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abstract. We make a proposal for formalizing simultaneous games at

the abstraction level of player’s powers, combining ideas from dynamic logic

of sequential games and concurrent dynamic logic. We prove completeness

for a new system of ‘concurrent game logic’ CDGL with respect to finite

non-determined games. We also show how this system raises new mathe-

matical issues, and throws light on branching quantifiers and independence-

friendly evaluation games for first-order logic.

1 Introduction: parallelism in games

Games are very much a part of our daily life. Even our normal dialogues,
arguments, or other interactions can be viewed naturally as games involving
goals and strategies. Games also play an important role in economics, logic,
linguistics and computer science. In all these settings, the following distinc-
tion makes sense. We can talk about a single game, but also about several
games played in sequence, or in parallel. While sequential play has been
studied a lot recently by logicians, the focus of this paper is simultaneous
play, or in other words, parallel games.

In game theory, evergreens like ‘Prisoner’s Dilemma’, or ‘Rock, Paper
and Scissors’ can be thought of as simultaneous single move games for two
players. Moreover, playing in this way allows for interesting strategic ma-
noeuvres, such as ‘strategy stealing’. In another setting, computer scien-
tists have used games to model concurrent interactive processes allowing
for switching between games, where ‘copy-cat strategies’ (cf. the game se-
mantics of [AJ94] for linear logic) are of the essence. Finally, in linguistics,
parallel games have entered in the area of ‘branching quantifiers’

1Acknowledges a Rubicon grant of the NWO (680-50-0504) for her visit to University
of Amsterdam in the academic year 2006/07.

2Acknowledges her University of Amsterdam doctoral grant, as well as support from
the INIGMA project, NWO.
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These have been modelled by means of ‘IF games’ of imperfect information
by [HS97]. E.g., with the preceding quantifier pattern, the challenge player
Abelard chooses an assignment for x following which the response player
Eloise chooses one for y in one game. In another part of the game without
informational access to the first, Abelard chooses for z following which Eloise
chooses for u. We may view these games as played simultaneously, and after
this phase, we have a ‘test’ game checking whether Rxyzu holds.

How can we model these games in logic? The situation with sequen-
tial games is relatively well-understood in terms of modal logic. [Par85]
used analogies with propositional dynamic logic PDL to define a Dynamic
Game Logic (DGL) of sequential game constructions, representing players’
global powers for determining final outcomes. [Ben01] showed how dynamic
logics enhanced with epistemic and preference modalities can also describe
the move-by-move local structure of extensive sequential games. But what
about parallel games?

In computer science, the challenge of describing concurrency has led to a
host of new formal systems, including Process Algebra and Game Seman-
tics. It has proved much harder to extend dynamic logic to a theory of
concurrency, and likewise, so far, no version of Parikh’s game logic has been
proposed which deals with parallel games. Likewise, no elegant abstract
game logic is known for IF evaluation games. But there is hope. [Gol92]
proves completeness for Concurrent PDL, first proposed by [Pel87], whose
key program construct is α ∩ β, meaning “α and β are executed in parallel”.
Against this background, the purpose of our paper is this. We want to stay
with the modal abstraction level for describing players’ powers in games,
for its familiarity and elegance. And to do so, we seek the missing link in
the following diagram:

PDL(sequential programs) DGL(sequential game logic)

CPDL(extension to concurrency) ///o CDGL?(concurrent game logic)

After explaining the less familiar parts of this diagram, we propose a new
concurrent dynamic game logic CDGL, prove some key properties, including
completeness – and relates all this to logical evaluation games and game
algebra. We finally show how CDGL generates further interesting questions.
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Actually, Parikh’s DGL is a logic of determined games, where one of
the players has a winning strategy. As we shall see, this mathematically
convenient simplification no longer works when we have parallel games, so
we will allow non-determined games throughout.

2 From PDL to DGL

2.1 Powers of players in complex games

PDL is well-known and we assume that the reader is familiar with it
([HKT00], [BdRV01]). Its ideas have spread to many other areas, including
the dynamic logic DGL of sequential games. We start with an informal,
though hopefully useful analysis of players’ powers in extensive games. Fol-
lowing that, we briefly review the basics of DGL, first proposed in [Par85],
further developed by [Pau01], [PP03], [Ben03] and others. DGL works over
‘game boards’ rather than real games, but to motivate this abstraction step,
we will first analyze the latter.

