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Abstract

We consider collective quantification in natural language. For many
years the common strategy in formalizing collective quantification has
been to define the meanings of collective determiners, quantifying over
collections, using certain type-shifting operations. These type-shifting
operations, i.e., lifts, define the collective interpretations of collective
determiners systematically from the standard meanings of quantifiers.
All the lifts considered in the literature turn out to be definable in
second-order logic. We argue that second-order definable quantifiers
are probably not expressive enough to formalize all collective quantifi-
cation in natural language.

Keywords: collective quantification, Lindström quantifiers, second-order gen-

eralized quantifiers, type-shifting, definability, computational complexity.
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1 Introduction

Recently, there has been some interest in measuring the complexity of se-

mantic constructions of natural language. These studies have been mo-

tivated by certain mathematical questions (see e.g. Hella et al., 1997) as

well as cognitive considerations (see e.g. McMillan et al., 2005; Szymanik,

2007). As the complexity of the semantics of a language heavily depends on

the expressive power of its quantifiers, most of the studies have focused on

quantification. In particular, Mostowski and Wojtyniak (2004), followed by

Sevenster (2006), study computational complexity of natural language quan-

tifiers, and Mostowski and Szymanik (2005) search for semantic bounds of

the so-called everyday fragment of natural language. In all of these studies

only distributive reading of natural language determiners have been consid-

ered. In contrast — as the properties of plural objects are becoming more

and more important in many areas (e.g. in game-theoretical investigations,

where groups of agents are acting) — this paper is devoted to the collective

readings of quantifiers. We mainly focus on definability issues, but we also

discuss the connections to computational complexity. The rest of the intro-

duction roughly presents the state of the art in formal semantics of collective

plural noun phrases.

Already Bertrand Russell (1903) noticed that natural language contains

quantification not only over objects, but also over collections of objects.

The notion of a collective reading is a semantic one — as opposed to the

grammatical notion of plurality — and it applies to the meanings of certain

occurrences of plural noun phrases. The phenomenon is illustrated by the

following sentences:

(1) Tikitu and Samson lifted the poker table together.

(2) The decks of cards on the table had different colors.

(3) Nina and Jonathan had flush together, but each of them alone had

nothing.

(4) Most poker hands have no chance against an Ace and a Two.

(5) Most of the card combinations do not contain a picture card.
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(6) Most of the PhD students play Texas Hold’em.

(7) Most groups of students have never played Hold’em together.

The question arises how should we model collective quantification in for-

mal semantics. Many authors have proposed different mathematical accounts

of collectivity in language (see Lønning, 1997, for an overview and references).

None of the approaches is widely accepted, but, at least, all authors agree

on the following three principles formulated by Link (1991):

Atomicity Each collection is constituted by all the individuals it contains.

Completeness Collections may be combined into new collections.

Atoms Individuals are collections consisting of only a single member.

In Link (1983) one finds the idea of replacing the domain of discourse,

which consists of entities, with the structure of a complete join semilattice.

The author focuses on the cumulative properties of mass nouns and observes

that the same approach can be applied to cover plural nouns. The idea is

to enrich the structure of models to account for cumulative references. The

main advantage of this algebraic perspective is that it unifies the view on

collective predication and predication involving mass nouns.

J. van der Does (1992) noticed that all that can be modeled with the

algebraic models can be done as well within type theory. This alternative

tradition, starting with the works of Bartsch (1973) and Bennett (1974), uses

extensional type theory with the basic types: e (entities) and t (truth values),

and compound types: αβ (functions mapping type α objects onto type β

objects). Together with the idea of type-shifting, introduced in the seminal

paper of Partee and Rooth (1983), and then formally developed by J. van

Benthem (1991), it gives a new approach to modeling collectivity in natural

language. The strategy, introduced by Scha (1981) and later advocated and

developed by J. van der Does (1992, 1996) and Winter (2001), is to lift first-

order generalized quantifiers to a second-order setting. In the type theoretical

terms the trick is to shift determiners of type ((et)((et)t)), related to the

distributive readings of quantifiers, into determiners of type ((et)(((et)t)t))

which can be used to formalize collective readings of quantifiers.
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In the next section we illustrate the idea of lifting first-order quantifiers

by a few examples. Then we introduce, both, first-order and second-order

generalized quantifiers, and show that the type theoretic approach can be

redefined in terms of second-order generalized quantifiers. The idea of type-

shifting turns out to be very closely related to the notion of definability which

is central in generalized quantifier theory. We show that the type-shifting

operations considered in the literature (i.e. lifts) are definable in second-

order logic. This observation allows us to point out the restrictions of the

type-shifting strategy used in the literature. In particular, we show that

the collective meaning of the determiner Most can not be uniformly defined

by any lift definable in second-order logic, unless the counting hierarchy

collapses in computational complexity theory.

