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Abstract. In this introduction we discuss the motivation behind the workshop “To-
wards a New Epistemology of Mathematics” of which this special issue constitutes
the proceedings. We elaborate on historical and empirical aspects of the desired new
epistemology, connect it to the public image of mathematics, and give a summary
and an introduction to the contributions to this issue.

1. Introduction

Mathematics has been regarded as a very special science. This as-
sessment is upheld across widely different contexts: Philosophers have
marvelled at and sometimes tried to imitate the security of mathemati-
cal results, sociologists have shunned from applying their observational
techniques to mathematics, and the general public—while not neces-
sarily embracing mathematics as their favourite science—acknowledges
the special status of mathematics through widely accepted figures of
speech such as “mathematical precision.”

Philosophically speaking, the special status of mathematics seems
to derive from its peculiar epistemology, which appears to be linked
to a special technique, mathematical proof. While all sciences justify
their results, only a few sciences claim to prove their results; among
those, mathematics alone uses mathematical proof, which conveys to its
results the characteristic mathematical objectivity that other sciences
lack. This is, e.g., reflected in Descartes’ skeptical argument in the
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Meditationes: Empirical knowledge is destroyed via the dream argu-
ment, whereas Descartes has to invoke a genius malignus to doubt
mathematical knowledge in his thought experiment. According to the
traditional philosophical analysis, mathematical theorems are a priori
truths about acausal, non-spatio-temporal objects. Working mathe-
maticians themselves have a strong feeling that they are manipulating
or dealing with objects that provide resistance (Dilthey’s Widerstands-
empfinden).

An adherent of the traditional, foundationalist view would subscribe
to the following claims about mathematics: “Mathematical statements
are objectively true or false,” “There are no disputes about the validity
of a mathematical statement once it is established,” “The history of
mathematics doesn’t know any revolutions,”! “Mathematics is a unique
science; an ‘epistemic exception’.”?

If foundationalism is correct and the special epistemic status of
mathematics really derives from its fundamental technique, i. e., math-
ematical proof, we should then be able to describe what that is. Until
the end of the 19th century, mathematics did not have a precise answer
to this question, but then the foundations of mathematics became a
central research interest. This resulted in a widely accepted notion of
formal derivation as the explication of mathematical proof. According
to this doctrine, the objectivity of mathematics rests on the pure form
of mathematical argumentation, an example of which can be seen in
Figure 1 (in one particular formal system).
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Figure 1 A formal derivation (in Gentzen’s sequence calculus).

In mathematical practice, proofs are written down in a more con-
densed, semi-formal style, an example of which is given in Figure 2. The
traditional view would consider these proofs enthymematic, leaving out
technical detail for purely pragmatic reasons (Fallis, 2003). Therefore,

! ¢f. (Grattan-Guinness, 2004, p. 163): “Mathematics shows much more dura-
bility in its attention to concepts and theories than do other sciences. For example
Galen may not be of much use to modern medicine, but one can still read and use
Euclid.”

2 Cf. (Prediger, 2006) for a discussion.
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Figure 2 A typical page from a mathematical research paper.

it effectively suppresses any epistemological questions about informal
proofs by postulating that, for philosophical questions, the difference
between actual proofs and formal derivations can be (properly) ignored;
it is part of this traditional view that enthymematic proofs can be
completed to formal derivations.

A closer look at mathematical practice leads to two important ob-
servations. First, the completion of enthymematic, semi-formal proofs
to formal derivations almost never happens and hardly plays any role in
the justification that mathematicians give for their theorems; second,
also the production of semi-formal proofs in the style of Figure 2 is
only the final step of the mathematical research process. This final
step, while important for the documentation of results and crucial for
the careers of researchers, is not necessary for the acceptance of a proof
by the mathematical community. For this, different forms of proof are
much more relevant: informal sketches on the blackboard, or scribblings
and drawing on napkins (see Figure 3). Shouldn’t these forms of proof
replace the unrealistic notion of formal derivation in our epistemology
of mathematics?



Figure 3 Proofs from mathematical practice: a blackboard and a napkin. The picture
of a napkin proof is included with permission of Ivan José Varzinczak.

The ideal of uncontroversial checkability of mathematical arguments,
however, seems to be related to formal derivations rather than scrib-
blings on napkins. How can we uphold the view that mathematical
controversies are impossible, if mathematical epistemology rests on a
means of communication with no precise format? Possibly, we can’t.
Indeed, in the past years there have been prominent cases of mathe-
matical proofs whose correctness was disputed for an extensive period:
Andrew Wiles’s proof of Fermat’s last theorem, Grigori Perelman’s
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proof of the Poincaré conjecture, or Thomas Hales’s proof of the Kepler
conjecture.? These cases have triggered a genuine inner-mathematical
debate* which was duly noticed by the general public, as can be seen
from the following quote from the German weekly magazine Die Zeit:

Erstaunlicherweise sind ... die meisten [mathematischen] Beweise
keine Abfolge von Formeln, sondern sie sind in ganzen Sdtzen gefasst,
einige davon lauten ,Wie man leicht sieht, gilt ...“ , Ohne Be-
schrankung der Allgemeinheit kann man annehmen, dass ...“. Es
wimmelt nur so von Andeutungen, stillschweigenden Voraussetzun-
gen und Appellen an den gesunden Menschenverstand. Was als
Beweis akzeptiert wird und was nicht, ist eine soziale Konvention
der mathematischen Community.

(Christoph Drésser, 27 April 2006)°

These inner-scientific episodes, as witnessed by their public reflec-
tion, suggest that one should consider a revision of the foundationalist
epistemology of mathematics. Indeed, philosophers like Wittgenstein,
Lakatos, and Ernest have been advocating the view that mathematics
should not be considered special; instead, they argue that its method-
ology is far more similar to that of the empirical sciences than what the
usual image of a “proving discipline” with its emphasis on a specific
formal methodology suggests. A radical denial of foundationalism is
offered by social constructivism (Ernest, 1998), an approach that many
researchers in mathematics education embrace.

