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Abstract

Hintikka and Sandu’s Independence-friendly logic ([5] and [6]) tradition-
ally been associated with extensive games of imperfect informationidpéper
we set up a strategic framework for the evaluation of IF logic la Hintikka and
Sandu. We show that the traditional semantic interpretation of IF logic can be
characterized in terms of Nash equilibria. We note that moving to the strategic
framework we get rid of IF semantic games that violate the principle deper
recall. We explore the strategic framework by replacing the notion of Mgsk
librium by other solution concepts, that are inspired by weakly dominzatesfies
and iterated removal thereof, charting the expressive power of IE logler the
resulting semantics.

1 Introduction

Game theory has proven to be a tool capable of covering tlemtals of established
subjects in research areas such as logic, mathematicsjdiitg and computer sci-
ence. Game-theoretic concepts have also been proposeddn wédiere traditional
machinery broke down. In this paper we will study the gamehé¢hat functions as
a verificational framework fomdependence-friendIftF) first-order logic, which is a
generalization of standard first-order logic (FOL).

As a semantics used for evaluating FOL, Tarski semanticeliskmown and widely
agreed upon. Yet this semantics cannot be used to evaluatikkdi and Sandu’s IF
first-order logic, see [1]. IF logic abstracts away from thegean assumption that syn-
tactical scope and semantical dependence of quantifieblarmairs coincides. That
is, in an IF logical formula, if X is in the syntactical scope offy’, the variablex
can be made semantically independent by means of the slash operator. To evaluate
IF logical formulae, Hintikka and Sandu (in [5, 6]) introduthe notion of asemantic
evaluation gameThe independency of two variables expressible in IF logtgpically
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reflected by the corresponding semantic evaluation ganmg lfimperfect informa-
tion. This is in contrast to the evaluation games related to dirder formulae, they are
of perfect information. Truth of an FOL or IF formula is defthie terms of its seman-
tic evaluation game. This semantics was coigadhe-theoretic semanti¢STS) by
Hintikka.

It has been noted in the literature ([12], [3]) that some I&leation games violate
the game-theoretic principle gerfect recall In game theory, games without perfect
recall have not been studied extensively, one of the reaseimg that it is hard to
understand what real-life situations they capture — putédy they are notglayablé.
Thereby also the playability of IF games is called into gioest

In this paper, we set up a strategic game-theoretic frantewowhich IF games
can be defined. We will see that truth of IF under GTS can beachartized in terms
of Nash equilibria in the strategic framework. We obsenad the playability issues,
concerning perfect recall, evaporate in the strategic émaonk, yet we get so-called
coordination problemsn return.

We explore the strategic framework by replacing the notiiddash equilibrium by
other solution concepts. That is, we also define truth foroltd in terms of weakly
dominant strategies and iterated removal thereof. Ndycdlanging semanticsfects
the truth conditions of IF formulae, a phenomenon we studgiims of the expressive
power of IF logic w.r.t. the resulting semantics.

Section 2 recalls the basics of IF logic and GTS. In Sectiane3jefine the strategic
framework and establish the connection between GTS arditriérms of Nash equi-
libria. Sections 4 and 5 explore the notions of truth thatiltesfter replacing the Nash
equilibrium solution concept by fierent ones, that are inspired by the game-theoretic
notions of weak dominance and iterated removal of strasdgistrategic games.

The formal results are mostly given without proof. We hopengke an extended
version of this paper, containing full proofs, availableso

2 IF logic and game-theoretic semantics

The program ofjuantifier independencas founded by [4] and later [5], is concerned
with abstracting away from the Fregean assumption thatti@stical scope and bind-
ing of quantifiers in first-order logic coincide. The syntaximdependence-friendly
first-order logicas proposed by [5] extends FOL, in the sense that, for exaifiple

VXX ... VX1 3%y R(X1, .. ., Xn)
is a FOL sentence containing theary predicater, then
(VX0 /X0)(T%2/X2) - - - (V%n-1/ K1) (TXa/ %) R(Xe, - -, Xn) 1)

is an IF sentence, provided thétC {xs, ..., X_1}. The variablex is intuitively meant
to beindependenof the variables inX;, although it appears under their syntactical
scope.

