, 2006).

Finally, given our discussion, we do not see our proposal as a com-
plete analysis of IF logic. But this distance is also a virtue. Compare
what (Blass, 1972) did for Lorenzen’s ‘dialogue games’, famous for their
blend of attractive insights and obnoxious details. Inside dense thickets
of ‘procedural conventions’, he saw a compositional game structure,
which was the dawn of linear logic. Indeed, (Abramsky, 2006) has taken
a similar look at IF logic, and proposed a linear logic-based analysis.
While our analysis is more crude than his, it is in the same spirit.

6. Conclusions and intentions

This paper merges dynamic logic of games with modal logics of con-
currency. The resulting system CDGL has a semantics on generalized
game boards allowing for parallel play and compositional analysis of
players’ powers for determining outcomes. Our main new result says
that the set of validities is axiomatizable, and decidable by reduction to
a poly-modal base logic over generalized neighborhood models. CDGL
also suggests new algebraic and model-theoretic questions, such as ax-
iomatizing its complete game algebra (or CPDL itself), or exploring
its model theory based on our new bisimulations. Finally, we showed
that CDGL may throw some new light on IF evaluation games for
first-order logic which allow for independence or imperfect information.

The framework proposed here is a bare minimum, and its reduc-
tion of powers to component games, while convenient, makes it a poor
theory of parallel play. We have indicated a richer modal language of
parallel games in Section 4.2, which would allow for genuine collective
predicates. In addition, we list some further avenues of investigation.
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Modal fixed-point logics Our system of game logic left out the in-
finitary game iteration of the original DGL, since our main concern
was orthogonal: a lift to parallel games. Nevertheless, various infinitary
game iterations make sense in game theory and process semantics of
linear logic. In particular, (van Eijck and Verbrugge, 2008) have ex-
tended essentially our system to include Parikh’s PDL-style Kleene
iteration. All this raises the issue of how dynamic game logics relate
to modal fixed-point logics generally. As is well-known, modal logic
over neighbourhood models can be translated into bimodal logics over
standard relational models, and (Parikh, 1985) uses this to embed
DGL into the modal mu-calculus, while the same ‘〈〉[ ]-trick’ drives
the representation theorem in (van Benthem, 2003). Still, neighbour-
hood semantics has tricky features like this: fixed-point equations for
common knowledge are no longer equivalent to PDL-style countable
iterations: cf. (van Benthem and Sarenac, 2004). Thus, a translation of
PDL over neighbourhood models must end up, not in bimodal PDL
but the mu-calculus. So, what is the natural fixed-point structure of
operations on games, when interpreted over modal-style game boards?

Extensive games and communication Parallel processes and games
are studied at the richer level of extensive game trees in Process Algebra
and Game Semantics. Connections with our modal analysis over game
boards remain to be developed. In particular, linear game semantics
has a richer repertoire of game operations with communication, includ-
ing powers of switching between games, and strategic manoeuvres like
‘Copy cat’. This reflects the interleaving nature of its products, whereas
our direct products allow no interaction between subgames at all.

Logics of strategies DGL and its ilk state the existence of strategies,
but do not display any strategies in their formalism. By contrast, game
semantics, and indeed game theory itself has many interesting strategic
manoeuvres between stages of one sequential game, or components of
parallel games, such as ‘strategy stealing’. (van Benthem, 2002) has
used dynamic logic to explicitly define strategies of players in extensive
games. In subsequent work, we intend to combine the two perspectives,
and do a ‘double gamification’–so to speak–for propositional dynamic
logic, once as a logic of game structure, and once as a logic of strategies
within these games. See (Netchitailov, 2000), (van Benthem, 2007) and
(Ghosh, 2008) for some first steps.

Explicit knowledge Intuitively, parallel games involve knowledge and
communication between players. Indeed, IF logic involves games of
imperfect information, where players need not know each others’ moves,

synconcgamesrevised.tex; 29/07/2008; 10:05; p.23



24

while one of our key examples of non-determinacy was a game of the
same sort. (van Benthem, 2006) has an explicit epistemic language
bringing this out. It is not hard to add knowledge modalities to DGL
and CDGL, to state explicitly what players know about their powers -
and doing this would be truer to some of our motivating examples. But
getting to a complete game logic in this setting is not routine. Game
operations may ‘package’ some epistemic information (our product said
implicitly that no communication take place). But in general, explicit
epistemic structure seems at odds with the compositionality that we
have used throughout, in line with the observation in game theory that
imperfect information games have no good notion of subgame, and
hence no easy game algebra. The experience with compositionality in
IF logic may be relevant there: cf. (Hodges, 1997).

Goals and preferences Real game theory is, as we noted in our In-
troduction, about players pursuing goals driven by their evaluation of
outcomes, or their preferences between them. Does our abstract modal
approach still make sense in this setting, where raw powers might have
to give way to more interactive notions of equilibrium?
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