In our view, neither foundationalism nor social constructivism can
offer sufficient explanations of mathematical practice. On one hand,
mathematical knowledge does not solely emanate from formal deriva-
tions; on the other hand, the epistemic status of a mathematical the-
orem is decidedly different from research results in, e. g., paleoanthro-
pology. This difference is not properly explained by social construc-
tivism. It is therefore a desideratum that philosophers of mathematics
develop a mediating position that strikes a balance between the spe-
cial epistemic character of mathematics and the social embedding of
mathematical practice. Some fruitful approaches exist, dispersed in

3 For overviews of these results and a discussion of the proofs, cf. the survey
papers (Faltings, 1995; Mackenzie, 2006; Morgan, 2005), respectively.

4 A parallel case of an inner-mathematical debate is the so-called “Jaffe-Quinn
debate”, provoked by the paper (Jaffe & Quinn, 1993) about the differing standards
of proof in mathematical physics and in pure mathematics.

5 «“Qurprisingly, most mathematical proofs aren’t sequences of formulae but for-
mulated in complete sentences, some of which read ‘It is easy to see that ...,
‘Without loss of generality we can assume that ...’ All over the place, we find
an abundance of allusions, tacit assumptions, and appeals to common sense. What
counts as a proof and what does not is a social convention of the mathematical
community.”
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the communities of mathematics education, sociology of science, and
philosophy of mathematics, but a concerted interdisciplinary effort is
necessary in order to develop a truly adequate new epistemology of
mathematics.

This is the goal of the scientific network “Philosophy of Mathemat-
ics: Sociological Aspects and Mathematical Practice” (PhiMSAMP) in
which researchers from the universities of Amsterdam, Bonn, Brussels,
Darmstadt, Dortmund, Fort Wayne IN, Montréal QC, and Vienna
collaborate. This collaboration brings together researchers from the
fields of philosophy, mathematics, mathematics education, and his-
tory of mathematics in a series of workshops. The kick-off meeting,
PhiMSAMP-0, took place in Bonn in May 2005. This special issue
of Erkenntnis is a result of the first official activity of the network,
the workshop PhiMSAMP-1 in Berlin in September 2006. Since then,
the network has been involved in the organization of the international
conference Perspectives on Mathematical Practice 2007 (PMP 2007) in
Brussels and the organization of the Novembertagung 2007 in Bonn.
The second official PhiMSAMP workshop, PhiMSAMP-2, was held in
Utrecht in October 2007; it featured a day of tutorials on various em-
pirical research techniques, in particular from sociology and cognitive
science, that are intended to play an important role in the development
of the new epistemology. The question of the special nature of mathe-
matics will be raised again at PhiMSAMP-3 to be held in Vienna, May
2008, which has as its motto “Is Mathematics Special?”

Before giving an overview of the papers in this issue (Section 4),
we shall now highlight two dimensions of our practice-oriented phi-
losophy of mathematics, both of which we expect to become crucial
for the development of our group’s new, more adequate epistemology
of mathematics. In Section 2, we shall pursue some historical lessons
that indicate how some traditional epistemological conceptions came
about and why they must fail. In Section 3 we sketch some general
methodological issues of using empirical data in philosophy in general,
and in epistemology of mathematics in particular.

2. Lessons from history

We argue, in this and the following subsection, that a historically in-
formed view can no longer subscribe to a number of assumptions we
find embraced without much ado by a majority of those who work in
philosophy or mathematics. We claim in particular that philosophers
and mathematicians usually assume a continuity of subject matters
that doesn’t survive closer scrutiny. Neither the objects of mathematics
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nor the philosophical reflection upon them display a continuity that
would justify expressions like “the triangle from Aristotle to Atiyah”
or “the philosophy of mathematics from Plato to Putnam.”

In regards to mathematics we hold that the conceptual framework of
mathematics has changed so dramatically that, say, identifying Greek
numbers with modern axiomatic characterizations just seems outra-
geous. That it could seem to be otherwise is basically the product of a
modern myth, Cartesian dualism.

In regards to philosophy we show that philosophy of mathematics
started its career around 1800 as a short-lived creature that sprang
from Kant’s epistemology and sunk into oblivion thereafter before it
was reanimated by logical empiricism in the early 20th century. On
both occasions, Kantians and logical empiricists had doctrinal reasons
for assigning mathematics a distinguished epistemological status that
would elevate it above the sciences. Without subscribing to Kantian or
Viennese presuppositions, however, this alleged special status of math-
ematics becomes simply unfounded. We hence claim that the special
epistemological status of mathematics (as traditionally understood and
outlined above in Section 1) is another myth.

Kant once coined the expression “usurpatory concepts.” He defined
them as concepts for which, “though allowed to circulate by almost
universal indulgence [...], no clear legal title, sufficient to justify their
employment”® can be obtained. Kant was concerned about certain
metaphysical notions, but we think that usurpatory concepts reflect a
general phenomenon of language as it evolves over time. Concepts are
introduced at a certain moment in time to satisfy then current needs;
but over time they acquire a life of their own and either lose their
original meaning and take on a metaphorical one, or they turn into red
herrings. Examples are ubiquitous and easy to find; e. g., we still speak
of “electrical currents” although the theory that electricity is a kind of
fluid has been obsolete for a long time. The thesis, then, that we try
to establish in this section is that (traditional) “philosophy of mathe-
matics” is an usurpatory concept as well. Doing work in the philosophy
of mathematics by starting from commonly accepted views about the
Platonic character of mathematics and its special epistemological status
is like researching electricity and assuming it is a fluid.”

5 (Kant, AA, IIL, p. 99 (= CPR, B117)).