Definition 1 In this paperFOL denotes the smallest set of first-ordemtencesthat
are in prenex normal form and in which every variable is qiféed exactly once. We



will assume them being of the form

QiXg... QnXn R(Xq, ..., Xn), (2

where Q € {3,V}. If no confusion arises we will abbreviate any string of adbtes
X1, X2, . .. USINgX.

The reader has noted that the language we call FOL is reailyles version of
first-order logic. This simplification streamlines notaticonsiderably when we define
the IF language, withoutfiecting the contention of this paper. Analogous to [5] we
define the syntax of IF logic in terms of FOL, as follows.

Definition 2 The languagéF is obtained fronFOL by repeating the following proce-
dure a finite number of times: ¢f € FOL, then

If ‘Qix ¥’ occurs in ¢, then it may be replaced byQ;x /X)) ¥', where Q €
{3,v}and X € {xq,..., %1}

Since sentences FOL are assumed to be as {R), sentences df will be of the form

(lel/xl) o (ann/xn) R(Xl’ e Xn)s (3)
writing ‘Q; %’ instead of {Q;x;/0)’.

In ¢ € FOL containing the stringxQ; x;” and ‘Q;x;’, variable x; depends orx; iff
i < J. InIF this linear ordering of dependency is given up — thentifi@rs of IF
sentences arpartially ordered The first partially ordered quantifier, also known as
Henkin quantifierappeared in [4]. For later usage, we formalize variableeddpnce
by means of a binary relation. To this end let the\éa{(¢) = {xq, ..., X,} denote the
variables for the IF formula as in (3). ThenBy C Var(¢) x Var(¢) is ¢'s dependency
relation, such that for every;, x; € Var(¢)

(%, %)) e B, if i<jandx¢X;.

Truth of an IF sentence is evaluated relative to a suitaiddel M= (D, I, p) in which
we distinguish alomain Dof objects; arinterpretation function | that determines the
extension of relation symbols; and assignment ghat assigns an object from the
domainD to each variable. [6] associate with every IF and suitable model a
semantic evaluation gamédg M). The game is played by two players, callEdand
A, that control the existential and universal quantifierg.itn g(¢, M) the players and
quantifiers are associated through ayer function R that is the function such that
P(3) = E andP(¥) = A. Intuitively, g(¢, M) proceeds as follows:

0((Qix/X) ¥, M) triggers playerP(Q;) choosing an objeat; € D; the game
continues ag(y, M).

g(R(X), M) has no movesE receives payf 1 if de I(R), and—1 otherwise.A
getsE’s paydt times-1.



Figure 1: The game tree @f¥, ({a, b}, =)), containing seven histories. The top node
corresponds to the empty history; the histories on the imeeliate layer are denoted
by (a), (by; and(a, a), (a, b, (b, &), (b, b) are the terminal nodes. The fact tia}, (b)

sit in the same information set is reflected by the dashed Tihe values 1 andl are
paydfs for E.

The above rules regulate the behavior of the gafieM). [6] do not provide
a rigorous game-theoretic model for these games. Howelverfarmal treatments
provided in the literature all take axtensivestance towards these games, viz. [12, 9, 3]
and [10] for a propositional variant. In this paper the gagte M) — with a lower-
case ' — denotes a Hintikka-Sandu style, extensive semantic gdmthese games
independence is modeled by meaninédrmation setsmposed on théistoriesof the
game tree. We omit rigorous definitions, but illustrate teai by means of the game
tree of an IF sentence that reappears in our discussion below

0 = Axe(Ax/{x1}) [*1 = %], (4)

evaluated on the modgl b}, =), depicted in Figure 1. From a game-theoretic perspec-
tive, every node in a game tree corresponds to a history, ey &af to a complete
history. On every complete history the utility function bEtplayers is defined.