2 Lifting first-order determiners

Let us consider the following example sentences involving collective quantifi-

cation.

(8) Five people lifted the table.

(9) Some students played poker together.

(10) All combinations of cards are losing in some situations.

The type-shifting strategy defines the collective readings of determiners by

raising the types of the corresponding distributive determiners. In other

words, the idea is to lift first-order generalized quantifiers — expressing

properties of subsets of the discourse — into the second-order setting, in

which it is possible to speak about the properties of collections of all subsets

over a given domain. Let us analyze the examples.

The distributive reading of the sentence (8) claims that the total number

of students who lifted the table on their own is exactly five. This statement

can be formalized in elementary logic by the formula (11):

(11) ∃=5x[People(x) ∧ Lift(x)].
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The collective interpretation of (8) claims that there was a collection of

exactly five students who jointly lifted the table. This can be formalized by

lifting the formula (11) to the second-order formula (12):

(12) ∃X[Card(X) = 5 ∧X ⊆ People ∧ Lift(X)].

In the similar way, by lifting the corresponding first-order determiners, we

can express the collective readings of sentences (9)–(10) as follows:

(13) ∃X[X ⊆ Students ∧ Play(X)].

(14) ∀X[X ⊆ Cards ⇒ Lose(X)].

All the examples above can be described in terms of the uniform pro-

cedure of turning a determiner of type ((et)((et)t)) into a determiner of

type ((et)(((et)t)t)) by the means of the type-shifting operator called ex-

istential modifier, (·)EM . Fix a universe of discourse U and take any

X ⊆ U, and Y ⊆ P(U). Define the existential lift QEM of a quantifier

Q in the following way:

QEM (X,Y ) is true ⇐⇒ ∃Z ⊆ X[Q(X,Z) ∧ Z ∈ Y ].

In the literature, lifts have been defined also for distributive and so-called

neutral readings of sentences. For example, Ben Avi and Winter (2003)

define the following lift — called dfit — for determiner fitting, to overcome

some problems related to the monotonicity properties of the previous lifts

considered in the literature. Note that the dfit operator turns a determiner

of type ((et)((et)t)) to a determiner of type (((et)t)(((et)t)t)), i.e., for all

X,Y ⊆ P(U) we have that

Qdfit(X,Y ) is true

⇐⇒

Q[∪X,∪(X ∩ Y )] ∧ [X ∩ Y = ∅ ∨ ∃W ∈ X ∩ Y ∧ Q(∪X,W )].

For us the most important observation is that all the lifts proposed in the

literature (see Winter, 2001, for an overview) are definable by the means of

second-order logic.
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In the next section we recall the mathematical definitions of first-order

and second-order generalized quantifiers. We also discuss the notion of de-

finability which is a central concept in generalized quantifier theory. Then

we show that collective determiners relate to second-order generalized quan-

tifiers just like distributive determiners relate to first-order generalized quan-

tifiers.

3 Generalized quantifiers

3.1 Lindström quantifiers

Let us first recall the definition of a first-order generalized quantifier formu-

lated by Lindström (1966).

Let s = (`1, . . . , `r) be a tuple of positive integers. A first-order general-

ized (Lindström) quantifier of type s is a class Q of structures of vocabulary

τs = {P1, . . . , Pr}, such that Pi is `i-ary for 1 ≤ i ≤ r, and Q is closed under

isomorphisms.

To illustrate the notion let us look at some well-known examples of first-

order generalized quantifiers.

∀ = {(M,P ) | P = M}.

∃ = {(M,P ) | P ⊆M and P 6= ∅}.

Qeven = {(M,P ) | P ⊆M and card(P ) is even}.

Most1 = {(M,P, S) | P, S ⊆M and card(P ∩ S) > card(P \ S)}.

Some = {(M,P, S) | P, S ⊆M and P ∩ S 6= ∅}.

The first two examples are the standard first-order universal and existential

quantifiers, both of type (1). The other examples are also familiar from

natural language semantics. Their aim is to capture the truth-conditions

of sentences of the form: “Even number of A’s are B”, “Most A’s are B”

and “Some A is B”. Divisibility quantifier Qeven is of type (1), whereas the

quantifiers Most1 and Some are of type (1, 1).