First, forcing relations describe the powers each player has to end an
extensive game in a set of final states, starting from a single initial state.

sρi
GX : player i has a strategy for playing game G from state s onwards, whose

resulting states are always in the set X, whatever the other players choose to do.

As an example, consider the following simple extensive game tree:
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In this game, player E has two strategies, forcing the two sets of end states
{1, 2}, {3, 4}, while player A has four strategies, forcing one of the sets of
states {1, 3}, {1, 4}, {2, 3}, {2, 4}.

These forcing relations satisfy the following two conditions ([Ben03]):

(C1) Monotonicity: If sρi
GX and X ⊆ X′, then sρi

G X′.

(C2) Consistency: If sρE
GY and sρA

GZ, then Y and Z overlap.

Here, Monotonicity is a convenience, making for a smoother mathematical
theory - but it also tends to obscure some intuitive features of the structure
of players’ powers. In this paper, we will assume Monotonicity for the most
part, for ease of exposition. But at some strategic places, we also give more
informative formulations of players’ powers that work without it.

Now, consider the following constructs which form new games. Their pre-
cise definitions as mathematical operations on trees are available in many
places, but their intuitive meaning should be clear: choice (G ∪ G′), dual
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(Gd), and sequential composition (G; G′). Some game logics also have iter-
ation for repeated play, but we will disregard such infinitary notions in this
paper - interesting though they are.

The following observation shows how players’ powers have an elegant
recursive structure in complex games ([Ben99]). Note that we are not as-
suming determinacy, which explains our deviation from the more usual pre-
sentations of DGL. We need to describe the powers of both players inde-
pendently, without the winner taking all the center stage in the account.
We will use ‘E’ and ‘A’ to denote the two players, and ‘i’ for either player
when the statement is the same for both. Again, the statement that follows
does not assume that games are determined, and hence we must describe
the powers of both players at the same time:

FACT 1. Forcing relations in complex games satisfy the following equivalences:

sρE
G∪G′

X iff sρE
G X or sρE

G′
X

sρA
G∪G′

X iff sρA
GX and sρA

G′
X

sρE
Gd
X iff sρA

GX

sρA
Gd
X iff sρE

GX

sρi
G;G′

X iff ∃Z : ρi
GZ and for all z ∈ Z, zρi

G′
X

Next, we give a reformulation which does not presuppose upward mono-
tonicity of powers. Some readers may find this closer to the actual compu-
tation of powers in concrete examples, while it also points the way towards
our discussion of concurrent games later on.

FACT 2. Forcing relations for players in complex games when we are not assuming
monotonicity as well, are described below:

sρE
G∪G′

X iff sρE
G X or sρE

G′
X

sρA
G∪G′ X iff ∃Z : sρA

GZ, ∃Z′ : sρA
G′Z

′ and X = Z ∪ Z′

sρE
Gd
X iff sρA

GX

sρA
Gd
X iff sρE

GX

sρi
G;G′

X iff ∃Z : sρi
GZ and ∀z ∈ Z, ∃Xz : zρi

G′
Xz and X =

S
{Xz : z ∈ Z}

2.2 A dynamic logic of game boards

Now we leave the arena of concrete games G, moving towards a more ab-
stract level of ‘generic games’, which can be played starting from any state
s on game boards. Here are the basic models serving as our ‘game boards’
which have a set of states plus some ‘hard-wired’ forcing relations:

DEFINITION 3. A game model is a structure M = (S, {ρi
g | g ∈ Γ}, V ), where S is a set

of states, V is a valuation assigning truth values to atomic propositions in states, and for
each g ∈ Γ, ρi

g ⊆ S × P(S). We assume that for each g, the relations are upward closed
under supersets (the earlier Monotonicity), while also, the earlier Consistency condition
holds for the forcing relations of the players A, E.