" In order to avoid excessive scholarly clutter, we will give explicit references only
for those claims we expect to be unfamiliar to the average reader of this journal.
The full version of the arguments, of which the current paragraph is a short excerpt
from (Buldt, 2004) and will be published separately (and partly also in (Buldt, cob)
and (Buldt & Van Kerkhove, co)) with rich historical evidence from various sources.
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A historical lesson from the philosophy of mathematics In the year
1799, at a time when Fichte was still very close with Schelling and the
two brothers August and Friedrich Schlegel, an idea emerged among
them: the plan for a Jenaische Colonie, a house-sharing community
in Berlin. This idea came with another one, namely, a plan for a new
journal they would edit. One of the main motives for founding a journal
was that Fichte thought it necessary to have a durchgreifende kritis-
che Zeitschrift as an instrument not only to oppose the conservative
camp but also “[um] gewaltiger in die Wissenschaft, und den Geist
des Zeitalters einzugreifen”.® Provisionally entitled Kritisches Institut,
the journal was envisaged as a pragmatische Zeitgeschichte der Litter-
atur und Kunst.® Fichte sketched the blueprint for the treatment of
mathematics in the new journal as follows:

Mathematische Wissenschaften. Das Bekannte wird vorausgesetzt.
Vielleicht verdienen neuerliche Entdeckungen in der Astronomie,
und die combinatorische Analyse fiir das vergangene, ehrenvolle
Meldung. Mangel einer Philosophie der Mathematik, und Nachtheile,
die der Math.[ematik] daraus erwachsen; wird in der Zeitgeschichte
fortgesezt, bis diesem Mangel einst abgeholfen wird.”

(Fichte, ITI/4, p. 171)'0

Fichte did hence not only notice the non-existence of a philosophy of
mathematics but was also concerned that this might have detrimental
effects for mathematics itself. Accordingly, the following year he urged
Schelling to produce a Grundzuge einer Philosophie der Mathematik
for the first volume of the journal. But Schelling, having too much on
his plate already, tried to get (Adolph Karl August von) Eschenmayer
involved instead who was a well-known medical doctor and natural
philosopher.

Nothing came out of all these plans, though. The journal was never
lauched and no one wrote a separate philosophy of mathematics; Schel-
ling at least admitted that he failed to give mathematics a proper treat-
ment in the System des transzendentalen Idealismus (1800)'!. Fichte,
however, who had made philosophy of mathematics a topic already in

8 “have a more powerful influence on sciences and arts and the spirit of the age”.
° (Fichte, IT1/4, p. 169) (emphasis surpressed).

10 «pMathematical Sciences. We assume what is well-known. Recent discoveries in
astronomy and the combinatorial analysis should possibly get their proper due. Lack
of a philosophy of mathematics, and the disadvantages this causes for mathematics;
to be continued in the section on current events until the situation is remedied.”

W “wegen der Mathematik [. .. ] eine grofie Liicke gelassen [zu haben], die ich recht
wohl fihle”, (Schelling, 1/9.2, p. 287).
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the so-called “Platner lectures”!? he gave in Jena from 1794 through
1797, continued to devote several lectures to the philosophy of math-
ematics during the time he read logic and metaphysics in Erlangen;'3
and as late as 1812 he still outlined a scheme for a separate philosophy
of mathematics, a plan he could not pursue as he died about a year
later.'#

Although Fichte obviously pushed harder than the brothers Schlegel,
Schelling, or Eschenmayer, it is a noteworthy fact that no one involved
in the project ever doubted that it was highly advisable or even manda-
tory to come forward with a philosophy of mathematics. This fact
becomes even more baffling when one realizes that the “Fichte Circle”
from around 1800 was by no means alone. The (Kantian) philosopher
Jacob Friedrich Fries (1773-1843)—who should much later influence
the development of Hilbert’s program via Paul Bernays—started men-
tioning a philosophy of mathematics in his manuscripts and letters
around 1795;'® independently of Fichte, though. The same holds true
for a Polish mathematician who lived in France and whose name lives
on in the determinants that carry his name, (the Kantian) Jézef Maria
Hoéné-Wronski (1778-1853); Wronski published a philosophy of math-
ematics in 1811.16 This list, which would then include besides Kantians
also students of Schelling and Hegel as well as mathematicians, would
grow considerably longer if we were to include all those, who, without
calling it “philosophy of mathematics,” worked on the same, similar,
or closely connected questions.!”

We suggest that this convergence of opinions among philosophers
and mathematicians happened for a reason and that the key for under-
standing this phenomenon lies in a name: Kant.

What we have in mind is neither the fact that Kant tried to con-
tribute to a persistent though suppressed undercurrent of mainstream
mathematics during the 18th century, namely, the discussion of founda-
tional issues (see, e. g., the 1786 Preisfrage on the mathematical infinite
initiated by the Berlin Academy of Science); Berkeley did it before
with his pamphlet The Analyst (1734). Nor is it Kant’s intention to

12.Cf Vorlesungen dber Logik und Metaphysik als populdre Einleitung in die
gesamte Philosophie. Nach Platners Philosophischen Aphorismen (Jena, Summer
1797), in (Fichte, IV/1).

13 Of. Institutiones omnis philosophiae, in (Fichte, 11/9, pp. 124-135).

4 Cf. (Fichte, I1/5, p. 583).

Cf. (Pulte, 1999), p. 74, for a summary.

16 Cf. (Wronski, 1811).
One must exercise caution, though, for not every book that has “philosophy”
and “mathematics” in its title deals with philosophy of mathematics sensu stricto;
many are just introductory textbooks that add some philosophical language on top
of definitions and proofs; cf., e.g., (Bledsoe, 1873).
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secure the working mathematician a solid foundation through philo-
sophical analysis and reflection; Plato did it earlier with distinguishing
“Noytotin)” from “Gprduntind,” with the latter being a philosophical
foundation for the (mathematical) former. Rather, in the first step,
Kant’s innovations were to assign mathematics its own cognitive facul-
ties, i. e, the pure intuitions of space and time. Before Kant, “/lieff/ man
sich gar nicht einfallen ..., daff Sinne auch a priori anschauen soll-
ten.” 18 Doing so, in a second step, he claimed a distinguished, special
epistemological status for mathematics.

