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In this paper we study the computational complexity of reciprocal sentences with

quantified antecedents. We observe a computational dichotomy between different

interpretations of reciprocity and its connection with Strong Meaning Hypothesis.

1. Introduction

The English reciprocal expressions each other and one another are common ele-

ments of everyday English. In this paper we study the computational complexity of

reciprocal sentences with quantified antecedents. We bring attention to possible cog-

nitive consequences of complexity issues in semantics. Particularly, by observing

a computational dichotomy between different interpretations of reciprocity we shed

some light on the epistemological status of the so-called Strong Meaning Hypothesis

(proposed in Dalrymple et al. 1998).

Our results also give an additional argument for the robustness of semantic dis-

tinction established by Dalrymple et al. 1998. Moreover, we present NP-complete

natural language quantifiers which occur frequently in everyday English. As far as

we are aware, all other known NP-complete semantic constructions are based on

ambiguous and artificial branching operations.

1.1. Basic examples

We start by recalling examples of reciprocal sentences versions of which can be

found in the corpus of English (see footnote 1 in Dalrymple et al. 1998). Let us

consider the sentences (1)–(3).
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(1) An even number of parliament members refer to each other indirectly.

(2) Most Boston pitchers sat alongside each other.

(3) Some Pirates of the Caribbean were staring at each other in surprise.

The possible interpretations of reciprocity exhibit a wide range of variations. In this

paper we will restrict ourselves to these three possibilities. Sentence (1) implies that

there is a subset of parliament members of even cardinality such that each parlia-

ment member in that subset refers to some statement of each of the other parliament

members in that subset. However, the reciprocals in the sentences (2) and (3) have

different meanings. Sentence (2) entails that each of most of the pitchers is directly

or indirectly in the relation of sitting alongside with each of the other pitchers from a

set containing most pitchers. Sentence (3) says that there was a group of pirates such

that every pirate belonging to the group stared at some other pirate from the group.

Following Dalrymple et al. 1998 we will call the illustrated reciprocal meanings

strong, intermediate, and weak, respectively.

2. Reciprocals as polyadic quantifiers

Monadic generalized quantifiers provide the most straightforward way to define the

semantics of noun phrases in natural language. Sentences with reciprocal expres-

sions transform such monadic quantifiers into polyadic ones. We will analyze recip-

rocal expressions in that spirit by defining appropriate lifts on monadic quantifiers.

These lifts allow us to express the meanings of sentences with reciprocals in the com-

positional way with respect to monadic quantifiers occurring in sentences. For the

sake of simplicity we will restrict ourselves to reciprocal sentences with monotone

increasing quantifiers in the antecedent. However, our definitions can be extended

to cover also sentences with decreasing and non-monotone quantifiers, for exam-

ple following the strategy of bounded composition as explained by Dalrymple et al.

1998.

In order to define the meaning of the strong reciprocity we make use of well-

know operation on quantifiers called Ramseyfication. Let Q be a monadic monotone

increasing quantifier, we define:

RamS(Q)AR ⇐⇒ ∃X ⊆ A[Q(X) ∧ ∀x, y ∈ X(x 6= y ⇒ R(x, y))].
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The result of such a lift is called Ramsey quantifier.

In an analogous way we define two other lifts to express intermediate and weak

reciprocity. For intermediate reciprocity we have the following:

RamI(Q)AR ⇐⇒ ∃X ⊆ A[Q(X) ∧ ∀x, y ∈ X

(x 6= y ⇒ ∃ sequence z1, . . . , z` ∈ X such that

(z1 = x ∧R(z1, z2) ∧ . . . ∧R(z`−1, z`) ∧ z` = y)].

For weak reciprocity we take the following lift:

RamW(Q)AR ⇐⇒ ∃X ⊆ A[Q(X) ∧ ∀x ∈ X∃y ∈ X(x 6= y ∧R(x, y))].

All these lifts produce polyadic quantifiers of type (1, 2). We will call the values

of these lifts strong, intermediate and weak reciprocity, respectively. The linguistic

application of them is straightforward. For example, formulae (4)–(6) give readings

to the sentences (1)–(3).

(4) RamS(EVEN)MP Refer.

(5) RamI(MOST)Pitcher Sit.

(6) RamW(SOME)Pirate Staring.

3. Complexity of the reciprocal lifts

3.1. Strong reciprocity

We will restrict ourselves to finite models. We identify models of the form

M = (U,AM , RM ), where AM ⊆ U and RM ⊆ U2, with undirected graphs. In

graph theoretical terms we can say that M |= RamS(Q)AR if and only if there is

a complete subgraph in M of size bounded by the quantifier Q. For example, to

decide whether some model M belongs to RamS(∃≥k) we must solve the CLIQUE

problem for M and k. A brute force algorithm to find a clique in a graph is to ex-

amine each subgraph with at least k vertices and check to see if it forms a clique.