Note that the forcing relation ρ, unlike the state-to-state transition relations
for programs in PDL, runs from states to sets of states.
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The language of DGL (without game iteration) is defined as follows:

DEFINITION 4. Given a set of atomic games Γ and a set of atomic propositions Φ,
game terms γ and formulas φ are defined inductively:

γ := g | φ? | γ; γ | γ ∪ γ | γd,

φ := ⊥ | p | ¬φ | φ ∨ φ | 〈γ, i〉φ,

where p ∈ Φ, g ∈ Γ and i ∈ {A,E}.

Note the separate modalities for each player, introducing an explicit, though
modest notion of agency.

The truth definition for formulas φ in a model M at a state s is standard,
except for the modality 〈γ, i〉φ, which is interpreted as follows:

M, s |= 〈γ, i〉φ iff there exists X : sρi
γX and ∀x ∈ X : M, x |= φ.

Here is the basic result about this logic, for which we provide a proof
which is not based on determinacy, combining the suggestions in [Ben99]
with the method of [Pau01] for determined games.

THEOREM 5. DGL is complete and its validities are axiomatized by

(a) all propositional tautologies and inference rules

(b) if ⊢ φ → ψ then ⊢ 〈γ, i〉φ → 〈γ, i〉ψ

(c) reduction axioms:

〈α ∪ β,E〉φ↔ 〈α,E〉φ ∨ 〈β, E〉φ

〈α ∪ β,A〉φ ↔ 〈α,A〉φ ∧ 〈β, A〉φ

〈γd, E〉φ↔ 〈γ, A〉φ

〈γd, A〉φ↔ 〈γ, E〉φ

〈α; β, i〉φ ↔ 〈α, i〉〈β, i〉φ

〈δ?, i〉φ ↔ (δ ∧ φ)

Soundness of these axioms should be clear from the earlier definition of
the forcing relations. It is obvious for the monotonic version, but the reader
may want to check that all the above axioms would also hold for our version
of players’ powers without monotonicity. The case of A’s powers in the game
starting with a choice for the other player E would be a good example.

One way of summarizing the completeness proof is as a combination of
two insights. First, the reduction axioms for players’ powers turn every
formula into an equivalent one involving only modalities for atomic game
terms. Next, the latter really form just a poly-modal logic interpreted over
neighborhood semantics - with two additional constraints, viz. the mono-
tonicity, and the consistency between paired modalities 〈α, A〉 and 〈α, E〉.

The logic DGL presented here is also decidable, since the preceding com-
pleteness proof can be carried out wholly in a finite universe of subformulas
for the initial formulas to be refuted. We will not discuss issues of more
precise computational complexity in this paper.
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2.3 Intermezzo: determinacy and non-determinacy

We have just proved the completeness of game logic in a non-determined set-
ting. To simplify things, [Par85] and [PP03] work with determined games.
While convenient, this suppresses essential roles of the players. The extra
condition can be stated as follows, with S the set of all states:

(C3) Determinacy: If not sρE
GX, then sρA

GS-X, and the same for A vis-a-vis E.

In determined games, the powers of one player completely fix those of the
other – making these activities somewhat strange as a paradigm for inter-
action. [Par85] showed that the dual-free logic of determined games with
iteration is sound and complete w.r.t the class of all board models. [Pau01]
showed that the iteration-free logic of determined games with dual is also
sound and complete w.r.t the class of all game models. Our completeness
proof for the non-determined case includes dual but not iteration - some-
thing which we must leave here as an open problem.

But in the present setting we cannot take this easy road! In parallel play,
even when the constituent games are determined, non-determinacy arises.
Consider the following two games:

E

����
�
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7

1 G 2

A

����
�

��
77

7

3 H 4

The powers of E and A in the game G are {1}, {2} and {1, 2}, respec-
tively and in the game H, they are {3, 4} and {3}, {4}. Let us take a simple
first step towards defining player’s powers in a product game, as those which
they have in both games, over the space of all possible outcomes. Then the
powers of E and A in the product G×H , say, the simultaneous play found
in a one-step matrix game, are {1, 3, 4}, {2, 3, 4} and {1, 2, 3}, {1, 2, 4},
respectively. But evidently, neither is {2, 3} a power of E, nor {1, 4} one
of A, and so the product game is non-determined in the sense of ([Ben99]).