This new Kantian epistemology with its close ties to mathematics,
its promising new features, and its unclear and confusing conceptual
patchwork, inspired and challenged those who worked in Kant’s wake.
Fichte, e.g., felt forced to deduce in his own system what Kant had
simply presupposed, namely, that space is three-dimensional, while
Fries introduced a Hilbertian distinction according to mathematics and
metamathematics. The towering figure Kant was at that time, it is
thus neither a wonder nor an accident that Kantians and anti-Kantians
busied themselves with something new, a philosophy of mathematics.

It is a familiar observation in the history of the science that a disci-
pline or a community of inquiry acquires a name of its own only when it
comes of age, so to speak; like British, French, and German physicists in
the early 19th century, who could no longer stand to be called “natural
philosophers,” started to call themselves “physicist,” “physicien,” or
“Naturforscher” respectively. The same now seems to be true for our
case: philosophy of mathematics as a separate philosophical endeavor,
a specialized field of its own, is a product of Kant’s epistemology. And,
even more, it is his creature; philosophy of mathematics in its initial
shape exclusively dealt with questions that emerged from a Kantian an-
gle and couched its answers in (Neo-)Kantian terms as well. This claim
is further supported by the observation that, once Kant’s epistemology
had lost its initial luster, the new expression was no longer used. On
and off, it made a reappearance also later in the 19th century, but only
as a title for some dissertation: X’s philosophy of mathematics.

Philosophy of mathematics became respectable again in the early
20th century. On one hand, Logical Empiricism replaced traditional
epistemology with a different enterprise, the philosophy of science.
Following Frege’s lead, logical empiricists replaced the “mentalese” of
traditional epistemology, i. e. the idiom of “ideas,” “representations,”
“judgments,” etc., with a study of the syntax and semantics of those
languages used in scientific textbooks and research papers. Besides a

18 “no one considered that the senses should also intuit a priori” (Kant, AA, IV,

p- 375, note (= Prolegomena, A 207)).
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common logical core all these languages were supposed to share, each
language is different enough to justify a separate treatment. Unsur-
prisingly, we hence find what formerly was one epistemology now to
be split up in various “philosophies,” namely, a philosophy of physics,
a philosophy of biology, a philosophy of sociology, etc. Philosophy of
mathematics thus re-emerged as a discipline of its own as a by-product
of substituting traditional epistemology with a philosophy of science
program.

John Stuart Mill was proud to be the first philosopher to give, unlike
Locke and Hume, a comprehensive and at the same time thoroughly
empiricist account of mathematics. His approach, however, fell prey to
Frege’s sharp criticism and was hence no longer acceptable to empirical-
minded philosophers in the late 19th or early 20th century. Their
solution was to adopt Russell’s logicist thesis that every mathematical
concept can be defined in the language of logic and that every mathe-
matical proof can be replaced by a purely logical derivation using the
logical definitions of the concepts involved; hence the label “Logical
Empiricism.” The result is a philosophy that ascribes mathematics a
special epistemological status; mathematics is just applied logic, and
as such it cannot be compared with any other science.

We find most modern analytic philosophers of mathematics subscrib-
ing to the Kant-Carnap thesis (that mathematics demands a special
epistemology); probably, because the unhistorical stance taken by most
of them never made them question this assumption.

Like in Kant’s case before, we thus see, again, that the distinguished
epistemological status of mathematics is not the result of a careful
inspection of what mathematics is or what mathematicians do but an
artifact of a philosophical program. It does not mean to make light
of their accomplishments when we state we have plenty of reasons to
be neither a Kantian nor a logical empiricist. But if this is true, then
we have lost any prima facie justification to assume that mathematics
would require a philosophical analysis that is different from that of any
other science.

We also see that—contrary to the Neo-Kantian conception of the
history of philosophy that is still predominant is most quarters of
philosophy—there is, if we look at the facts, no continuity in the field
that would span centuries and millennia; it doesn’t make sense to speak
of a “philosophy of mathematics from Plato to Putnam.” Before Kant,
philosophers accounted, in varying degrees, for mathematics in their
systems; no doubt about it. But no one felt the need for a separate
epistemological treatment. It would be an anachronism to ascribe to
them a philosophy of mathematics sui generis, thereby projecting back
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onto them a conception they simply could not have. Philosophy of
mathematics as we know it today is a product of Logical Empiricism;
it emerged in a unique historical situation and was meant to satisfy
specific philosophical needs of the time. To ignore this fact means to
fake history and to work within an outdated philosophical framework
instead of questioning it.

A historical lesson from the ontology of mathematics In the times
before Descartes, it went mostly without saying that a soul without a
body is an incomplete substance and that assuming immortality of the
soul would therefore require the resurrectionem carnis of the Apostle’s
Creed. Accordingly, and in opposition to what Boéthius and Augustine
had said earlier, (a student of) Thomas Aquinas defended the opinion
that “certain corporeal places are appointed to them [the souls].”?
Descartes, who, unlike Thomas, was under no obligation to defend
doctrines about the purgatory, widened the traditional gap between
body and soul even further by declaring the res cogitans to have no
spatial extension or location whatsoever. Both Descartes and Aquinas
agreed, though, that, while perception requires the cooperation of both
body and soul, “quaedam operationes sunt animae, quae exercentur

sine organo corporali, ut intelligere et velle”.?® and that “huiusmodi

potentiae necesse est quod maneant in anima, corpore destructo”.?!

The philosophical and religious backdrop of this view, however, has
gone missing. Supporting religious beliefs are either waning, or contra-
vening scientific results, or both; and philosophy follows suit. Asked
either to abandon Cartesian dualism or to renounce mental causation —
for, by scientific lights, the two are not compatible with each other??- it
is ontological dualism that usually has to go, for this leaves us with a
physicalism that we expect to cohere well with the scientific knowledge
we embrace.?