First-order generalized quantifiers enable us to enrich the expressive

power of first-order logic in a very controlled and minimal way. We define
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the extension, FO(Q), of first-order logic by a quantifier Q in the following

way:

• The formula formation rules of FO are extended by the rule:

if for 1 ≤ i ≤ r, ϕi(xi) is a formula and xi is an `i-tuple of pairwise

distinct variables, then Qx1, . . . , xr (ϕ1(x1), . . . , ϕr(xr)) is a formula.

• The satisfaction relation of FO is extended by the rule:

M |= Qx1, . . . , xr (ϕ1(x1), . . . , ϕr(xr)) iff (M,ϕM
1 , . . . , ϕ

M
r ) ∈ Q,

where ϕM
i = {a ∈M `i | M |= ϕi(a)}.

First-order generalized quantifiers have been used extensively in formal-

semantics of natural language to model distributive determiners (see West-

erståhl and Peters, 2006). However, they are not adequate in formalizing

collective quantification. In the next section we present an intuitive and

natural extension of Lindström quantifiers, second-order generalized quanti-

fiers. They turn out to be a natural concept for interpreting the meanings

of collective determiners in natural language. Moreover, this concept is con-

sistent with the principles of atomicity, completeness, and atoms discussed

in the introduction. We begin with the formal definitions.

3.2 Second-order generalized quantifiers

Second-order generalized quantifiers were first defined and applied in the

context of descriptive complexity theory by Burtschick and Vollmer (1998).

The general notion of a second-order generalized quantifier was later for-

mulated by Andersson (2002). The following definition is a straightforward

generalization from the first-order case. However, note that the types of

second-order generalized quantifiers are more complicated than the types of

first-order generalized quantifiers, since predicate variables can have different

arities. Let t = (s1, . . . , sw), where si = (`i1, . . . , `
i
ri

), be a tuple of tuples

of positive integers, for 1 ≤ i ≤ w. A second order structure of type t is a

structure of the form (M,P1, . . . , Pw), where Pi ⊆ P(M `i
1)× · · · × P(M `i

ri ).

Below, we write f [A] for the image of A under the function f .
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A second-order generalized quantifier Q of type t is a class of

structures of type t such that Q is closed under isomorphisms: if

(M,P1, . . . , Pw) ∈ Q and f : M → N is a bijection such that

Si = {(f [A1], . . . , f [Ari ]) | (A1, . . . , Ari) ∈ Pi}, for 1 ≤ i ≤ w, then

(N,S1, . . . , Sw) ∈ Q.

The following examples show that second-order generalized quantifiers

are a natural extension from the first-order case.

∃2 = {(M,P ) | P ⊆ P(M) and P 6= ∅}.

Even = {(M,P ) | P ⊆ P(M) and card(P ) is even}.

Even′ = {(M,P ) | P ⊆ P(M) and ∀X ∈ P (card(X) is even)}.

Most2 = {(M,P, S) | P, S ⊆ P(M) and card(P ∩ S) > card(P \ S)}.

The first example is the familiar unary second-order existential quantifier.

The type of ∃2 is ((1)). The quantifier Even says that a formula holds for an

even number of subsets of the universe. On the other hand, the quantifier

Even′ says that all the subsets satisfying a formula have an even number of

elements. The quantifier Most2 applies to two formulas ψ and ϕ and says

that more than half of the subsets satisfying ψ also satisfy ϕ.

As in the first-order case, we define the extension, FO(Q), of FO by a

second-order generalized quantifier Q in the following way:

• Second order variables are introduced to FO.

• The formula formation rules of FO are extended by the rule:

if for 1 ≤ i ≤ w, ϕi(Xi) is a formula and Xi = (X1,i, . . . , Xri,i) is a

tuple of pairwise distinct predicate variables, such that arity(Xj,i) = `ij ,

for 1 ≤ j ≤ ri, then

QX1, . . . , Xw (ϕ1(X1), . . . , ϕw(Xw))

is a formula.

• Satisfaction relation of FO is extended by the rule:

M |= QX1, . . . , Xw (ϕ1, . . . , ϕw) iff (M,ϕM
1 , . . . , ϕ

M
w ) ∈ Q,

where ϕM
i = {R ∈ P(M `i

1)× · · · × P(M `i
ri ) | M |= ϕi(R)}.
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3.3 Definability

The concept of definability is central in generalized quantifier theory. Infor-

mally, definability of a quantifier Q in a logic L means that there is a uniform

way to express every formula of the form Qxϕ in L.