These observations suggest the need for a modal logic which can deal
with non-determined games and a ‘product’ construct. In the next section,
we will discuss a modal process logic which leads the way.

2.4 Game boards and real games

DGL is about generic games played on game boards. But there is another,
and richer, tradition: process algebra and game semantics. These deal with
communication and general interaction between agents and systems using
real game trees representing players and their moves. A basic question is
how this connects to our approach. One immediate link is that we can
represent given game boards as still coming from real game trees, using the
following results from [Ben01]:
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PROPOSITION 6. Any families F1, F2 of subsets of some set S satisfying the conditions
(C1), (C2), (C3) are the powers of players at the root of some two-step game.

PROPOSITION 7. Any families F1, F2 of subsets of some set S satisfying the conditions
(C1), (C2) can be realized as the powers in a two-step imperfect information game.

There are deeper connections to be pursued here (cf. Section 6). But in the
rest of this paper, we will stay at the board level.

3 From Concurrent PDL to Concurrent DGL

3.1 Concurrent PDL

The system of concurrent dynamic logic due to [Pel87] extends regular dy-
namic logic by introducing the new operator α ∩ β of program α and β,
interpreted as “α and β executed in parallel”. In [Gol92] two modalities
〈α〉 and [α] are introduced for describing the effects of this, which are no
longer interdefinable by ¬. [Gol92] proved that concurrent PDL with these
two modalities is finitely axiomatizable and decidable. Since the modality
of 〈α〉 is more relevant to us in this context and since we are not considering
iteration, we will only review a fragment of CPDL in the following.

The language of iteration-free, necessity-free CPDL is defined as follows:

DEFINITION 8. Given a set of atomic programs Γ and a set of atomic propositions Φ,
program expressions γ and formulas φ are defined inductively:

γ := g | φ? | γ; γ | γ ∪ γ | γ ∩ γ,

φ := ⊥ | p | ¬φ | φ ∨ φ | 〈γ〉φ,
where p ∈ Φ and g ∈ Γ.

DEFINITION 9. A CPDL-model is a structure M = (S, {Rg | g ∈ Γ}, V ) where S is a
set of states, V is a valuation assigning truth values to atomic propositions in states, and
for each g ∈ Γ, Rg ⊆ S × P(S), interpreted as a relation of simultaneous reachability.
The truth of a formula φ in M at a state s is defined in the standard way, except for
〈γ〉φ, which is as follows:

M, s |= 〈γ〉φ iff there exists T ⊆ S with sRgT and T ⊆ φM.

Again, the relation Rg, unlike those for programs in PDL, runs from ‘states
to sets of states’. But this time, unlike with our earlier forcing relations for
sequential games, the interpretation of the sets is ‘conjunctive’ rather than
‘disjunctive’: a distributed program can run from one state to a set of states
as its output. This point should be kept in mind when checking soundness
of the axioms and other assertions in what follows.

We now define the intended meanings of the key program constructs in
CPDL in terms of reachability:

Composition: s(R · Q)T iff ∃U ⊆ S with sRU , and a collection {Tu : u ∈ U} of
subsets of T with uQTu for all u ∈ U , such that T =

S
{Tu : u ∈ U}.

Parallel combination: R ⊗ Q = {(s, T ∪W ) : sRT and sQW}.

DEFINITION 10. A CPDL-model is standard if it satisfies the following properties:
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Rα;β = Rα · Rβ

Rα∪β = Rα ∪ Rβ

Rα∩β = Rα ⊗ Rβ

Rφ? = {(s, {s}) : M, s |= φ}.

For this version, and even for full CPDL, [Gol92] proved that:

THEOREM 11. Concurrent propositional dynamic logic, CPDL is complete with respect
to standard CPDL-models, and it is decidable.

There are further interesting aspects to CPDL. E.g., [BES94] provide a
bisimulation analysis for this language, and show how both the sequential
and the parallel operations are ‘safe for bisimulation’.