19 (Aquinas, Summa theol., p. 3 suppl., quest.69, art. 1).
20 «Some operations of the soul are performed without a corporeal organ, like
reasoning and willing” (Aquinas, Summa theol., p. 1, quest. 77, art. 5)
21 “these powers must remain in the soul, after the destruction of the body”
(Aquinas, Summa theol., p. 1, quest. 77, art. 8).
22 Any two of the following propositions will contradict the third:
(1) Mental phenomena are non-physical phenomena;
(2) Mental phenomena are causal efficient among physical phenomena;
(3) The realm of physical phenomena is causally closed
(taken from (Bieri, 1981, p. 5)); ¢f. (Kim, 2006, Chapters 2 & 7 ) for a more detailed
overview of the arguments that cause most people to reject dualism and favor some
sort of physicalism instead.
2 (f., e.g., (Churchland, 1986; Churchland, 2002).
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We thus face a situation in which an important fragment of our
everyday language, the “mentalese” of folk psychology, has lost its se-
mantics; for the ontological dualism that this language presupposes and
which underlies our mind-body distinction and is so well-entrenched in
Western thought is no longer available. One important task for the
philosophy of mind, provided it doesn’t waste its time on some vain
rearguard actions, is hence to work out the details of a new semantics
for the mentalese we speak and which we cannot dismiss.

Philosophy of mathematics seems to lag behind. Given the above-
mentioned assumptions on the soul, combined with an ontology that
rested, basically, on an Aristotelian notion of substance, mathematical
Platonism was a very natural position to adopt. And most mathemati-
cians and philosophers continue to speak some sort of “platonese,” for
it is, no doubt, a very convenient language to speak when it comes to
mathematics. But ‘platonese’ has lost its semantics like ‘mentalese’ did.
We no longer embrace, like Aquinas did in the above-cited quotations,
the idea of an immortal non-physical soul that is the seat of reason and
harbors, among other eternal entities, mathematical objects; reasoning
and its objects are, ultimately, functions of the brain and products
of its activity.?*In short, an ontology of mathematics that assumes
an immortal soul harboring mathematical objects doesn’t seem to be
available any longer.

The claim that mathematics is a human activity that creates its own
objects is further supported by a look at the history of mathematics—
provided, of course, we look without the familiar Plato-tinted spectacles
but

[...] take a view of mathematical activity drawn from observed facts
in opposition to the normative assertions of certain philosophers
of mathematics. An honest conception [...] must emerge from a
dispassionate examination of what mathematicians do, rather than
from what mathematicians say they do, or from what philosophers
think mathematicians ought to do.” (Rota, 1991, p. 108)

Let us look at the concept of continuity as an example:

The idea of a mathematical continuum is intimately connected to
and has actually been motivated by physics in general and by questions
of mathematical models for the kinematics and dynamics of bodies in
particular. This holds true for the physics of Aristotle, and becomes a

24 (Of., e.g., (Dehaene et al., 2004). Accordingly, an important task for the philo-
sophy of mathematics —provided it doesn’t waste its time on vain rearguard actions
either—is, then, to work out the details of a new semantics for the platonese we still
prefer to speak. Devlin’s paper in this issue attempts just this; see also (Buldt, oca)
for a different, though similar, approach with the same goal.
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predominant theme in Leibniz who even made the lex continuationis,
the loy de la continuité, the most basic principle to govern his research
in mathematics, the sciences, and philosophy. The idea was to model
physical change with the help of continuous functions such that changes
in the physical world (say, location, velocity, potential energy, etc.) are
reflected by a corresponding change of function values. Leibniz worked
with the notion of an infinitesimal, an infinitely small quantity, and
mathematical research was done within this conceptual framework for
nearly two centuries.

Only a few complained about the lack of a more rigorous con-
ceptual foundation, but when the climate began to change because
mathematicians found themselves unable to make any progress un-
less more rigorous definitions had replaced the language of infinitely
small quantities, Cauchy satisfied his own research needs by intro-
ducing the convergence criterion for sequences that still carries his
name.?> Subsequent conceptual honing finally led to Weierstrass’ fa-
mous &-0-technique of defining mathematical properties of continuity
(and differentiability). The new language of limits, however, required
in turn a more rigorous definition of the concept of real number which
was delivered by Dedekind among others. And because it worked out
well, mathematicians were happy to accept these new notions and to
identify the continuum with the set of real numbers.

Further research, however, suggested that the continuity of a func-
tion is not really a property of the function but of the underlying space;
for, provided one has appropriate spaces S and T, every function from
S onto T will be continuous, say, if S has the discrete (every subset is
open) or if T has the indiscrete topology (only the set itself and @ are
open). This is why we currently conceive of continuity as a topological
property and define continuity accordingly in terms of open sets and
their preimages (which have to be open again).?

We hence witness major conceptual changes for the notion of conti-
nuity (and, along with that, the notion of a function and other related
concepts.

— In the wake of Leibniz the continuity of a function, or, to be more
precise, the continuity of the graph of a function results from
the fact that everything obeys the law of continuity. Neither is
it necessary to prove a function to be continuous (why belabor
the obvious) nor to guarantee its continuity by, say, reducing it to

25 A sequence (an, ; n € N) is convergent if and only if for every ¢ > 0 there is a
number n. (so large) such that |a, —am| < &, for all m,n > n..
26 Cf., e.g., (Crossley, 2005, p. 17seq).
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a paradigmatic case. Everything that is is continuous, and if two
arbitrary curves intersect, then there must be a point in which
they intersect. The prevailing general point of view in ontology is
monistic, everything shares the property of being continuous. Kant
turned this view into a law a priori by making it, respectively what
he called the “anticipations of perception,”?” a synthetic principle
of pure understanding.

— In the tradition of Cauchy, Cantor, Dedekind, and Weierstrass
continuity is the property of a function (now conceived of as a
set of n-tuples) which is defined on a point set continuum. The
continuity of a function is no longer guaranteed but has to be
established, and any other type of continuity is reduced to the
set of reals as the paradigmatic case of continuity. The prevailing
general point of view in ontology is bottom-up, everything is built
from up from certain basic objects (usually sets).