To say that two histories are in the same information set si¢aat the player
owning the set at hand cannot distinguish between the tworfgs while at it. As
a consequence amure strategyfor this player prescribes onlgneaction for all the
histories in the information set.

We say thak has awinningstrategy ing(¢, M) if there exists a strategy that guar-
antees an outcome of 1, against every strategy playet land a strategy isniform
with respect to the game’s information sets, if it assignswvery information set in
which E is to move exactly one object from the domain. Note that heceteenceforth
we consequently mean ‘pure strategy’ when speaking oft&iga. Truth under GTS
is defined in terms of winning strategies.

Definition 3 Let¢ € IF and let M be a suitable model. Then define truth under GTS
as follows:

¢ is true under GTS on M, denoted by Msts ¢, if E has a winning strategy in
9(e. M).

¢ is false under GTS on M, if A has a winning strategy (@, &/).



¢ is undetermined under GTS on M, if neither E nor A has a winstregegy in
9(e, M).

In the realm of IF semantic evaluation games, informatidas sgly partition histo-
ries of equal length, cf. [10]. Pure strategies in IF sentaggimes therefore coincide
with tuples ofSkolem functionsas we know them from logic. We introduce Skolem
functions by illustrative means. Leétbe as in (1), then its Skolemization looks like

Afy. . Af VX0 ... VX1 R(X 1),

wheref; is a Skolem function, being a function of typg<--X-1"\X — D,

[13] showed that the truth condition of every formula withegly ordered quan-
tifiers can be expressed in tlﬁ% fragment of second-order logic. Later, the result,
applied to IF, reappears in Sandu’s and Hintikka’s work (&ferences see [6]) hing-
ing on the fact that fop as in (1)

M Ecrs ¢ iff M Etarski Af2. .. ATa¥X1 ... ¥Xo_1 R(X, 6,

since any tupldy, . . ., f, witnessing the truth af’s Skolemization is a winning strategy
for E in g(¢, M) and the other way around, assuming the Axiom of Choice. &it
is the strategies that form the heart of the game-theorpfiaratus involved.

What is essential [about game-theoretic conceptualizsitismot the idea
of competition, winning and losing. ... What is essentiahis hotion of
strategy. Game theory was born the moment John von Neumamu-fo
lated explicitly this notion.

Having read this, the thought occurs that defining IF evadnaiames in atrategic
way may be more in line with Sandu and Hintikka’s thinking this paper we will set
up such a strategic framework; discuss the ‘playabilityllfgames in this context;
and start exploring the framework.

The issue of playability of IF games, mentioned above, angken we actually
want to play games for IF sentenagsin a game fok, the turn-taking is governed by
¢’s quantifier prefix and the epistemic qualities of the agbptg's slash sets. However,
defining the IF language, we took no special care that ourdtaswould give rise to
playable games. In fact, it has been observed that certageiEences yield games
that require agents with odd epistemic features. That imegahat violate the game-
theoretic principles operfect memorgndaction memory Roughly speaking a game
of imperfect information has perfect memory if a player teag something (in our
context: a previous move), implies it knowing this piece mibirmation for the rest
of the game; and, a game has action memory if every playelisetdeast it's own
moves. We refer the reader to [11] for an elaborate treatimigperfect recall and IF
games.

For the sake of illustration, consider the extensive gaig({a, b}, =)), with 6 as
in (4).! Itis the case thaté, b}, =) EgTs 6, since the tuple (plag, playa) is a winning

1The formulad also appears in [7], as an argument against Hintikka’s clditf mgic modeling quanti-
fier independency. Janssen argues that, sirfadds on the domain, it must be the case thatlepends on
x1. However, ind the choice foix; is independent of;, sinceX, = {x1}. For more on IF logic and intuitions
on independence consult [7].



strategy. But also we have it that the histor{es and(b) are inE’s information set
indicating that these histories aralistinguishablefor E. Thus,g(6, ({a, b}, =)) lacks
both perfect memory and action memory.