Now our task is to combine these ideas on parallel computation with our
earlier logic of sequential game play.

3.2 Forcing relations for product games

To introduce forcing relations for players in product games, we must rec-
oncile the two earlier perspectives. Games can produce complex outcome
states now, denoted by sets read ‘conjunctively’ as in CPDL, but players
also have choices leading to sets of these read disjunctively as in the se-
mantics of DGL. Here is our proposal for dealing with this - and it is the
essential new feature of this paper:

DEFINITION 12. Forcing relations for composite games are defined as follows.

sρE
G∪G′

X iff sρE
GX or sρE

G′
X

sρA
G∪G′

X iff sρA
GX and sρA

G′
X

sρE
Gd
X iff sρA

GX

sρA
Gd
X iff sρE

GX

sρi
G;G′

X iff ∃U : sρi
GU and for each u ∈

S
U , uρi

G′
X

sρi
G×G′

X iff ∃T , ∃W : sρi
GT and sρi

G′
W and X = {t ∪ w : t ∈ T and w ∈W}.

As an illustration, we show how this extended forcing format fits our
earlier intuitive example of parallel games.

E
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The powers of E and A in G are {{1}, {2}} and {{1, 2}}, respectively,
and in H, they are {{3, 4}} and {{3}, {4}}. The powers of E and A in the
product game G × H are then {{1, 3, 4}, {2, 3, 4}} and { {1, 2, 3}, {1, 2,
4}}, respectively. This fits our intuitions nicely.
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3.3 Concurrent DGL

3.3.1 Modal language and forcing models

The language of Concurrent DGL is a simple combination of all ingredi-
ents that we had so far:

DEFINITION 13. Given a set of atomic games Γ and a set of atomic propositions Φ,
game terms γ and formulas φ are defined inductively as follows:

γ := g | φ? | γ; γ | γ ∪ γ | γ × γ,

φ := ⊥ | p | ¬φ | φ ∨ φ | 〈γ, i〉φ,

where p ∈ Φ, g ∈ Γ and i ∈ {A,E}.

The intended meaning of the new game construct α × β is that the games
α and β are played in parallel.

DEFINITION 14. A game model is a structure M = (S, {ρi
g | g ∈ Γ}, V ), where S is a

set of states, V is a valuation assigning truth values to atomic propositions in states, and
with basic relations ρi

g ⊆ S × P(P(S)) assigned to basic game expressions g.

For the semantics of our language, we define the truth of a formula φ
in M at a state s in the obvious manner, with the following key clause for
parallel game product:

• M, s |= 〈α, i〉φ iff ∃X : sρi
αX and ∀x ∈

S
X : M, x |= φ.

Note that this takes together the outcomes of the separate games. Validi-
ties of this logic include those we had before for DGL, as is easy to see. But
in addition, the logic now also encodes facts about parallel games. Here are
some of them, pointing the way toward a game algebra of parallel games:

〈α × β, i〉φ ↔ 〈β × α, i〉φ
〈(α × β)d, i〉φ ↔ 〈αd × βd, i〉φ

〈α × β, i〉φ → 〈α× β, i〉(φ ∨ ψ)

A crucial further principle will be found just below.

3.3.2 Axioms and completeness

Here is the essential reduction axiom for game product:

• 〈α × β, i〉φ ↔ 〈α, i〉φ ∧ 〈β, i〉φ.

THEOREM 15. The axiom 〈α× β, i〉φ ↔ 〈α, i〉φ ∧ 〈β, i〉φ is valid in CDGL.

Next, using our earlier methods again, we claim that CDGL is com-
plete. We refer to the full paper for details, but the argument is an easy
combination of the following two facts:

FACT 16. Due to the reduction axioms, all game formulas can be reduced to equivalent
ones involving only atomic modalities 〈g, i〉φ.

Moreover, our generalized semantics still has the original board models
for DGL as a special case. Here we use the fact that the map f : S → P(S),
given by f(s) = {s} can easily be lifted to an injective map from P(S) to
P(P(S)), and any X ⊆ S can be represented as f(X) ⊆ P(S).
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FACT 17. There is a faithful embedding from DGL models into CDGL models making
any DGL-satisfiable formula CDGL-satisfiable as well.