— Currently, the continuity of a function is conceived of as being
induced by properties of the underlying space; continuity is a topo-
logical property. Previous questions about the point set continuum
as the one distinguished model of continuity have lost much of their
former luster since Cohen forcing has shown that the continuum,
understood as 2¥, can be anything, say, that is not cofinal with w
(like, wo,wy,, etc.) or that is weakly inaccessible.?® The prevailing
general point of view in ontology is structural, while objects no
longer really matter; this approach shows itself most clearly in
category theory.

Examples like this, which could easily be multiplied, make us believe
that the idea of unchangeable mathematical objects is a red herring.
The fact that in mathematics most results carry over from one period
to the next doesn’t imply that the objects remain the same, or that
a long-winding and sometimes crooked road eventually leads us to the
discovery of their true nature. Rather, it seems advisable to admit that,
if some old mathematical order persists, then it “does so under different
terms, in radically altered or expanded contexts. (Dauben, 1984, p. 52)”

If we face the fact that we can no longer build our ontology of math-
ematics on the conception of an immortal soul harboring mathematical

2T “In allen Erscheinungen hat das Reale, was ein Gegenstand der Empfindung
ist, intensive Grofe, d.i. einen Grad® (In all appearances, the real that is an object
of sensation has intensive magnitude, that is, a degree) (Kant, AA, III, p. 151 (=
CPR, B207)) (emphasis suppressed).

2 Cf. (Kunen, 1980, pp. 209 seq).
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objects, then taking a fresh look (i. e., without Platonic blinders) at the
history of mathematics will provide us with further evidence that

mathematics is man-made; its vital basis is the social inter-action
of mathematicians in their scientific community. No mathematician
starts from nothing. He has to build upon mathematical tradition.
In the course of his mathematical education, be it formal or other-
wise, he acquires a ‘tacit knowledge’ about mathematics, the way
to talk about it, its aims and methods, which enables him to com-
municate with his fellow mathematicians. He becomes a member of
their community, more or less conforming to its way of doing things
and to its norms. He strives for recognition by his colleagues.
(Mehrtens, 1976, p. 30)

Consequently, as mentioned above, we embrace a very broad ap-
proach to the philosophy of mathematics that includes, among others,
cognitive science, math education, and sociology.

Also, if we take the idea of the historicity of mathematics seriously,
then we can no longer treat Plato (or others) as one of ours peers.
Mathematics at Plato’s times was different from ours,?? and we cannot
expect to communicate well across the centuries; proving the ‘same’
result by gnomons and by induction indicates that we are talking
about two different concepts that have not much more in common
than some number names. We understand perfectly well that a naive
substance ontology underlying the ‘platonese’ mathematicians came to
speak suggests otherwise; but besides the concerns that arise from tak-
ing the historicity of mathematics seriously, we ask to bear in mind that
such a substance ontology doesn’t sit well with modern structuralism
either and is at odds with the view from category theory;3° in short,
it is hardly compatible, for mathematical reasons alone, with modern
mathematics.

3. Methodological issues of philosophy of mathematics

We mentioned in Section 1 above why we think sociological studies are
important; a point that was reaffirmed in Mehrtens’s statement that the
“vital basis” of mathematics is “social interaction of mathematicians in

2% Remember, e. g., that, probably due to Eleatic thought, the Greeks considered
natural numbers to be composed out of units; thus two was the first natural num-
ber, but neither one nor zero were. At he same time they thought of numbers in

geometrical terms and not as abstract quantities: “With rare exceptions [...] the
theory of numbers was only treated in connexion with geometry, and for that reason
only the geometrical form of proof was used [...]” (Heath, 1921, p. 16).

30 Cf., e.g., (Awodey, 2004).
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their scientific community”. If this is indeed the case, then one should
expect that the scientific community of mathematicians is the object
of sociological studies. What we find, however, is that in general the
sociology of mathematics is severely underrepresented in the field of
sociology of science.3!

Some of the central questions of philosophy of mathematics, in par-
ticular those related to mathematical practice, have an empirical core,
though. Some of the statements that one finds in philosophical texts
about mathematics are empirical claims, and the most natural way
to find out whether they are true or false is to test them. Very few
philosophers of mathematics take this last step, and it is not an easy
step to take, as data on these questions are not readily available.

Philosophy of mathematics, like other areas of philosophy, relates
phenomena (in this case, mathematics) to a philosophical theory.
Whether the philosophical theory is correct or not is not independent
of the phenomena. Analytic Philosophy, and in particular philosophical
logic, often analyze phenomena by a technique that one could call,
in analogy to the well-known technique of mathematical modelling in
applied mathematics, conceptual modelling, philosophical modelling, or
logical modelling. This technique consists of a number of natural steps,
one of which is to confront the philosophical model with the phenom-
ena. We claim that in many areas of philosophy, especially in the case
of philosophy of mathematics, this step is highly underdeveloped.

In a joint paper with Eva Wilhelmus, two of us proposed the devel-
opment of a philosophical study of mathematics as a discipline based on
empirical facts (Lowe, Miiller, & Wilhelmus, 2007). Such an approach
could be called “naturalistic,” as in (Maddy, 1997), or it could be called
a “Second Philosophy of Mathematics,” as in (Maddy, 2007). We shall
use the label “Empirical Philosophy of Mathematics” in order to stress
the fact that there is actual empirical work to be done. The project Em-
pirical Philosophy of Mathematics consists of a theoretical foundation
together with a potentially unlimited number of questions and practical
projects. Some first steps towards such an Empirical Philosophy of
Mathematics have been documented in (Léwe & Miiller, 2007; Lowe,
2007). The theoretical foundation should contain a sustained argument
for the methodology of conceptual modelling, and should contain in
particular an argument for the necessity to empirically check those
philosophical theories that were established via this method. In (Wil-
helmus, 2007), the author investigated the philosophical question “Is

31 Of. (Heintz, 2000, p. 9): “[dJie Soziologie [begegnet] der Mathematik mit einer
eigentimlichen Mischung aus Devotion und Desinteresse” (sociology approaches
mathematics with a peculiar mix of humbleness and indifference). Her study thus
reconfirms the earlier assessment of (Latour, 1987, pp. 245seq).
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formalizability of an argument a necessary condition for mathematical
knowledge?,” using the empirical method of an online questionnaire,
and gave a negative answer.3?