The issue of the playability aj(é, ({a, b}, =)) evolves around the questidrow E
can understand thafplay a, play a is a winning strategy for E, despite the fact that
she is uninformed at the intermediate stagéat is,E seems to forget her own move
right after playing it!

One explanation may be thgtis allowed to decide beforehand on a strategy and
consult it while playing the game, even if she is unsure aheubwn moves at the in-
termediary stage. (This explanation appears in [12].) hti@dar, that (playa, play a)
is a winning strategy can then be understood as follows:t Eirpicks a, thereafter
she is uncertain about what history she is actuallya):or (b). By consulting here
winning strategy, however, she derives that she actually {8) and not in(b). The
imperfect information evaporates!

This explanation requires more game-theoretic structuiees—consulting of one’s
strategy — than present in its description and would implyoa-game-theoretic un-
derstanding of having imperfect informatidaring the game.

Another explanation may be th&tis anexistential teamhence associating with
every existential variable a member of the team. This wouddkew(o, ({a, b}, =)) a
two-player cooperative game. But then the very fact thablds on the model at
stake suggests to be interpreted in such a way that;tpdayer and the,-player are
allowed to settle on their strategibsforethe game. Again, no such event can be found
in the definition ofg(, ({a, b}, =)) and it seems such an event would violate the game-
theoretic understanding of information sets. Becauseinftance ing(9, ({a, b}, =))
the second player in the-team would really know the move of the first player.

Below we shall reduce the puzzle that arises With the question how Nash equi-
libria are supposed to arise in strategic games. First wesatstrategic framework, in
which the notion of Nash equilibrium and other solution ogis can be meaningfully
employed.

3 Strategic framework for IF games

In this section we define IF games as strategic games. Weatbdra truth of IF under
GTS in terms of Nash equilibria.

Definition 4 Let ¢ € IF and let M be a suitable model. Then, define sategic
evaluation game ap andM as

G(¢, M) = (Ng, (Siglien,: (Uigmien,)-

N, denotes the set of players;She set of strategies for player i, anglus is player
i’s utility function. We also call G, M) an IF game

Below we briefly introduce these ingredients componentwaise introduce some
notation involved. Note that strings in IF are assumed tosm &3). All definitions



below are restricted to this assumption, but can be gemethWithout much ado.

Players.The setN, = {i | x; € Var(¢)} contains the players. The g€} conveys the
strong connection between variablegiand players itts(¢, M). In fact, if V C Var(¢),
then we will useN(V) = {i | X € V} to denote the set of players associated with the
variables inV. Let E4 (Ay) be the set of existentially (universally) quantified vates
in ¢. We have adopted thraulti-playerview on IF games here, mainly because it is the
framework that is most open to generalizations with resgedor instance, the utility
functions. Moreover, it allows for smoother terminology.

StrategiesFor x; € Var(¢), defineU; 4, C Var(¢) to be the set of variables on which
X; depends inp. Thatis,Ui, = {Xj | (Xj, %) € By}. In the context of the game and
playeri having control ovei;, we often say thatsees U,. S;, denotes the set of all
playeri’s strategies irG(¢, M), being (Skolem) functions of typg : DYi» — D. If
Ui, is empty,S; 4 only containsatomic strategy

Manipulating strategiesDefine aprofile sin G(¢, M) as an object in

>< Sig

ieN’

for someN’ ¢ N,. We call's existentiauniversa), if N’ € E4 (Ay); otherwise we
call it mixed We calls completgif N’ = N,; otherwise we call ipartial. If N =
N(E,) (N(Ay)), we call the profilecompletely existential (universal)f no confusion
arises we will drop as many of the terms as possible.

If s € Xjen Sip for someN” € Ny and{l,...,j} € N’, thens,_; denotes the
strategy profilescontaining only player 1 t¢'s strategies. We will often discuss player
j changing strategies with respect to a strategy prefilfe write (5_j, t;) to denote the
profile that is the result of replacirg by t;. If se X\ Sig ands’ € Xien- Sig for
disjointN’, N € Ny, thenss is the result of concatenatirggands'. If s is a strategy
of type D% — D and assignment is defined ovefys, ..., yi}, then we will write

that is defined ovefxy, ..., x;} as below. Note thad, is an atomic strategy.