Soundness of our principles on CDGL models is clear. Next, suppose φ
is not derivable in CDGL. Because of Fact 16, its atomic equivalent φ′ is
not derivable in DGL. Hence, φ′ has a counter-model in DGL. Then, by
Fact 17 we get a counter-model in CDGL. So we have the following result:

THEOREM 18. CDGL is complete. It can be axiomatized by the reduction axioms in
DGL together with the new reduction axiom for product.

Again, decidability can also be shown as before.

4 Connections with logical evaluation games

DGL is a logic of general game structure, but even so, it has strong analogies
with specific games used by logicians for evaluation of first-order formulas
φ in models M. We quickly recall some basics. Verifier V and Falsifier F
dispute the truth of a formula φ in some model M. The game starts from a
given assignment s sending variables to objects in the domain of some given
model. Verifier claims that the formula is true in M, Falsifier claims it is
false. The rules of this game eval(φ,M, s) are defined as follows:

• If φ is an atom, V wins if the atom is true, and F wins if it is false.
• For formulas φ ∨ ψ, V chooses a disjunct to continue with.
• For formulas φ ∧ ψ, F chooses a conjunct to continue with.
• With negation ¬φ, the two players switch roles.
• For existential quantifiers ∃xψ, V chooses an object d in M, and play continues
with φ and s[x := d].

• For universal quantifiers ∀xψ, F chooses some d in M, and play continues with

φ and s[x := d].

This analogy has been high-lighted more formally in [Ben03], who shows
that evaluation games for first-order logic involve a combination of extensive
game trees eval(φ,M, s) where s is a variable assignment at which the game
starts, plus a game board consisting of all variable assignments over the
model M. Players’ powers make sense as well. E.g., ‘Hintikka’s Lemma’
says that Verifier has a winning strategy iff φ is true in (M, s), while it is
false iff Falsifier has a winning strategy.

Many of the central features of DGL as explained earlier already occur in
the proof for this simple assertion, and this is no coincidence. The Boolean
constants of propositional logic match the game constructs of choice and
dual, whereas quantification involves sequential game composition, not per
se, but in the way a quantifier ∃x first shifts the current value of the variable
x, ‘and then’ moves on to evaluate the matrix formula following it. Notice
that this set-up has the same generic character as Parikh’s game expressions:
a formula can start an evaluation game at any model and assignment, and
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moreover, the set of available concrete moves is not encoded in the formula:
what objects can be assigned depends on the model M.

More precisely, in this way, first-order evaluation games are a special case
of DGL, where the atomic games are of two specific sorts: (a) tests for truth
and falsity of atomic formulas, and (b) variable-to-value reassignment for
quantifiers by themselves. On top of these, one then has the same sequential
game constructs as in DGL. This is a non-standard view of first-order logic,
as consisting of a decidable game algebra over specific atomic games, where
the undecidability of the logic comes from the mathematical structure of the
actions (in particular, full assignment spaces), rather than the compositional
repertoire by itself. As for the latter, [Ben03] proves that no generality is
lost, through a converse representation result:

THEOREM 19. There is an effective translation τ from DGL-formulas φ to first-order
formulas, and from DGL game expressions to first-order formula operators, and there
is also a transformation taking any game board M for DGL to a first-order model M∗

such that the following two equivalences hold:

(a) M, s |= φ iff M∗, s |= τ(φ).

(b) sρi,M
G X iff sρ

i,M

τ(G)
X.

The idea is, as in Section 2.4, to replace abstract atomic games g by
evaluation games for quantifier combinations ∃∀. Though the main result
of the cited paper is about the ‘game algebra’ of DGL (cf. Section 5 below),
this also has the following consequence ([Ben03], Section 3.3):

COROLLARY 20. There is a faithful embedding of DGL into the game logic of first-
order evaluation games.

Thus, logic games (of which there are many more than just evaluation
games), though very specialized interactive scenarios, are complete for gen-
eral game logics of sequential constructions in a precise sense.