Mathematical modelling. The notion of a model has acquired a promi-
nent place in contemporary philosophy of science. A great variety of
uses of the term “model” has been studied.>® There is widespread
agreement that models play a crucial réle in scientific practice, and
that a fair amount of that practice consists in modelling. We shall
describe the practice of mathematical modelling, as exemplified in the
sciences, not to give an in-depth account of mathematical modelling,
but to highlight some of its features relevant for the present discussion.

One can formulate an iterative method of mathematical modelling
as we find it in applications of mathematics to science:

— Step 1. One starts with a class of models that appear to be reason-
able candidates. This class may be determined by pre-theoretical
insight, or by earlier steps in the iteration.

— Step 2. One collects data and tries to achieve a best fit within the
available class of models.

— Step 3. One determines the goodness of fit and will either be
satisfied or revert to step 1, having chosen a different class of
models.

Statistical tools have been developed for assessing the “goodness of
fit” of models and data, and there is usually an additional layer of
modelling for the data themselves (in order to handle measurement
errors). The crucial step in mathematical modelling is to confront the
selected model with the data. As every scientist will be proud to say,
honesty with respect to that step is the hallmark of good science.

Conceptual Modelling. Viewed abstractly, the aim of establishing a
“philosophy of X” is quite similar to finding a “model for Y” in the
sciences: One wishes to gain theoretical insight into (some) aspects
of a certain phenomenon by representing them in a specific way. To
give an example: One of the key questions in epistemology is what
knowledge is. The traditional conception of knowledge as justified true
belief (dating back to Plato’s Meno) was challenged by data taking
the form of counterexamples: Gettier constructed plausible scenarios

32 Of. (Lowe, Miiller, & Wilhelmus, 2007) for an overview of the results with some
theoretical background.
3% (f. (Frigg & Hartmann, 2006) for an overview.



19

in which persons have justified true belief, but not knowledge (Gettier,
1963). The ensuing debate led to a repertoire of test cases that serves
as a benchmark for theories of knowledge. But the issue of what are
the data and what is the model is much more subtle than it is in the
typical case of modelling in the natural sciences. Both the traditional
model of knowledge as justified true belief and the data in the form of
counterexamples derive from our intuitions about knowledge, and thus
are two aspects of the same phenomenon. Testing one against the other
might involve some circularity.

If one wishes to mirror the scientific method of mathematical mod-
elling in a philosophical context, one needs to be very careful with
the source and the nature of both theory and data. Thus, conceptual
modelling of a phenomenon X takes the form of an iterative process:

— Step 1. Theory formation. Guided by either a pre-theoretical un-
derstanding of X or the earlier steps in the iteration, one develops
a structural philosophical account of the phenomenon X, keeping
track of the source and the development of the theory in order to
be able to distinguish it from the data in step 2.

— Step 2. Phenomenology. With a view towards step 3, one collects
independent data about the phenomenon X that is able either to
corroborate or to question the current theory.

— Step 3. Reflexion. In a circle between the philosophical theory, its
formation process, and the phenomenological data, one assesses
the adequacy of the theory and potentially revises it by reverting
to step 1.

In many debates of contemporary epistemology, step 2 consists of a
presentation of the author’s intuitions about the case at hand, possibly
supported by anecdotal evidence. While this may be enough if there is
widespread consensus about the analysis, a different solution needs to
be found if one has to decide between competing models. The obvious
solution, in view of the scientific modelling practice, is to supply more
data from a more varied range of sources, including data established
via accepted empirical methods. On this view, the key to successful
conceptual modelling lies in strengthening Step 2 of the above iterative
scheme. In epistemology, the necessary data might be supplied, e.g.,
by empirical linguistics, sociology, or cognitive science.

As mentioned above, sociology of science has, with few exceptions,
shunned away from taking mathematics as an object of study—mostly
for a simple reason: preconceived philosophical convictions made such
studies appear senseless or impossible. The first large-scale socio-empi-
rical study published was Bettina Heintz’s work about the culture and
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practice of mathematics as a scientific discipline.?* The work of (Wil-
helmus, 2007) shows that this approach can yield genuine philosophical
conclusions.

Cognitive science has to offer a number of interesting results with
various philosophical implications as well. For instance, the cognition
of basic mathematical operations has been intensively studied.?® This
work, however, stays very much within the confines of the algorithmic
or computational part of mathematics, and does not touch upon higher
mathematics. As explained in Section 1 above, it is mathematics as a
proving discipline that is in our focus. Developing a cognitive theory of
what is happening in the proving mind is central to understanding the
special status of mathematics. In his paper “A mathematician reflects
on the useful and reliable illusion of reality in mathematics” in this
special issue, Keith Devlin speculates on the philosophical conclusions
one could derive from such a deeper understanding of the cognitive
processes involved in research-level mathematics. We shall come back
to his paper at the end of our list of contributions.

4. The contributions of this special issue

Although the contributions in this issue are arranged by alphabetical
order, we introduce them here in a somewhat more systematic fash-
ion. We start with Larvor’s paper on the role of history and continue
with three papers that have an historical component (Schlimm and
Easwaran on axiomatics, Brating & Pejlare on visualization). Then we
introduce two papers that touch on experimental mathematics (Van
Bendegem & Van Kerkhove and Baker) and conclude with Devlin’s
paper on “neuromathematics.”