[Slx) = s
[sI(x) = s([sw..i-1])-

Utility functions. Leti € Ny. Then,i’s utility functionin G(¢, (D, I, p)) is defined
over complete profiles as follows:

B ¢ if[slel(R
Uiy .1.p)(S) = { -¢ if[g¢I1(R),

wherec; = 1if i € N(E;), andc = -1 if i € N(Ay). As all utility functions of the
players inN(E,;) andN(A,), respectively, are equivalent and the models under consid
eration can be made up from the context we will simply denméent byug andua.



‘ playa playb
play a 1 -1
playb -1 1

Table 1: Every cell in the matrix corresponds to an assigirfgrover Var(d). We
filled in the valueug ([ 9]) reflecting payd for the members of the existential team.

Now that we switched from extensive to strategic semantineg observe that
the notion of winning strategy in extensive games has a otaspke strategic counter-
part: Nash equilibrium We say that the strategy profigds a Nash equilibrium in the
strategic gamé, if none of the playerggains from unilateral deviation (see also [8]):

Ui((8-i, s1)) < ui(9).

wheres is any other strategy for playeanduy; is playeri’s utility function in G. The
following lemma can also be understood as a proofftdative equivalence between
9(¢, M) andG(¢, M).

Lemmab Let¢ € IF and let M be a suitable model. Then, the following are equiva-
lent:

e MEgTs ¢.
e There exists a Nash equilibrium s if& M), such that g(s) = 1.

Technically this lemma is not deep. Yet it shows us thatatfiatgames can account
for truth of IF logic. In the strategic framework the playitliissues concerning per-
fect recall, encountered in extensive IF games, evapoiaj@\sbecause the strategic
games ignore the inner structure of games defined by comgeaubves by the agents.
By ignoring the inner structure of the game, also the epigtetates of the agents —
i.e., their information sets — are ignored.

But the issue of playability pops up in the strategic framéwander a diferent
guise. Reuvisit the gam@&(#, ({a, b}, =)). As is common usage in strategic games we
draw its paydf matrix, see Table 1. The puzzle induced by the truth of ((a, b}, =)
in extensive contexts appears in the strategic context asrdination problem. There
are two equally profitable Nash equilibria, but which onetioa@se, without possibility
to coordinate? How to understand Nash equilibria is a proldentral in game theory,
see [8].

In the upcoming two sections we explore semantic interpicets for IF logic that
are motivated by solution concepts that are not subjectaodimation problems.

4 \Weak dominance semantics

In this section, we define a semantics based on the existémazaély dominanstrate-
gies. Intuitively, a strategy is weakly dominant for a plaifét outperforms any other
strategy independently of the other players’ strategiaisieh.



Definition 6 Fix some IF game @, M). Then,§ is a weakly dominanfstrategy in
G(¢, M) for player i, if § € S;4 and for every complete mixed profile s it is the case
that

Ug((s-i, §)) > Ug(9).
We call§ weakly dominantbecause possibly it is exactly as good as player i's origina

strategy in s. Dually, we define strategye S;, to be strictly dominatedby § in
G(¢, M), if for every complete mixed profile s it is the case that

Ue((s-i, §)) 2 Ue((s-i.t))  and  we((r-i, §)) > ue((r-i. t)
for at least one complete mixed profile r.

The notion of weak dominance we employ is weaker than the snally adopted
in game theory. For comparison we refer to [8]. We now comeutalefinition of truth
in terms of weak dominance.

Definition 7 Let¢ € IF and let M be a suitable model. Then we define truth ofi M
underweak dominance semantif4/DS) as follows

M Ewps ¢ iff in G(¢, M) there exists a complete existential profilesuch that
§ is a weakly dominant strategy for everyeiN(E;), and w(8t) = 1, for any
complete universal profile t.