Now this also suggests an extension to parallel games. As we observed
in our introduction, parallel game structures occur in the extension of first-
order logic to ‘independence-friendly’ IF logic proposed by [HS97] as a
procedural analogue of Henkin’s ‘branching quantifiers’. Indeed, [Ben03]
considered this option, and observed how various basic principles of IF
logic seem to be basic game laws for parallel games. For example, consider
the pattern (∗) from the introduction. Clearly, that can be described as a
game construction of the following sort: (G × H); K, where G, H are the
two quantifier prefix games, and K is the subsequent test game. To make
this fit our formal framework, we would think of G, H as producing separate
assignments (one, s, to x, y, the other, t, to z, u), and the result of G × H
can be viewed as the set {s, t}, just as in the semantics of CPDL.

Another nice example of this way of thinking is another valid IF law.
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Consider the following formula in IF logic: ∀x∃y/xRxy. Here the slash
indicates that Verifier has no access to the value chosen by Falsifier for
x. There has been some discussion about correct equivalents for this, with
some people claiming that it just amounts to ∃y∀xRxy. But [Ben06] shows
that the correct transformation is to the formula ∃y∀x/yRxy, which gives
players the same powers under any concrete interpretation. This mysterious
inversion of quantifiers seems to go against all received wisdom in first-order
logic. But viewed in terms of our game algebra, it demystifies simply to the
earlier commutativity of parallel product!

∀x EE

Rxy

∃y
{{

∃y
CC

Rxy

∀x
yy

Thus, we are really seeking, once more, to fill a corner in a diagram:

DGL FOL

CDGL ///o Branching quantifier game logic

[Ben03] makes a proposal to this effect, defining powers of players in
parallel games through this stipulation in terms of constituent games:

sρi
G×HX iff ∃U : sρi

GU,∃V : sρi
HV : U × V ⊆ X.

But we have found it hard to make sense of this proposal, and our system
CDGL is a hopefully more sophisticated attempt at supplying the ‘miss-
ing corner’. Clearly, all valid laws of CDGL can be instantiated as valid
principles of branching quantification, or more general IF logic. Thus,
we have found a decidable core logic inside what is a rather gruesome and
complex higher-order system, whose combinatorial nature is still somewhat
ill-understood. Even so, issues remain. For instance:

Question Can we extend Theorem 19 to a representation of CDGL models in terms

of branching or IF evaluation games of imperfect information?

And there may be genuine objections to our proposal as well. Some people
explore the syntactic jungle of IF -logic, never to see daylight again. Our
game expressions do not quite match this tropical complexity. But we see
this as a virtue. Compare what [Bla72] did for Lorenzen’s ‘dialogue games’,
which blend an attractive analysis of validity with obnoxious details. Inside
dense thickets of ‘procedural conventions’, he saw a compositional game
structure, which was the dawn of linear logic. Indeed, [Abr06] has taken
a similar look at IF logic, using a linear logic-based analysis. While our
approach is coarser (we have only one game product, whereas linear models
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have a subtler repertoire), we work in the same spirit. Finally, some people
may object to the disappearance of the epistemic character of IF logic in our
analysis. While we do appreciate this point (cf. Section 6), we see CDGL
as doing some epistemics implicitly, by keeping games ‘incommunicado’.

5 Game algebra

5.1 Game algebra for DGL

Forcing relations in DGL models validate a basic game algebra. Take a
language of game expressions with variables and the operations ∨ (choice for
E), −(dual) and ⋄ (sequential composition). We call two game expressions
G and H identical if their interpretations in any game board model give the
same forcing relations to both players. For the valid game identities, see
[Ben99], proved complete by [Gor03] and [Ven03].

To mention a few conditions, the ‘∨’ game along with the ‘∧’ game, which
is the dual of ‘∨’, gives us a De Morgan algebra. Typically, the condition
for right-distribution of composition over choice is not valid here. Consider
G; (H∪K) = (G; H)∪(G; K). On the left, player E has a choice for playing
the games H or K after playing G, but not so on the right. She has to decide
in advance, the composition game she wants to play.