Brendan Larvor’s contribution entitled “What can the philosophy
of mathematics learn from the history of mathematics” is considering
whether the marriage between the philosophy and the history of math-
ematics can be a happy one. One overarching theme he spells out in
various details throughout his paper is that “historians [as opposed to
philosophers] do not explain events by subsuming them under general
schemes, but rather by setting events in their proper historical con-
texts.” By further juxtaposing the different approaches of history and
philosophy, he then tries to promote a philosophy of mathematics that
does no longer proceed blindly, but is enlightened by methodological

34 Before (Heintz, 2000), Markowitsch used qualitative sociological studies (inter-
views with mathematicians) in his (Markowitsch, 1997).

35 ¢f., e.g., (Koedinger & Anderson, 1990; Siegler & Stern, 1998; Neth, 2004;
Anderson, 2005; Landy & Goldstone, coa; Landy & Goldstone, ocob).
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insights from history; his final plea is for a “historically and self-aware
philosophy.”

Dirk Schlimm’s research project on the relationship between the
axiomatic method and historical developments in mathematics is the
background of his paper “On the importance of asking the right
research questions: Could Jordan have proved the Jordan-Holder Theo-
rem?”. The paper corrects a long-standing though erroneous “result” in
the historiography of modern algebra, viz. that Jordan was “conceptu-
ally unable” to prove Holder’s generalization of his theorem providing
an important case study of how abstraction works in mathematical
practice.

In his “The role of axioms in mathematics”, Kenny Easwaran wants
to correct another aspect that received wisdom has to offer on axiomat-
ics. Building on Feferman’s distinction between structural axioms (say,
for algebraic entities) and foundational axioms (say, for numbers or
sets), he assumes that the question is not whether we need new struc-
tural axioms or not (we always will) but whether or not we need new
foundational axioms. The thesis he defend and investigates from various
angles is that foundational axioms have an important social réle to
play within the community of mathematics: they save mathematicians
(useless) philosophical controversy and allow them to do instead what
they love to do: proving new theorems.

In their paper “Visualization in Mathematics,” Kajsa Brating and
Johanna Pejlare bring together historical and empirical approaches to
one of the most hotly debated questions in the philosophy of mathemat-
ics: What is the réle of visualization in mathematics? From a historical,
diachronic perspective, this may amount to asking: Which réle has vi-
sualization played in the historical development of mathematics? How
has the mathematical community assessed visualization as a part of
mathematical practice, and how did this assessment change over time?
From a synchronic perspective, the empirical side of the question about
visualization can focus on a multitude of facets, too: The actual use of
different types of visualization in various mathematical contexts, the
use of visualization in mathematics education, cognitive mechanisms
involved in the use of visualization, etc. Accordingly, the authors bring
together two historical case studies on the use of visualization in the
17th and the 19th century and an empirical study on first year students’
difficulties with interpreting visualizations.

The first historical case study presented pertains to the criticism
and the eventual decline of visualization in mathematics triggered by
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geometrical and analytical argumentations drifting apart in the course
of the rigourization of analysis in the 19th century. The second case
study, focussing on visual argumentation in 17th century mathemat-
ics, brings to the fore the need for an interpretation of visualizations.
Interpretation is also the key aspect of diagrammatic reasoning that
the authors put forward against Giaquinto’s attempt at distinguishing
visual from non-visual branches of mathematics. This discussion leads
naturally to their presentation of an empirical study conducted among
first-year university students. It turns out that in themselves, the pic-
tures given to the students are not sufficient to show them what is
happening in a construction; instead, a certain skill of interpreting the
pictures, which would be acquired by studying mathematics, appears
to be a necessary precondition for getting the right results.

“Pi on Earth” is a paper by Jean-Paul Van Bendegem and Bart
Van Kerkhove which emphasizes a completely different link between
mathematics and the empirical world than what we discussed in Section
3 above. Whereas we stressed the importance of empirical research
for the philosophy of mathematics, Van Bendegem and Van Kerkhove
stress the empirical character of some mathematical practices. They
discuss non-formal arguments, mathematical experiments, inductive
reasoning, and probabilistic proof. In the end, they discuss two hypo-
thetical scenarios and their consequences for the empirical character of
mathematics. In the second scenario, they employ Malament-Hogarth
spacetimes, a theory that recently gained a lot of attention in the
computability community as these solutions to the Einstein equations
of General Relativity allowing for an infinite amount of time to pass in
what is a finite amount of time for an observer. They use these scenarios
to argue that mathematical practice depends on contingent facts about
the physical world.

In his “Experimental Mathematics,” Alan Baker develops a theme
from another paper by Jean-Paul Van Bendegem (Van Bendegem,
1998) and asks for the scope and the philosophical implications of the
new field of ezperimental mathematics. Does the emergence of this field
endanger the traditional foundations of mathematics? In his discussion
of the scope of experimental mathematics, Baker revisits some of the
topics discussed in the paper by Van Bendegem and Van Kerkhove,
both number-crunching and inductive arguments show up. However,
whereas Van Bendegem and Van Kerkhove conclude by saying that
experimental methods and an empirical basis form an indispensible
backdrop for mathematical practice, Baker goes the other way and
says that the fact that mathematicians use experiments in the context
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of discovery is “compatible with the view that mathematics is a priori
and deductive at its core.”

We end our list of contributions to this special issue with Keith
Devlin’s intriguing paper “A mathematician reflects on the useful and
reliable illusion of reality in mathematics.” Devlin very clearly states
that the paper “is not intended to be a ‘philosophy paper’ ...but
very much in ...the spirit of the GAP.6 workshop, ...rais[ing] pos-
sibilities that might merit further consideration.” Devlin goes back to
one of the central observations about mathematical research practice,
the Widerstandsempfinden, repeatedly mentioned in Section 1 and also
elaborated in (Buldt, coa). This Widerstandsempfinden is one of the
reasons for mathematicians to adopt the belief that mathematics is
not just a mental figment, but rather about the manipulation of real
objects. Devlin asks where this resistance comes from and decides to
look for its origin at the human brain. We are of course far from un-
derstanding the way the human brain actually works, and thus any
reduction of the Widerstandsempfinden to the workings of the brain
must be preliminary, but Devlin’s ideas certainly are stimulating and
in accord with current neuroscience.
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