Falsity and undeterminedness under WDS are defined similarl

The question remains, of course, what remains of IF logituead under WDS.
It becomes clear that GTS is less restrictive a semantics-flogic than WDS, after
reformulating truth under GTS in multi-player terms, simee may simply omits’s
constraint of being weakly dominant:

M Egts ¢ iff in G(¢, M) there exists a complete existential profiisuch that
ug(st) = 1, for any complete universal profite

Formally, our claim boils down to the claim that

M Ewps ¢ implies M Egrs ¢, )

but not the other way around. Since it is the case #fzaby, =) Ects 6, butd does not
hold on this domain under WDS, see Table 1. As an example of WB8reé, that,
surprisingly, for any modeM with more than one object in its domain it is the case
that forr = Ax; A% [X1 = Xo]:

M FEwps T whereas M Earski T

Thatr is true under Tarski semantics is obvious. From Table 2 ibbess clear that
is not true under WDS on the model with two objefdsb}. Although player 2 has a
weakly dominant strategy, player 1 has none.



1 -1
1 -1

st
$| 1

Table 2:5,d is the atomic strategy for player {1, 2} assigning objeat € {a, b}. s,
is player 2’s strategy such thagt‘)py(d) = d, whereass]*" switches the object chosen
by player 1.

‘ % Skz) SZODY §'2r1vert
1 -1
1

In the remainder of this section we will characterize théhtreonditions of IF under
WDS and see that very little is left of IF&}—expressiveness it enjoyed under GTS. We
show in Theorem 10 that truth under WDS can be expressed irgenénat of FOL
(evaluated under Tarski semantics). Before we come to aaugaformulation, let us
classify an IF sentenggs variables and characterize one of the resulting classes.

Recall that we defined the dependency relatiop'sf/ariables as a binary relation
By. The result of taking the transitive closuref®)f we denoteB;. Thatis, &, x;) € By
iff there exists a chaim, .. ., zy of variables inVar(¢) such thatzy = X, zZn = x;, and
for everyt € {0,...,m— 1} it is the case thatz, z.1) € Bs,. Such a chain of variables
2, ..., zm we will call a B,-chain Note thatBj; is irreflexive.

For every variable; € Var(¢), partitionVar(¢)\{x;} as follows:

Ug = {X1(Xj,X) € By} (6)
Wiy = {X1(X,x)) € By} (7
Vi = Var(@)\(Uis U {x}UWy). 8)

We encounteret); 4 before, as it contains all variables seen by play&k; , con-
tains the variables that cgm)directly seex. Vi, is the set of all other variables i
not containingx. What is meant by ‘seeing (in)directly’ is pinpointed by tlodléwing
lemma, that characterizes the variableS\ry.

Lemma 8 Let¢ < IF be as in(3) and let M be a suitable model. Let;Y\be defined
as in (7) for some sentencg and i € Ny. Then, x € Wi, iffi # jand in G(¢, M)
there exists a complete strategy profile s and a strategy $; such that[s](x;) #

[(s-i, 6)](X;).-

Intuitively, W, , is the subset o¥ar(¢) consisting of variables that are sensitive to
X changing assignments. The lemma, interpreted the otheaveamd, teaches that, if
Xj is not inW 4, for every strategy profile, playérchanging strategies doeffect the
object assigned tm;.

Theorem 9 Let¢ € IF as in(3) and let M be a suitable model. The setg, UM 4, Vi 4
are defined as iif6), (7) and(8), respectively. We also consider the set, W {x' |x €
Wi ,}. The strings of variables in these respective sets will berred to by means of
u,v,w, andw’. Then, in G¢, M) player ie N, has a weakly dominant strategy i

M Etarsii YUIX VX YWWYW  [(0) A (i) A Giii) — ()], 9)

10



where

(i) = R@x.V.0)

(i) = x#X

(i) = A[[A xk:x;]ﬁszx]r]
j#ieN \\xeUj4

(V) = R@X.%W).

If Uj, is empty, interpre{A\yecu,, X% = %) asT. Note that Va((i)) = Var(¢) and
that Var((iv)) = Uiy U {X} U Vi, UW/ . Furthermore," is a mapping from V&(i)) to
Var((iv)), as follows
y* _ Yy |fy€ Ui!¢UVi’¢
y ifye{xuWg.