5.2 Discussion: game algebra for CDGL

In a similar manner, our new logic CDGL contains a game algebra, this
time also for a parallel operation ×. It is still unknown what this algebra
would look like - though we have assembled quite a few principles. We
merely present a brief discussion here, showing some of the issues.

x× x ≈ x (G1)
x× y ≈ y × x (G2)

(x× y) × z ≈ x× (y × z) (G3)
x× (y ∨ z) ≈ (x× y) ∨ (x× z) x× (y ∧ z) ≈ (x× y) ∧ (x× z) (G4)

−(x× y) ≈ −x×−y (G5)
(x× y) ⋄ (u× v) = (x ⋄ u) × (y ⋄ v) (G6)

The reader may want to check that (G2), (G3), (G4) and (G5) are valid
with the proposed interpretation of ×, whereas (G6) is not.

Interestingly, whether (G1) is valid or not depends on the monotonicity
condition for the players’ powers in the new setting. E.g., consider

E

���� ��
99

1 G 2

E

���� ��
99

1 G 2

The powers of E and A in the game G are {{1}, {2}} and {{1, 2}},
respectively. The powers of E and A in the product game G × G are
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{{1}, {2}, {1,2}} and {{1, 2}}, respectively. If we assume the monotonicity
condition, the power of E in the game G can be considered as {{1}, {2},
{1,2}}, and thus the equation (G12) becomes valid after all in this case.

Clearly, not the last word has been said on the issue of monotonicity. In-
deed, the semantics for CDGL allows for two sorts of monotonicity. One is
at the outside level of sets of sets, allowing for arbitrary further sets as mem-
bers. The other is at the inside level of the sets representing outcome states,
using the natural set inclusion there. We will not pursue these options here.

6 Conclusions and intentions

This paper proposes a merge between dynamic logic of games and modal
logics of concurrency. The resulting system CDGL has a semantics on gen-
eralized game boards allowing for parallel play and compositional analysis
of players’ powers for determining outcomes. Our main result says that the
set of validities is axiomatizable, and decidable by reduction to a poly-modal
base logic over generalized neighborhood models. CDGL also suggests new
questions, of which we mention axiomatizing the complete game algebra
validated by CDGL, including that of CPDL. Also, the model theory of
concurrent game bisimulation seems worth exploring, including expressive
power and bisimulation safety for game constructs. We have also tried to
show that CDGL is natural in other ways, throwing new light on vexed
issues such as the proper interpretation of evaluation games for first-order
logic which allow for independence, or imperfect information.

Our framework is a minimum, and additions can be made to get closer
to real interactive games. Here are three avenues for future investigation.

Process algebra and linear game semantics Connections between our
analysis over game boards and process logics of players’ powers in extensive
games remain to be developed. In particular, linear game semantics has
a richer repertoire of game operations involving switching between games,
and hence powerful strategic manoeuvres like ‘Copy cat’. This reflects the
interleaving nature of its products, whereas our direct products allow no
interaction between the subgames at all. Switching and stealing may be
essentially beyond our modal framework.

Explicit logics of strategies DGL and its ilk quantify over the existence
of strategies, but they do not display these strategies as part of their for-
malism. By contrast, [Ben02] has used dynamic logic to explicitly define
strategies of players in given extensive games. In subsequent work, we in-
tend to combine the two perspectives and do a ‘double gamification’ for
propositional dynamic logic, once as a logic of game structure, and once as
a logic of strategies within these games. Of course, this would also have to
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deal with strategies in our parallel game products.

Explicit knowledge Informal discussions of parallel games soon involve
knowledge and communication between subgames. Indeed, IF logic was
cast initially in terms of games of imperfect information, where players
need not know each others’ moves. [Ben06] shows how to add an explicit
epistemic language to bring this out. We could also add knowledge operators
to DGL and CDGL, giving us means of saying 〈γ, i〉Kiφ: player i has a
strategy in game γ, after playing which she would know φ, or converting the
operators to Ki〈γ, i〉φ: that player i knows that her strategy will have the
effect φ. This gets even more interesting when knowledge of other players
is added. Epistemic versions of our game logics remain to be explored.
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