This means that for every fixed k the computational complexity of RamS(∃≥k) is in

PTIME. However, in general — for changing k — this is a well-known NP-complete

problem.
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Let us define a unary counting quantifier ∃≥k
y — expressing the statement

At least k for a natural number k — as follows:

M |= ∃≥kyϕ(y)[v] ⇐⇒ card(ϕ(M,y,v)) ≥ v(k).

Then it is obvious that:

Proposition 1 The Quantifier RamS(∃≥k) is NP-complete.

Therefore, strong reciprocal sentences with counting quantifiers in antecedents are

NP-complete.

We can give one more general example of strong reciprocal sentences which are

NP-complete. Let us consider the following sentences:

(7) Most members of the parliament refer to each other indirectly.

(8) At least one third of the members of the parliament refer to each other.

(9) At least q × 100% of the members of the parliament refer to each other.

We will call these sentences the strong reciprocal sentences with proportional quan-

tifiers. Their general form is given by the sentence schema (9), where q can be

interpreted as any rational number between 0 and 1. These sentences say that there

is a clique A in M such that card(A)
card(U) ≥ q.

For any rational number q ∈]0, 1[ we say that a set A ⊆ U is q-big if and only

if card(A)
card(U) ≥ q. In this sense q determines a proportional Ramsey quantifier Rq of

type (2) such that M |= Rqxy ϕ(x, y) iff there is a q-big A ⊆ |M | such that for

all a, b ∈ A, M |= ϕ(a, b). Obviously such quantifiers might be used to express

meanings of sentences like (7)–(9). It was observed by Mostowski and Szymanik

2007 that:

Proposition 2 Let q ∈]0, 1[∩Q, then the quantifier Rq is NP-complete.

In fact one can show much more general results, but we leave this rather technical

enterprise for the full paper.
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4. The intermediate and weak lifts

Analogously to the case of strong reciprocity we can also express the meanings

of intermediate and weak reciprocal lifts in graph-theoretical terms. We say that

M |= RamI(Q)AR if and only if there is a connected subgraph inM of size bounded

by the quantifier Q. And M |= RamW(Q)AR if and only if there is a subgraph in

M of size bounded by the quantifier Q without isolated vertices.

We prove that the class of PTIME quantifiers is closed under intermediate lift and

weak lift.

Proposition 3 If Q is in PTIME, then RamI(Q) is in PTIME.

Proposition 4 If Q is in PTIME, then RamW(Q) is in PTIME.

These results show that intermediate and weak reciprocal lifts do not increase

the complexity of quantifier sentences in such drastic ways as in the case of strong

reciprocal lifts. In other words, in many natural language situations intermediate and

weak interpretations are relatively easy as opposed to the strong reciprocal reading.

5. The complexity perspective on SMH

Dalrymple et al. 1998 proposed a pragmatic principle, called Strong Meaning Hy-

pothesis, to predict the proper reading of sentences containing reciprocal expres-

sions. According to SMH the reciprocal expression is interpreted as having logically

strongest truth conditions that are consistent with a given context. Therefore, if it

is only consistent with specified facts, then the statement containing each other will

be interpreted as strong reciprocal sentence. Otherwise, the interpretation will shift

towards logically weaker readings, intermediate or weak, depending on the context.

SMH is a quite effective pragmatic principle. We will discuss shifts it predicts

from a computational point of view using the results provided in the previous section.

Let us first think about the meaning of a sentence in the intensional way — identi-

fying the meaning of an expression with an algorithm recognizing its denotation in a

finite model. Such algorithms can be described by investigating how language users

evaluate the truth-value of sentences in various situations. On the cognitive level it

means that subjects have to be equipped with mental devices to deal with meanings
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of expressions. Moreover, it is cognitively plausible to assume that we have one

mental device to deal with most instances of the same logical notion. For example,

we believe that there is one mental algorithm to deal with counting quantifiers in

most of the possible contexts. In the case of logical expressions, as quantifiers, this

analogy seems uncontroversial.

However, notice that some sentences are too hard for identifying their truth-value

directly. Programming experience suggests that we can claim a sentence to be diffi-

cult when it can not be computed in polynomial time (see Mostowski and Szymanik

2005 for a more detailed discussion). Despite the fact that some sentences are too

hard for direct comprehension we can identify their inferential relations with rela-

tively easier sentences. For instance, knowing that ϕ implies ψ and that ψ is not true

we can easily decide that ϕ is false, no matter how complex is ϕ.

According to SMH any reciprocal sentence, if it is only possible, should be inter-

preted as strong reciprocal sentence. We showed that strong interpretation is some-

times NP-complete. Therefore, it is reasonable to suspect that in some linguistic

situations strong reciprocal interpretation is cognitively much more difficult than in-

termediate or weak interpretation. If it happens to be too hard, then the subject will

try to establish the truth-value of a sentence indirectly, by shifting to the accessi-

ble inferential meanings. They are — depending on context — the intermediate or

the weak interpretation. Summing up, our descriptive complexity perspective on

reciprocity is consistent with SMH. Moreover, it gives a cognitively reasonable ar-

gument explaining some of SMH predictions.
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