We will refer to the first-order formula (@) asa;(¢).

Basically, aj(¢) states thaif (i) there exists an assignment that satisfeii)
playeri changes the object assignedxpbut (iii) the other playerg play according
to a Skolem function that is uniform with respect to what thay see (i.e., the objects
assigned to the variables i ;), then(iv) there exists an objed; to assign tax that
guarantees truth d® no matter what is played by the players that can (in)direstly
to x. The strategy such that(0) = d; for all uthat satisfy (i) is a weakly dominant
strategy. Itis a weakly dominant strategyGip, M) for playeri, because e S; ;.

Theorem 9 characterizes the condition under which a plagealweakly dominant
strategy. To be true under WDS, however, slightly more isirequ The following
theorem characterizes truth under WDS.

Theorem 10 Let¢ € IF be as in(3) and let M be a suitable model. Let,Eand A
partition Var(¢) in such a way that fcontains the existentially quantified variables in
¢. We abbreviate the string of all variables in, Bnd A, usinge anda. Then,

M Ewps ¢ Iff M Eraskia() A B(#),
wherea(¢) = Aiene,) @i(¢) ands(g) = Yade Ra €).

Formulaa(¢) being true onM is equivalent to every existential playehaving a
weakly dominant strategg ih G(¢, M). Yet this does not guarantee that the existen-
tial playersi playing according te ‘will always get 1. For instance, iG(y, M) every
existential player has a weakly dominant strategy,'sfrelational symbol is false for
every suitable tuple of objects froM’s domain. However, playing according to it will
always yield an outcome ofl. Truth of 3(¢) is a suficient and necessary condition
for avoiding the latter situations.

For future comparison we conclude this section with a me&teesient about IF
logic interpreted under WDS, that follows straightforwgrfibom Theorem 10.

Theorem 11 IF under WDS has less than elementary expressive power.

11
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S2
5 1
s 1

Table 3: The pay matrix of G'(z, ({a, b}, =)) = ({1, 2}, (IS, £}, {S™™}), {Ug, Un)).

5 Beyond WDS

From Theorem 9 we learn that for a player to have a weakly dantistrategy it does
not matter what is played by his team members. Even in theathbite team members
leave him and join the other team, this would not makefBedince with respect to
him having a weakly dominant strategy. l.e., WDS ignores hoatunities that might
come with the notion of &eam In this section we show by example that increasing
the ‘powers’ of the involved players in IF games increasesetkpressive power of IF
logic on the obtained semantics, Theorem 14 as opposed tordrel 1.

Let us revisit the sentence= Ax;dx%; [X1 = X2]. We observed that is not true
under WDS on any modé¥l that has a domain with more than one object (see Table
2). On the assumption that player 1 knows 2 is rational, playeay infer that 2 plays
s;’™, because playing this strategy is better for it than anyrattrategy. That iss;™
is weakly dominant. After this inference, player 1 choosingtrategy irG(r, M) then
effectively boils down to it choosing a strategy in the game

G(r(fabh=) = (1.2}, (s SHS™) (e, ua)).

G’’s trivial payadf matrix is depicted in Table 3.

In this spirit, the following definition hard-wires the pregture of players calculat-
ing what other players will play. As such it bears strong &nity to the game-theoretic
literature oniterated removal of dominated strategiege [8]° The result of this pro-
cedureP as applied to some IF game will be the game thaffisotively played.

Definition 12 Let¢ € IF as in(3) and let M be a suitable model. Then, define

G"(¢, M)
G (¢, M)

G(¢’ M) = (N’ (S].’ sy Sn), {UE, UA})
(N.(S1.....Si1. S} Sfp.. .. SF). {UE. Ua))

where S, ...,Si-1,S’, ..., S% are copied from &g, M) and
S” = {seSi|s weakly dominantin Gg, M)}.