Formally, let Q be a first-order generalized quantifier of type s and L a

logic. We say that the quantifier Q is definable in L if there is a sentence

ϕ ∈ L of vocabulary τs such that for any τs-structure M:

M |= ϕ⇔ M ∈ Q .

Let L and L′ be logics. The logic L′ is at least as strong as the logic

L ( L ≤ L′) if for every sentence ϕ ∈ L over any vocabulary there exists a

sentence ψ ∈ L′ over the same vocabulary such that

|= ϕ↔ ψ.

The logics L and L′ are equivalent (L ≡ L′) if L ≤ L′ and L′ ≤ L.

Below, we assume that the logic L has the so-called Substitution Property,

i.e., that the logic L is closed under substituting predicates by formulas. The

following fact is well-known for Lindström quantifiers.

Proposition 3.1. Let Q be a first-order generalized quantifier and L a logic.

The quantifier Q is definable in L iff

L(Q) ≡ L.

Proof. Since Q = Mod(ϕ), where ϕ = Qx1, . . . , xr (P1(x1), . . . , Pr(xr)) the

implication from right to left follows. For the other direction, we use recur-

sively the fact that if ϕ is the formula which defines Q and ψ1(x1), . . . , ψr(xr)

are formulas of L, then

|= Qx1, . . . , xr (ψ1(x1), . . . , ψr(xr)) ↔ ϕ(P1/ψ1, . . . , Pr/ψr),

where the formula on the right is obtained by substituting every occurrence

of Pi(xi) in ϕ by ψi(xi).

In the second-order case, analogous notion of definability can be formu-

lated. We do not give the formal definition here. However, things are not
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completely analogous to the first-order case. With second-order generalized

quantifiers L(Q) ≡ L does not imply that the quantifier Q is definable in

the logic L. The converse implication is still valid.

Proposition 3.2 (Kontinen (2004)). Let Q be a second-order generalized

quantifier and L a logic. If the quantifier Q is definable in L then

L(Q) ≡ L.

Proof. The idea and the proof is analogous to the first-order case. Here

we substitute second-order predicates by formulas having free second-order

variables.

In Kontinen (2002) it was shown that the extension L∗ of FO by all

first-order generalized quantifiers cannot define the monadic second-order

existential quantifier. In other words, the logic L∗, in which all properties of

first-order structures can be defined, cannot express in a uniform way that

a collection of subsets of the universe is non-empty. This observation can

be used to argue for the fact that first-order generalized quantifiers alone

are not adequate for formalizing all natural language quantification. For

example, as quantifier ∃2 is not definable in L∗, the logic L∗ cannot express

the collective reading of sentences like (15).

(15) Some students gathered to play poker.

4 Defining collective determiners

In this section we show that collective determiners can be easily identified

with certain second-order generalized quantifiers.

At first sight, there seem to be a problem with identifying the collective

determiners with second-order generalized quantifiers; some of the collective

determiners discussed have a mixed type ((et)(((et)t)t))1. However, this is

not a problem since it is straightforward to extend the definition to allow
1Note that the lift dfit of Ben Avi and Winter (2003) turns a first-order quantifier of

type (1, 1) directly to a second-order quantifier of type ((1), (1)).
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also quantifiers with mixed types. Denote by Somet the following quantifier

of type (1, (1))

{(M,P,G) | P ⊆M ; G ⊆ P(M) : ∃Y ⊆ P (Y 6= ∅ and P ∈ G)}.

Obviously, we can now express the collective meaning of sentence (15) by

the formula (16).

(16) Somet x,X[Student(x),Play(X)].

Analogously, we can define the corresponding second-order quantifier ap-

pearing in sentence (8), here as (17).

(17) Five people lifted the table.

We take Fivet to be the second order-quantifier of type (1, (1)) denoting the

class:

{(M,P,G) | P ⊆M ; G ⊆ P(M) : ∃Y ⊆ P (card(Y ) = 5 and P ∈ G)}.

Now we can formalize the collective meaning of (17) by:

(18) Fivetx,X[Student(x),Lift(X)].

Already these simple examples show that it is straightforward to associate

with every lifted determiner a mixed second-order generalized quantifier.