Finally, put the strategic evaluation gamé’ @, M) = G%(¢, M).

2|t is tempting to clarify the inferences of the players by asiig common knowledge of rationality.
(In fact a weaker concept of knowledge would do to triggerghecedure.) In this paper we consider the
procedures simply as formal objects, leaving us space to dafimedures that are not epistemologically jus-
tified (such asvV®D, defined below). For much more on epistemological characteimof game-theoretic
solution concepts we refer to [2].
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This vehicle we employ to define a semantics ‘on top’ of WDS.

Definition 13 Let¢ € IF and let M be a suitable model. Then we define truth oh
M underweak dominance semantics pla@sas follows:

M F@Ds ¢ iffin G” (¢, M) for every complete profilg it is the case thatg(§) =
1

We thus state the truth of an IF sentegoen M in terms of the outcome of playing
the gameS” (¢, M) by players that are empowered to reason according to tloeguoe
. For instance, it is the case th&t, (b}, =) |=\7,3vDS T.

First of all, note that, epistemically, playeneeds to know nothing about the other
players in order to pick a weakly dominated strategy, i®.adt in accordance with
#. Now, playern — 1 needs to know that playeris indeed rational in order for it to
be rational to consider gant&"(¢, M). In general, to explain why the players would
executeP, one has to assume that every playisrational and knows thai + 1 knows
that. .. knows thaih is rational. Now, this is quite strong an assumption to mékech
stronger in any case than WDS’ mere requirements that allldyers are rational.

Secondly, we observe that fore IF

M Ewps ¢ impliesM b0 ¢ and M EL o ¢ impliesM Egrs¢,  (10)

but the converses do not hold, witnessingndd on M = ({a, b}, =), respectively.
Thirdly, in Theorem 14 we observe that the expressive poweeases when switch-
ing from Ewps to |=§,DS with respect to FOL. Also, we draw the conclusion from this
theorem that every FOL formula behaves under WDS gl it does under Tarski
semantics. What is the expressive power of IF logic under WDS®lis left open.

Theorem 14 Let¢ € FOL and let M be a suitable model. Then,

M |:Tarski ¢ iﬁ M l:€vDS ¢

The procedur@ turns out to be the strategic counterpart oftthekwards induction
algorithmas applied to the extensive game tree of an FOL game. The gidblorem
14 boils down to showing that a tuple of Skolem functidris a witness oM E14rski ¢
iff it is contained irS7 x ... x S.

6 Conclusion

In this paper, we set up a strategic framework for IF semagdines, which are tra-
ditionally studied extensively. Naturally, by giving upetlextensive structure that is
traditionally given to IF games, we avoid conceptual isghes arise with the playa-
bility of IF games (i.e., lack of perfect recall). We obseaithat truth of IF logic under
GTS can be characterized by the solution concept of NasHileguin. We saw that
other issues arise in the strategic framework: how are pesigpposed to coordinate
or, more eloquently, how are Nash equilibria supposed &eari
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We used the strategic framework to define to semantic irgeafons for IF logic
inspired by solution concepts related to weakly dominamattsgies:=wps and lzﬁ,DS.
The former does not require any of the involved players tonkaaything about the
other players. We showed that undgelps the expressive power of IF logic collapses
to that of a fragment of first-order logic (under Tarski seti@). The epistemic de-
mands oﬂ:ﬁlDS were seen to be higher than thatefps. We showed that the expres-
sive power of FOL (under Tarski semantics) is left intact wieealuated unda:ﬁCVDS.
Thus, all of IF logic (undeltﬁ,DS) has expressive power of at least FOL (under Tarski
semantics). Our findings can be summarized in the followeadudet

Solution concepS \ Expressive poweks
Nash equilibrium | High (= £)

WDS + P Medium-high & FOL)
wWDS Low (< FOL)

Further research will have to flesh out this table and detegmihat are the de-
pendencies between solution concepts and the expressixar pd IF logic evaluated
under the associated solution concept. This enterprisédveoqplore correlations be-
tween notions of agency and semantic interpretations aéabtanguages.
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