Also, it easy to see that for any first-order quantifier Q the lifted second-order

quantifier Qt can be uniformly expressed in second-order logic assuming the

quantifier Q is also available. In fact, all the lifts discussed in Section 2., and,

as far as we know, all proposed in the literature, are definable in second-order

logic. This observation can be stated as follows.

Proposition 4.1. Let Q be a first-order quantifier definable in SO. Then

the second-order quantifiers QEM , Qdfit and Qt are definable in SO.

Proof. Let us consider the case of QEM . Let ψ(x) and φ(Y ) be formulas. We

want to express QEM x, Y (ψ(x), φ(Y )) in second-order logic. By the assump-

tion, the quantifier Q can be defined by some sentence θ ∈ SO[{P1, P2}]. We

can now use the following formula:

∃Z(∀x(Z(x) → ψ(x)) ∧ (θ(P1/ψ(x), P2/Z) ∧ φ(Y/Z)).

The other lifts can be defined analogously.

11



Proposition 4.1 shows that the type shifting strategy cannot take us

outside of second-order logic. In the next section we show that it is very

unlikely that all collective determiners in natural language can be defined

in second-order logic. Our argument is based on the close connection be-

tween second-order generalized quantifiers and certain complexity classes in

computational complexity theory.

5 Lifting the determiner Most

Let us return to the example sentences (4)–(7) from the introduction. For

readability, we repeat (7) here as (19).

(19) Most groups of students have never played Hold’em together.

It is easy to see that (19) can be formalized using the quantifier Most2 by:

(20) Most2X,Y [Students(X),¬Play(Y )].

We assume above that the predicates Students(X) and Play(Y ) are inter-

preted as collections of sets of atomic entities of the universe of discourse.

Obviously, this is just one possible way of interpreting (19). However, it

seems that something like Most2 is needed in the formalization assuming

that Students(X) and Play(Y ) are interpreted as collective predicates.

For the sake of argument, let us assume that our formalization of sentence

(19) is correct. It is easy to see that the lifts discussed before do not give

the intended meaning when applied to the first-order quantifier Most1. We

shall next show that it is unlikely that any lift, which can be defined in

second-order logic, can do the job. More precicely, we shall show (Theorem

5.1 below) that if the quantifier Most2 can be lifted from the first-order

Most1 using a lift, which is definable in second-order logic, then something

unexpected happens in computational complexity. This result indicates that

the type-shifting strategy used to define the collective determiners in the

literature is probably not general enough to cover all collective quantification

in natural language.

We shall next discuss the complexity theoretic side of our argument.

Recall that second-order logic corresponds in the complexity theoretic side
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to the polynomial hierarchy, PH, (see Stockmeyer, 1977). The polynomial

hierarchy is an oracle hierarchy with NP as the building block. If we replace

NP by probabilistic polynomial time (PP) in the definition of PH, then

we arrive at a class called the counting hierarchy (CH). PP consists of

languages L for which there is a polynomial time-bounded nondeterministic

Turing machine N such that, for all inputs x, x ∈ L iff more than half of

the computations of N on input x end up accepting. The counting hierarchy

can be defined now as follows in terms of oracle Turing machines

(1) C0P = PTIME,

(2) Ck+1P = PPCkP ,

(3) CH =
⋃

k∈NCkP .

It is known that PH is contained in the second level C2P of CH (see Toda,

1991). The question whether CH ⊆ PH is still open.

Now, we can turn to the theorem which is fundamental for our argumen-

tation.

Theorem 5.1. If the quantifier Most2 is definable in second-order logic, then

CH = PH and CH collapses to its second level.

Proof. The proof is based on the observation Kontinen and Niemistö (2006)

that already the logic FO(Most2) can define complete problems for each

level of the counting hierarchy. On the other hand, if the quantifier Most2

is definable in second-order logic, then by Proposition 3.2 we would have

that FO(Most2) ≤ SO and therefore SO would contain complete problems

for each level of the counting hierarchy. This would imply that CH = PH

and furthermore that CH ⊆ PH ⊆ C2P .

Note that even if CH = PH would be true, this does not automatically

imply that the quantifier Most2 can be defined in second-order logic. In fact,

it would be very surprising if this would be the case.

6 Conclusion

We have showed that the higher-order approach to collective quantification

in natural language can be formalized in terms of second-order generalized
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quantifiers. The previous attempts have relied implicitly on quantifiers which

can be defined in second-order logic. We have presented an argument indicat-

ing that second-order definable quantifiers are probably not general enough

to cover all collective quantification in natural language.
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